
1.4. USING COMPUTERS TO SOLVE DIFFERENTIAL EQUATIONS67

1.4 Using computers to solve differential equations

We have been looking so far at differential equations whose solutions can
be constructed from “elementary functions,” functions that we can write
down in some simple form, look at and (hopefully) understand. In general,
this isn’t possible and in fact it might just be a historical artifact that
certain functions have names and others don’t. If you think you have the
right equation to describe a system you are interested in, the fact that you
can’t immediately write down the solution shouldn’t stop you. You can
make approximations, which generates a lot of intuition, and you can use a
computer to generate numerical solutions. This latter approach is general,
and you should learn how to do it to the point where you feel comfortable.

Let us start with the simplest equation for first order chemical kinetics,
in which some molecule A is tranformed into B with a rate constant k. The
concentration cA of A molecules obeys the equation

dcA

dt
= −kcA. (1.148)

As you all know by now, the solution is cA(t) = cA(0) exp(−kt). Let’s
see how we could find this solution numerically, check against the analytic
solution to see that our strategy works, and finally use the same strategy to
look at equations that are not so easy to solve with pen and paper.

Recall that the derivative is defined in calculus as the limit of finite
differences:

dcA(t)
dt

≡ lim
∆t→0

cA(t + ∆t)− cA(t)
∆t

. (1.149)

The key to numerical solutions of differential equations is in essence to take
a giant step backward and work with a finite value of ∆t, hoping that we
can make it small enough that we start to see the limiting behavior. In the
simplest case we just make the replacement

dcA

dt
→ cA(t + ∆t)− cA(t)

∆t
(1.150)

in the differential equation, and proceed:

dcA

dt
→ cA(t + ∆t)− cA(t)

∆t
= −kcA(t) (1.151)

cA(t + ∆t)− cA(t) = −[k∆t]cA(t) (1.152)
cA(t + ∆t) = [1− k∆t]cA(t).

(1.153)



68 CHAPTER 1. NEWTON’S LAWS, CHEMICAL KINETICS, ...

If we decide to measure time in discrete ticks of a clock, where the time
between ticks is ∆t, then every time t = n · ∆t, where n = 0, 1, 2, 3, . . ..
Thus instead of writing cA(t), we can write cA(n), and of course cA(t+∆t) =
cA(n + 1). This means that Eq (1.153) really is an equation that generates
cA(n + 1) from knowledge of cA(n):

cA(n + 1) = [1− k∆t]cA(n). (1.154)

If we start with some value of cA(0), Eq (1.154) tells us how to generate
cA(1), and then we can use this iteratively to generate values for cA at all
discrete times n. In effect this allows us to “walk” through time, updating
the value of cA based on the previous value, and in this way we generate a
“numerical solution” to our differential equations.

Let’s see how this works in MATLAB. We’ll choose units where the rate
constant k = 1, and our “small steps of time” will be ∆t = 0.01; we’ll have
to come back to the question of whether this choice of ∆t is a good one.
We’ll explore times starting at t = 0 and ending at t = 5 (again, in units
where k = 1), which means that we need to run for 500 ticks of our discrete
clock. With these remarks in mind, the program becomes

cA = zeros(500,1);
cA(1) = 1;
k = 1;
dt = 0.01
for n=2:length(cA);

cA(n) = (1-k*dt)*cA(n-1);
end;

Notice that we start by setting aside space for the thing we trying to com-
pute, and we have to set (in the second line) its initial value. A peculiarity
of MATLAB is that you start counting at n=1, not at n=0. We also have
lines which define the value of the rate constant k and time step ∆t, which
is symbolized by dt in the program; again, our choices of these parameters
are just for illustration at the moment. Once you run the program you have
stored the “data” on concentration as a function of time, and you’d like to
plot it. If you want things in physical units it’s convenient to make a real
time axis,

timeaxis = dt*[0:499];

where we are careful to note that the time corresponding to n=1 is actually
t = 0. Then you can type



1.4. USING COMPUTERS TO SOLVE DIFFERENTIAL EQUATIONS69

figure(1)
plot(timeaxis,cA)
xlabel(’time (seconds)’)
ylabel(’concentration of A’)

and you should get a reasonable plot with properly labeled axes, and this
will appear on your screen in a box marked Figure 1. This is not the place
for aesthetic hints, but at some point you’ll want to learn how to make things
look nice—what is important here is to be sure that when you look at the
plot you can read the units! The results are shown in Fig 1.15, where we
compare the numerical solution to a numerical evaluation of the analytical
result. In this simple case, it’s clear that our numerical strategy “works,” in
that it gives us a solution that agrees with the exact mathematics.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time t

c
A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time t

c
A

Figure 1.15: Numerical solution of the simple differential equation, Eq (1.148). As de-
scribed in the text we use the algorithm defined by Eq (1.154), with the rate constant
k = 1 s−1 and the initial condition cA(1) = 1 (in some units). The solid line is the re-
sult of 500 iterations with ∆t = 0.01 s, and the circles show the exact solution over the
same time window. Inset shows what happens as we increase ∆t, with separate curves for
∆t = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5.



70 CHAPTER 1. NEWTON’S LAWS, CHEMICAL KINETICS, ...

We have of course chosen here a VERY simple example. In particular we
have an exact analytical solution, so using the computer is just for the sake
of learning how to do it. In the problems we ask you to play a bit, changing
parameters to see what is essential in making things work. In the approach
suggested here, the basic issue is how to choose the size of the discrete time
step dt. The whole idea behind our scheme is to replace derivatives with
differences, and this gets to be a bad approximation if we make our steps
too big, as you can see in the inset of Fig 1.15. So this pushes us toward
smaller and smaller values of dt. But if we take very small steps then we
need to take lots of steps to cover the same amount of real time, and so our
computation becomes inefficient.

Thanks to the increasing speed of the devices in your computer’s chips,
running programs for many time steps is less of a problem than it used to
be, but still there are many situations in which one will need to push the
tradeoff between accuracy and efficiency. To do this, one needs to under-
stand something about the problem you are solving, but one can also try
to use more intelligent mappings from the continuous differential equation
down to the discrete time steps. This is a whole field of research (numerical
analysis), and as time permits we’ll give you glimpses. For now, it would
be good if you felt comfortable with the simplest approaches, so that faced
with some new differential equation you don’t how to solve, you can go to
the computer and quickly see what the solutions look like—and have ways
of testing to see if you believe what the computer is telling you!

Problem 18: The basic idea of this section has been to take the differential equation

dc(t)
dt

= −kc(t), (1.155)

replace it with a discrete equation

c(t + ∆t)− c(t)
∆t

= −kc(t) (1.156)

⇒ c(t + ∆t) = (1− k∆t)c(t), (1.157)

and then turn this rule directly into an algorithm.
(a.) Consider the case where k = 10 s−1. Try various values for ∆t (e.g., ∆t =

0.001, 0.01, 0.1, 1 s) and run your program for a number of iterations that corresponds
to one second of real time. Compare your numerical results with the analytic solution
cA(t) = cA(0) exp(−kt). How small does ∆t need to be in order to get the right answer?
How would your answer change if the rate k were ten times faster?



1.4. USING COMPUTERS TO SOLVE DIFFERENTIAL EQUATIONS71

(b.) Write the analogous program for a second order reaction, A + B
k2→ C, described

by the differential equations

dcA

dt
= −k2cAcB (1.158)

dcB

dt
= −k2cAcB . (1.159)

(c.) Assume initial concentrations of cA(0) = 1mM and cB(0) = 2mM. Let k2 =
106 M−1s−1. Before you run your program, what value of ∆t seems reasonable? For how
long (in real time) will you need to run in order to see most of the interesting dynamics?

(d.) Run your program using the parameter settings from part [c]. Is there an analytic
solution to which you can compare your results? If you don’t have such a solution, how
do you decide whether your program is giving the right answer?

Problem 19: Let’s try to use these ideas to solve the equations for motion under the
influence of gravity. Going back to the discussion in Section 1.1, if the height of a particle
with mass m is given by h(t), then Netwon’s equation becomes

m
d2h
dt2

= −mg, (1.160)

again in the limit where we take the force of gravity to be constant. Since we have discussed
ways of solving equations with one derivative, but not two derivatives, let’s rewrite this
as two equations:

dh
dt

= v, (1.161)

dv
dt

= −g. (1.162)

Notice that units are arbitrary. Suppose that we define variables h̃ = h/h0, t̃ = t/t0, and
ṽ = v/v0, where we choose the velocity scale to be the initial velocity, v0 = v(0).

(a.) Write the differential equations for these new variables, that is

dh̃

dt̃
= · · · , (1.163)

dṽ

dt̃
= · · · . (1.164)

(b.) Show that by choosing the scales h0 and t0 correctly, you can make even the
constant g disappear from the equations. What does this mean, qualitatively, about the
form of the solutions to these equations?

(c.) Write a program to solve these “dimensionless” equations, discretizing into time
steps of size ∆t as before. Run the program, and compare your results with the exact
solution from the discussion in Section 1.1.



72 CHAPTER 1. NEWTON’S LAWS, CHEMICAL KINETICS, ...


