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Abstract

Reinforcement learning is a fundamental process by which organisms learn to achieve goals
from their interactions with the environment. We use evolutionary computation techniques to de-
rive (near-)optimal neuronal learning rules in a simple neural network model of decision-making
in simulated bumblebees foraging for nectar. The resulting bees exhibit e3cient reinforcement
learning. The evolved synaptic plasticity dynamics give rise to varying exploration=exploitation
levels and to the well-documented foraging strategy of risk aversion. This behavior is shown to
emerge directly from optimal reinforcement learning, providing a biologically founded,
parsimonious and novel explanation of risk-averse behavior. c© 2002 Published by Elsevier
Science B.V.
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1. Introduction

Behavioral research indicates that reinforcement learning (RL) is a fundamental
means by which experience changes behavior and by which both vertebrates and in-
vertebrates learn to achieve goals from their interactions with the environment [9]. In
RL, learning is contingent upon a scalar reinforcement signal which provides evaluative
information about how good an action is in a certain situation, without providing an
instructive cue to the most rewarding behavior. RL has been studied excessively in the
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ethology of foraging bumble-bees. Real [7] showed that when foraging for nectar in
a Beld of blue and yellow artiBcial Cowers yielding di9erent amounts of nectar, bum-
blebees exhibited e3cient RL, rapidly switching their preference for Cower type when
reward contingencies were switched between the Cowers. The bees also manifested risk
averse behavior, showing a strong preference for landing on constant rewarding Cowers,
as opposed to variably rewarding Cowers yielding the same mean reward. Risk-averse
behavior has also been demonstrated in other animals [2], and has traditionally been
accounted for by hypothesizing a nonlinear subjective “utility function” for reward [8].
RL has attracted ample attention in computational neuroscience, yet a fundamen-

tal question regarding the underlying mechanism has not been su3ciently addressed,
namely, what are the optimal learning rules for maximizing reward in RL? In this pa-
per, we use evolutionary computation techniques to derive the optimal neuronal learning
rules that give rise to e3cient RL in uncertain environments. We further investigate
the behavioral strategies which emerge as a result of optimal RL.
In a previous neural network (NN) model, Montague et al. [5] simulated bee forag-

ing in a 3D arena of Cowers, based on a neurocontroller modelled after an identiBed
interneuron in the honeybee suboesophogeal ganglion [1]. While this model replicated
Real’s foraging results and provided a basic and simple NN architecture to solve RL
tasks, many aspects of the model, Brst and foremost the handcrafted synaptic learning
rule, were arbitrarily speciBed and their optimality questionable. Towards this end, we
use a generalized and parameterized version of this model in order to determine the
optimal synaptic learning rules for RL (with respect to maximizing nectar intake) using
a genetic algorithm [4]. We deBne a general framework for evolving learning rules,
which encompasses all heterosynaptic Hebbian learning rules, along with other charac-
teristics of the learning dynamics, such as learning dependencies between modules.

2. The model

A simulated bee Cies in a 3D arena, above a patch of 60 × 60 randomly scattered
blue and yellow Cowers. In each trial the bee descends from height 10, advancing in
steps of 1 unit in any downward heading direction. The bee views the world through
a cyclopean eye (10◦ cone view), and in each timestep decides whether to maintain
the current heading direction or to change direction randomly, based on its visual
inputs. Upon landing, the bee consumes the nectar in the chosen Cower and another
trial begins. A bee’s life consists of 100 trials. The evolutionary goal (the 6tness
criterion) is to maximize nectar intake.
In the NN controlling the bee’s Cight (Fig. 1a), three modules contribute their in-

put via modiBable synaptic weights to a linear neuron P, whose continuous-valued
output is

P(t) = R(t) +
∑

i∈regular

WiXi(t) +
∑

i∈di9erential

Wi[Xi(t)− Xi(t − 1)]: (1)

The regular input module reports the percentage of the bee’s Beld of view Blled with
yellow [Xy(t)], blue [Xb(t)] and neutral [Xn(t)]. The di9erential input module reports
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Fig. 1. (a) The bee’s neural network controller. The weights Wi(t) of the regular and di9erential modules
are modiBable. (b) The bee’s action function. Probability of reorienting direction of Cight as a function of
P(t) for di9erent values of evolvable parameters m; b. (c) The “genome” sequence of the simulated bee.

temporal di9erences of these percentages [Xi(t)−Xi(t−1)]. The reward module reports
the actual amount of nectar received from a Cower [R(t)] in the nectar-consuming
timestep (in which it is also assumed that there is no new input [Xi(t) = 0]), and
zero during Cight. The bee’s action is determined according to the output P(t) using
Montague et al.’s probabilistic action function [5] shown in Fig. 1b. Note that we do
not incorporate any nonlinear utility function with respect to the reward.
During the bee’s “lifetime” the synaptic weights of the regular and di9erential mod-

ules are modiBed via a heterosynaptic Hebb learning rule of the form:

OWi(t) = �[AXi(t)P(t) + BXi(t) + CP(t) + D]; (2)

where � is a global learning rate parameter, Xi(t) and P(t) are the pre-synaptic and the
post-synaptic values, respectively, Wi their connection weight, and A–D are real-valued
evolvable parameters. In addition, learning in one module can be dependent on another
module (dashed arrows in Fig. 1a), such that if module M depends on module N , M ’s
synaptic weights will be updated according to Eq. (2) only if module N ’s neurons
have Bred. Thus the bee’s “brain” is capable of a non-trivial neuromodulatory gating
of synaptic plasticity.
The simulated bee’s “genome” (Fig. 1c) consisted of a string of 28 genes, each rep-

resenting a parameter governing the network architecture or learning dynamics. Using a
genetic algorithm [4], the bees were “evolved” and the optimal gene values determined.
A Brst generation of bees was produced by randomly generating 100 genome strings.
Each bee performed 100 trials independently and received a Btness score according to
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the average amount of nectar gathered per trial. To form the next generation, 50 pairs
of parents were chosen (with returns) with a bee’s Btness specifying the probability
of it being chosen as a parent. Each two parents gave birth to two o9spring, which
inherited their parents’ genome after performing recombination and adding random mu-
tations. The o9spring were once again tested in the Cower Beld. This process continued
for a large number of generations. In each generation one of the two Cower types was
randomly assigned as a constant-yielding Cower (containing 0:7 �l nectar), and the
other a variable-yielding Cower (1 �l nectar in 1

5 th of the Cowers and zero otherwise).
Reward contingencies were switched between the Cower types in a randomly chosen
trial during each bee’s lifetime.

3. Results: evolution of RL

About half of the evolutionary runs were successful runs, in which reward-dependent
choice behavior was evolved. These runs reveal that an interaction between eight genes
governing the network structure and learning dependencies is essential for producing
e3cient learning in the bee’s uncertain environment. We Bnd that in our framework
only a network architecture similar to that used by Montague et al. [5] can produce
above-random foraging behavior, supporting their choice as an optimal one. However,
our optimized networks utilize a heterosynaptic learning rule di8erent from that used
by Montague et al., giving rise to several important behavioral strategies.
In order to understand the evolved learning rule, we examined the foraging behavior

of individual bees from the last generation of successful runs. In general, the bees man-
ifest e3cient RL, showing a marked preference for the high-mean rewarding Cower,
with a rapid transition of preferences after the reward contingencies are switched be-
tween the Cower types. However, we Bnd that there are individual di9erences between
the bees in their degree of exploitation of the high-rewarding Cowers versus exploration
of the other Cowers (Fig. 2). This phenomenon results from an interesting relationship
between the micro-level Hebb rule coe:cients and the exploration=exploitation trade-
o8 characteristic of the macro-level behavior.
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Fig. 2. Preference for blue Cowers for two di9erent bees from the last generation of di9erent successful runs,
averaged over 40 test bouts, each consisting of 100 trials. Blue is the initial constant-rewarding high-mean
Cower. Reward contingencies were switched between Cower types at trial 50.
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Fig. 3. (a) Risk aversion—preference for blue Cowers in 100 test trials averaged over 40 previously evolved
bees. Blue Cowers contain 1

2 �l nectar, yellow Cowers contain 1 �l in half the Cowers, contingencies switched
at trial 50. (b) Risk aversion is ordered by learning rate. Percentage of visits to constant-rewarding Cowers
in 50 trials averaged over 40 bees, tested with a clamped learning rate.

According to the dependencies evolved, learning (synaptic updating) occurs primarily
in the di9erential module, and only upon landing. We can thus analyze the e9ect of the
heterosynaptic learning rule on the di9erential module’s synaptic weights. This analysis
reveals that as a result from the heterosynaptic nature of the learning rule, positive C
and D values result in “spontaneous” strengthening of competing synapses, leading to
an exploration-inclined bee. On the other hand, negative C and D values will result in
exploitation-inclined behavior.

4. Emergence of risk aversion

A prominent foraging strategy exhibited by the evolved bees is risk-aversion.
Fig. 3a shows the choice behavior of previously evolved bees, tested in a new en-
vironment where the mean rewards of the two Cower types are identical. Although the
situation does not call for any Cower preference, the bees prefer the constant-rewarding
Cower. In contradistinction to the conventional explanations of risk aversion common
in the Belds of economics, our model does not include a non-linear utility function.
What hence brings about risk-averse behavior? We argue that this behavior is a direct
consequence of Hebbian learning dynamics in a n-armed-bandit-like RL situation.
In essence, due to the learning process, the bee makes its decisions based on Bnite

time-windows, and does not compute the long-term mean reward obtained from each
Cower. This is even more pronounced with high learning rates, as after landing on an
empty variable-rewarding type Cower, the bee updates the reward expectation from this
Cower type (i.e. updates the corresponding synaptic weight according to the evolved
heterosynaptic Hebb update rule) to near zero. As a result, the bee prefers the constantly
rewarding Cower, from which it constantly receives a reward. As long as the bee
continues to choose the constant-rewarding Cower, it will not update the expectation
from the variable-rewarding Cower, which will remain near zero. As has been suggested
by March [3], Fig. 3b shows that higher learning rates lead to the more risk aversion.
Corroborating these simulated results, in [6] we prove analytically that risk aversion



956 Y. Niv et al. / Neurocomputing 44–46 (2002) 951–956

is indeed a direct consequence of Hebbian learning dynamics in two-armed-bandit RL
situation, and that risk aversion is ordered by learning rate.

5. Conclusions

In summary, we have presented a novel model of evolved reinforcement learning
agents, which enables the concomitant study of both their macro (behavioral) and
micro (dynamics) levels. We have shown that the evolved (near-) optimal synaptic
learning rules control the tradeo9 between exploration and exploitation seen in fora-
ging behavior. We have further shown that optimal reinforcement learning can
directly explain complex behaviors such as risk aversion, without need for additional
assumptions.
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