
The Fragility of Sparsity

Michal Kolesár, Ulrich K. Müller and Sebastian Roelsgaard

Princeton University

September 2024



Sparsity Based Estimators (SBEs)

• Belloni, Chernuzhukov, Hansen (2014) (BCH): Impose (approximate) sparsity on control coefficients
 and  in

 =  + 0
 +  [|] = 0

 =  0
 + ̃ [̃|] = 0

that is, number of non-zero coefficients is small (up to negligible approximation terms). Also see

Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and Montanari (2014).

• Whenever number of control coefficients  is larger than , cannot run OLS

⇒ Theory allows À , but in economic applications,  almost always smaller than 

• Efficiency gains if  ³ , potential appeal of robust “fully automatic data-driven control selection”



Fragility of Sparsity Based Estimators

1. Not invariant to linear reparameterizations of controls

⇒ SBEs move up to 3 standard errors by seemingly innocuous reparameterizations in three applica-

tions

2. Sparse representations are rare

⇒ Probability of a “random chosen” parameterization to be (approximately) sparse is small

⇒ A thoughtless parameterization choice is unlikely to induce sparsity

3. Sparsity might not hold (potentially even for all parameterizations in large class)

⇒ We develop two tests of null hypothesis of sparsity and find many rejections in the three applica-

tions



Upshot

• OLS is feasible when   

• Unless  is close to , efficiency gains of imposing sparsity over OLS are modest

• Can avoid fragility concerns by running OLS

⇒ Standard errors if  ³ : Cattaneo et al. (2018), Jochmans (2022), Kline et al. (2020), etc.

• If SBEs are employed, must think carefully about the joint issues of

— why sparsity is defensible assumption

— specification of controls



Literature

• Lasso variants that are invariant to choice of baseline category: Bondell and Reich (2009), Gertheiss
and Tutz (2010), Stokell, Shah, Tibhsirani (2021), etc.

• Empirical evidence against sparsity: Giannone, Lenza and Primiceri (2021)

• Poor small sample performance: Wüthrich and Zhu (2023)

• Sensitivity to tuning parameter choices: Angrist and Frandsen (2022)
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Three Empirical Illustrations

• Three papers that leverage SBEs in their main specification

1. BCH: Effect of abortion on crime

2. Frerrara (2022): Effect of WW2 casualty rates of semiskilled white soldiers on post-WW2 black

employment

3. Enke (2020): Relationship between moral values and voting

• Applications make (arguably arbitrary) choices in defining control regressor matrix . How do results

change under other reasonable choices?

1. Different ways of resolving multicollinearity

2. When  includes powers and interactions, explore different normalizations of baseline variables

(keep original, demean, subtract median, set range to [−1 1] or [0 1])



BCH

• Donohue and Levitt (2001) use 8 baseline controls and state and time fixed effects. BCH estimate
first difference version on years 1986-1997 where

—  is change in log crime rate in state  between years  and − 1

—  is change in effective abortion rate (affected by 1973 Roe decision)

• BCH estimate add

— Interaction of baseline controls with linear and quadratic time trends

— Lags and squared lags of baseline controls, also interacted with linear and quadratic trends

— 49 time-invariant state-level controls (initial values, average values of various transformations of

baseline controls), also interacted with trends



Multicollinearity in 

• Only 48 states considered, so 49 time-invariant controls span same column space as state fixed effects

• Time effects are included, so 2 of the time invariant variables are redundant, as are 2 interactions
with linear trend and 2 interactions with quadratic trend

• A dummy baseline control is non-zero only 21 times, but is interacted with 24 variables, so 3 inter-
actions are redundant

⇒ BCH drop 9 perfectly collinear columns of the original 303 columns of  to obtain  = 294 controls

⇒ There are
³24
3

´³49
2

´3
≈ 3× 1012 equally plausible alternative ways of doing this



BCH: Effect of Resolving Multicollinearity

Outcome OLS Post Double Lasso

repl. min max

violent crime 0.006 -0.160 -0.216 -0.109

(0.755) (0.112) (0.118) (0.093)

property crime -0.154 -0.110 -0.137 -0.054

(0.223) (0.045) (0.045) (0.047)

murder 2.240 -0.131 -0.225 -0.061

(2.819) (0.146) (0.140) (0.149)

 = 576,  = 294

⇒ Changes of 1.2 to 1.9 standard errors



Ferrara (2022)

• Decennial 1920-1960 unbalanced panel of county level observations in 16 Southern U.S. states, two-
way fixed effects estimation with

—  : share of semi-skilled black workers

—  : white casualty rate in WW2 interacted with post-WW2 dummy

• Additional controls:

— Interactions between state and time dummies

— 24 baseline controls, their squares, interactions, and interactions with state and time

— Two baseline controls included in triple interactions with other baseline controls, state and time

⇒ Drop one reference state and reference decade in each interaction; Delaware only has 15 observations,

but 33 state specific controls



Ferrara (2022): Effect of Resolving Multicollinearity

Outcome OLS Post Double- Selection

repl. min max

% Semiskilled Black workers 0.118 0.548 0.242 0.657

(0.126) (0.167) (0.126) (0.153)

 = 4 903,  = 2 252

⇒ Change of over 3 standard errors



Enke (2020)

• Uses survey data to construct index of importance of universalist moral values (individual rights,
justice, fairness) vs communal values (loyalty, respect)

—  : voting behavior

—  : value index

—  : 10 continuous or binary controls, plus 5 sets of categorical variables

• Requires choice of reference category for each of the 5 sets of categorical variables



Enke (2020): Effect of Resolving Multicollinearity

Outcome OLS Post Double Lasso

repl. min max

Trump−avg. GOP -3.68 -1.92 -2.12 -1.84

(1.42) (0.94) (0.95) (0.93)

Trump 2016 -12.40 -12.34 -12.36 -11.96

(1.36) (1.05) (1.05) (1.03)

Trump primary -5.32 -7.78 -8.62 -7.72

(2.67) (1.54) (1.53) (1.54)

 = 4 903,  = 2 252

⇒ Changes of 0.3 to 0.6 standard errors



Variable Normalization Before Interactions and Taking Powers

• BCH and Ferrara (2022) did not normalize control variables

• We consider:

— Demeaning

— Centering at median

— Setting range to [−1 1]

— Setting range to [0 1]



BCH: Effect of Variable Normalizations

Outcome OLS Post Double Lasso

repl. min max

violent crime 0.006 -0.160 -0.160 -0.122

(0.755) (0.112) (0.112) (0.097)

property crime -0.154 -0.110 -0.127 -0.078

(0.223) (0.045) (0.038) (0.041)

murder 2.240 -0.131 -0.149 -0.066

(2.819) (0.146) (0.151) (0.167)

 = 576,  = 294

⇒ Changes of 0.3 to 1.3 standard errors



Ferrara (2022): Effect of Variable Normalizations

Outcome OLS Post Double- Selection

repl. min max

% Semiskilled Black workers 0.118 0.548 0.482 0.548

(0.126) (0.167) (0.137) (0.167)

 = 4 903,  = 2 252

⇒ Change of 0.5 standard errors



Sparse Representations Are Rare

• Many ways of expressing same column space. If we pick one plausible representation are random,
how likely do we get an approximately sparse one?

• Three idealized settings:

1. All rotations of  plausible (extreme case)

2.  consists of FE, and any representation involving sums of FEs is plausible

3.  obtained by taking Hermite polynomials of scalar base variable after offset , but not sure

what  is appropriate



Approximate Sparsity

• Consider outcome regression  =  + 0
 + 

• Assume  ³  throughout. Then representation ̃ =  is approximately sparse if for sparsity

index

 = (
√
 log )

the mean squared error approximation of  0 satisfies

min
||||0≤

[( 0
 − ̃ 0

)
2] = ()



Full Rotation

• Obviously extreme: For any  0
, there exists rotation  so that with ̃ = , 

0
 = ̃ 0

 ̃

with ||̃||0 = 1, and there exists another rotation such that ||̃||0 =  and ̃ has identical entries

• Theorem: Let ̃ = R, where R is random with Haar measure on rotation matrices. Assume

eigenvalues of[
0
 ] are bounded away from zero and infinity. Then log of probability of obtaining

approximately sparse representation is (−
4
log ).

⇒ For  ≥ 50, −4  10−21

• Proof leverages that

R ∼ ||||2
||Z||2

Z Z ∼ N (0 )

Tails of normal are thin, so very rare to obtain vector that is dominated by few elements.



Fixed Effects

• Consider turning age into categories. Then maybe step function could yield sparse representation of
fixed effects (young vs old), or maybe three distinct coefficients (young, middle aged, old), or...

• General specification: Starting from  fixed effects , let ̃ = , where  ∈ {0 1} and  is

full rank.

⇒ Generate A by drawing elements i.i.d. Bernoulli(), 0   ≤ 12 until we obtain full rank matrix

• Theorem: Suppose for some 0, a single coefficient on  = 0 is non-zero, and that the

number of zeros  in the corresponding row of 0 satisfies 0  lim→∞  1. Further

assume all baseline categories have population fractions of the same order. Then the probability of

̃ = A to be approximately sparse is no larger than (1− − ) for all   0 and large enough

.

⇒ Proof leverages results in Tikhomirov (2020)



Offset in Hermite Polynomial Expansion

• Construct  scaled Hermite polynomials from scalar baseline variable  ∼ N (0 1),

̃ = (),  = 1    

where scaling is such that [̃ 2
] = 1.

• Suppose  = ( + ) + , so for regression to be sparse, would need to use offset  but

researcher uses zero offset.

• Theorem: (a) Suppose  =  log ,   0. If  is fixed, then for 1 ≤  ≤ 
√
 log  and all

large enough , ̃2− ≥ 2, where  is an absolute constant, and approximate sparsity does not

hold.

(b) If → 0, then approximate sparsity holds.

⇒ If  is drawn at random from [0 1], probability of approximate sparsity is of order (1 log )



Potential Efficiency Gains of SBEs

• Recall model

 =  + 0
 +  [|] = 0

 =  0
 + ̃ [̃|] = 0

• If    can run OLS without any assumptions on  or 

• If  ³  OLS is not semiparametrically efficient, but SBEs are

⇒ How large are the potential gains?



Potential Efficiency Gains of SBEs

• Assumption OLS: (i) { ̃} are i.i.d. conditional on 
(ii) lim→∞  =   1

(iii) For   0: [||2+| ] +[|̃]
4| ] ≤ , 1[̃2 | ] + 1[2 | ] ≤ 

• Lemma: Let ̂ be the OLS residuals from regressing  on . Under Assumption OLS

̂ − 


∼ N (0 1) 2 =

⎛⎝ X
=1

̂2

⎞⎠−2⎛⎝ X
=1

̂2 
2


⎞⎠
• Semiparametric Efficiency Bound under homoskedasticity is limit of

2∗ =

⎛⎝ X
=1

̃2

⎞⎠−2⎛⎝ X
=1

̃2 
2


⎞⎠
⇒ SBEs achieve bound, so potential gain of 2∗2 (but OLS inference small sample optimal
under Gaussianity)



Potential Efficiency Gains of SBEs

• If  is homoskedastic and Assumption OLS holds
2∗

2
= (1− )(1 + (1))  =

[(− )−1P
=1 ̂

2
 ]

[̃2 ]

⇒ When ̃ is homoskedastic,  = 1

• When  = 02 and  = 1, ∗ ≈ 09 (and 0.7 for  = 05)
⇒ ¿ 1 only under large positive correlation of leverages  and [̃

2
 | ]

• Under heteroskedasticity
2∗

2
=

2∗2∗hom
2

2
hom

(1− )(1 + (1))

⇒ Large differential impact of heteroskedasticity corrections 2∗2∗hom and 
2


2
hom needed

to obtain very different conclusions



Testing Sparsity

1. Hausman test: Compare ̂ with ̂:

• If sparsity holds, ̂ is efficient and asymptotically normal

• ̂ is asymptotically normal regardless

⇒ Large differences between ̂ and ̂ indicate sparsity does not hold

2.  -test: Check whether non-selected regressors explain too much of residual variation

• Under approximate sparsity, treating Lasso selection as truth is good enough approximation

• In high dimensions, asymptotic variance often hard to estimate; avoid by estimating variances
under the null of sparsity



Hausman Test

• Lemma: If Assumption OLS holds, then for any asymptotically linear estimator ̂∗ that achieves the
semiparametric efficiency bound,

̂ − ̂∗


∼ N (0 1) 2 =
X
=1

2 
2
  =

̂

̂0̂
− ̃

̃0̃

• Theorem: Under additional regularity conditions, same conclusion holds when  and ̃ are replaced

by Lasso residuals

• When  is homoskedastic, 2 ≈ 2 − 2∗, so when efficiency gain is small, ̂ and ̂∗ need
to be close

⇒ Some authors compute SBEs as a “robustness check” of OLS. In fact, it’s the opposite!



 -test

• Consider regression Y =  0
+ , [|] = 0 (can be outcome or propensity score regression)

• Suppose we knew set S∗ of non-zero regressors under null hypothesis of sparsity. Natural test

compares restricted and unrestricted sum of squared residuals

F = Y0( − S∗)Y − Y0( −  )Y =
X
=1

(̂∗ )2 −
X
=1

̂2

where S = S( 0
SS)

−1 0
S and  = (0)−10

• Don’t know S∗, but under standard lasso assumptions can construct SBE ̃ such that ̃ = Y−̃

is good enough approximation to ̂∗ = Y −̂S∗

⇒ Holds even under approximate sparsity, suggests impossibility of testing “approximate sparsity”

vs “exact sparsity”



Limiting Distribution of  -test

• Theorem: Under suitable assumptions, and under null hypothesis of approximate sparsity
F −P

=1 
2
 q

2
P
6= 2 2 2

⇒ N (0 1)

and with ̃ = Y −̃ and ̂ the OLS residualsP
=1 ̃

2
 −

P
=1 ̂

2
 −

P
=1 ̃q

2
P
6= ̃2 ̃2 2

⇒ N (0 1)

• Amounts to checking whether lasso or post-lasso residuals are too large compared to OLS residuals,
allowing for heteroskedasticity



Testing Sparsity in BCH

Outcome Collinearity Normalization

Test repl. min max min max

violent crime H 81.7 76.0 87.4 81.7 85.8

FO 9.5 9.5 9.5 9.5 9.5

FP 0.3 0.0 0.9 0.0 0.6

property crime H 82.6 61.8 93.4 70.9 89.7

FO 12.0 12.0 12.0 12.0 12.0

FP 28.8 12.6 35.0 0.0 29.9

murder H 21.0 19.7 22.5 20.4 22.6

FO 43.3 43.3 43.3 43.3 43.3

FP 0.4 0.2 1.1 0.4 1.2

-values in percent of Hausman test (H), F-test for outcome (FO) and F-test for propensity score (FP)



Testing Sparsity in Ferrara (2022)

Outcome Collinearity Normalization

Test repl. min max min max

% Semiskilled Black workers H 0.0 0.0 5.5 0.0 0.0

FO 0.0 0.0 0.0 0.0 0.0

FP 34.5 19.6 49.7 34.5 53.3

-values in percent of Hausman test (H), F-test for outcome (FO) and F-test for propensity score (FP)



Testing Sparsity in Enke (2020)

Outcome Collinearity

Test repl. min max

Trump−avg. GOP H 6.1 4.9 9.5

FO 13.0 5.1 13.0

FP 94.6 63.1 96.4

Trump 2016 H 94.6 63.1 96.4

FO 0.0 0.0 0.5

FP 0.1 0.1 0.1

Trump primary H 15.5 5.9 16.6

FO 9.6 2.8 9.6

FP 0.0 0.0 0.0

-values in percent of Hausman test (H), F-test for outcome (FO) and F-test for propensity score (FP)



Conclusion

• If SBEs are used, then one needs to provide substantive arguments why

— sparsity holds

— in a particular representation of column space

• Issues not specific to SBEs: Most machine learning methods lack invariance to linear reparameteri-
zations

— Less of a concern when used repeatedly to produce many forecasts

— But in economics, typically care about one particular estimate



Thank you!


