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Sparsity Based Estimators (SBEs)

e Belloni, Chernuzhukov, Hansen (2014) (BCH): Impose (approximate) sparsity on control coefficients
~ and 9d in

Y, = DiB+Wjv+U; E[U;|D;,W;] =0
D; = W+ D; E[D;|W;] = 0,

that is, number of non-zero coefficients is small (up to negligible approximation terms). Also see
Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and Montanari (2014).

e Whenever number of control coefficients p is larger than n, cannot run OLS

= Theory allows p > n, but in economic applications, p almost always smaller than n

e Efficiency gains if p < n, potential appeal of robust “fully automatic data-driven control selection”




Fragility of Sparsity Based Estimators

1. Not invariant to linear reparameterizations of controls

= SBEs move up to 3 standard errors by seemingly innocuous reparameterizations in three applica-

tions

2. Sparse representations are rare
=> Probability of a “random chosen” parameterization to be (approximately) sparse is small

= A thoughtless parameterization choice is unlikely to induce sparsity

3. Sparsity might not hold (potentially even for all parameterizations in large class)

= We develop two tests of null hypothesis of sparsity and find many rejections in the three applica-

tions




Upshot

OLS is feasible when p < n
Unless p is close to n, efficiency gains of imposing sparsity over OLS are modest

Can avoid fragility concerns by running OLS

= Standard errors if p < n: Cattaneo et al. (2018), Jochmans (2022), Kline et al. (2020), etc.

If SBEs are employed, must think carefully about the joint issues of
— why sparsity is defensible assumption

— specification of controls




Literature

Lasso variants that are invariant to choice of baseline category: Bondell and Reich (2009), Gertheiss
and Tutz (2010), Stokell, Shah, Tibhsirani (2021), etc.

Empirical evidence against sparsity: Giannone, Lenza and Primiceri (2021)
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Three Empirical lllustrations

e Three papers that leverage SBEs in their main specification
1. BCH: Effect of abortion on crime

2. Frerrara (2022): Effect of WW?2 casualty rates of semiskilled white soldiers on post-WW?2 black
employment

3. Enke (2020): Relationship between moral values and voting

e Applications make (arguably arbitrary) choices in defining control regressor matrix W. How do results
change under other reasonable choices?

1. Different ways of resolving multicollinearity

2. When W includes powers and interactions, explore different normalizations of baseline variables
(keep original, demean, subtract median, set range to [—1, 1] or [0, 1])




BCH

e Donohue and Levitt (2001) use 8 baseline controls and state and time fixed effects. BCH estimate
first difference version on years 1986-1997 where

— Y is change in log crime rate in state ¢ between years t and t — 1

— Dj; is change in effective abortion rate (affected by 1973 Roe decision)

e BCH estimate add
— Interaction of baseline controls with linear and quadratic time trends
— Lags and squared lags of baseline controls, also interacted with linear and quadratic trends

— 49 time-invariant state-level controls (initial values, average values of various transformations of
baseline controls), also interacted with trends




Multicollinearity in W

e Only 48 states considered, so 49 time-invariant controls span same column space as state fixed effects

e [ime effects are included, so 2 of the time invariant variables are redundant, as are 2 interactions
with linear trend and 2 interactions with quadratic trend

e A dummy baseline control is non-zero only 21 times, but is interacted with 24 variables, so 3 inter-
actions are redundant

= BCH drop 9 perfectly collinear columns of the original 303 columns of VW to obtain p = 294 controls

24, 49,3
= There are ( 3 > ( 5 ) ~ 3 x 1012 equally plausible alternative ways of doing this




BCH: Effect of Resolving Multicollinearity

Outcome OLS Post Double Lasso
repl. min max
violent crime 0.006 -0.160 -0.216 -0.109
(0.755) (0.112) (0.118) (0.093)
property crime -0.154 -0.110 -0.137 -0.054
(0.223) (0.045) (0.045) (0.047)
murder 2.240 -0.131 -0.225 -0.0601
(2.819) (0.146) (0.140) (0.149)

n =576, p = 294

= Changes of 1.2 to 1.9 standard errors




Ferrara (2022)

e Decennial 1920-1960 unbalanced panel of county level observations in 16 Southern U.S. states, two-
way fixed effects estimation with

— Y; : share of semi-skilled black workers
— Dj; : white casualty rate in WW?2 interacted with post-WW2 dummy
e Additional controls:
— Interactions between state and time dummies
— 24 baseline controls, their squares, interactions, and interactions with state and time

— Two baseline controls included in triple interactions with other baseline controls, state and time

= Drop one reference state and reference decade in each interaction; Delaware only has 15 observations,
but 33 state specific controls




Ferrara (2022): Effect of Resolving Multicollinearity

Outcome OLS Post Double-t Selection
repl. min max
% Semiskilled Black workers 0.118 0.548 0.242 0.657
(0.126) (0.167) (0.126) (0.153)

n = 4,903, p = 2,252

= Change of over 3 standard errors




Enke (2020)

e Uses survey data to construct index of importance of universalist moral values (individual rights,
justice, fairness) vs communal values (loyalty, respect)

— Y : voting behavior
— Dj; 2 value index

— Wjt + 10 continuous or binary controls, plus 5 sets of categorical variables

e Requires choice of reference category for each of the 5 sets of categorical variables




Enke (2020): Effect of Resolving Multicollinearity

Outcome OLS Post Double Lasso
repl. min max
Trump—avg. GOP -3.68 -1.92 -2.12 -1.84
(1.42) (0.94)  (0.95) (0.93)
Trump 2016 -12.40 -12.34 -12.36 -11.96
(1.36) (1.05) (1.05) (1.03)
Trump primary -5.32 -71.78 -8.62 -71.72
(2.67) (1.54)  (1.53) (1.54)

n = 4,903, p = 2,252

= Changes of 0.3 to 0.6 standard errors




Variable Normalization Before Interactions and Taking Powers

e BCH and Ferrara (2022) did not normalize control variables

e \We consider:
— Demeaning
— Centering at median
— Setting range to [—1, 1]

— Setting range to [0, 1]




BCH: Effect of Variable Normalizations

Outcome OLS Post Double Lasso
repl. min max
violent crime 0.006 -0.160 -0.160 -0.122
(0.755) (0.112) (0.112)  (0.097)
property crime -0.154 -0.110 -0.127 -0.078
(0.223) (0.045) (0.038) (0.041)
murder 2.240 -0.131 -0.149 -0.066
(2.819) (0.146) (0.151) (0.167)

n = 576, p = 294

= Changes of 0.3 to 1.3 standard errors




Ferrara (2022): Effect of Variable Normalizations

Outcome OLS Post Double-t Selection
repl. min max
% Semiskilled Black workers 0.118 0.548 0.482 0.548
(0.126) (0.167) (0.137) (0.167)

n = 4,903, p = 2,252

= Change of 0.5 standard errors




Sparse Representations Are Rare

e Many ways of expressing same column space. If we pick one plausible representation are random,
how likely do we get an approximately sparse one?

e Three idealized settings:
1. All rotations of W plausible (extreme case)
2. W consists of FE, and any representation involving sums of FEs is plausible

3. W obtained by taking Hermite polynomials of scalar base variable after offset A, but not sure
what \ is appropriate




Approximate Sparsity

e Consider outcome regression Y; = D;8 + Wy + U;

e Assume p < n throughout. Then representation Wi = AW, is approximately sparse if for sparsity

Index

s = o(+/p/ log p)

the mean squared error approximation of W'~ satisfies

||Urﬂ(i)n<s E[(Wz‘/’)’ — W{v)z] = O(s/p).




Full Rotation

e Obviously extreme: For any W/y, there exists rotation R so that with W; = RW;, W/y = W/5
with ||9||o = 1, and there exists another rotation such that ||%||g = p and % has identical entries

e Theorem: Let W; = RW;, where R is random with Haar measure on rotation matrices. Assume
eigenvalues of E[WZWZ’] are bounded away from zero and infinity. Then log of probability of obtaining
approximately sparse representation is O(—% log p).

= For p > 50, pP/4 < 1021

e Proof leverages that

Z  Z~N(0,1).

Tails of normal are thin, so very rare to obtain vector that is dominated by few elements.




Fixed Effects

e Consider turning age into categories. Then maybe step function could yield sparse representation of
fixed effects (young vs old), or maybe three distinct coefficients (young, middle aged, old), or...

e General specification: Starting from p fixed effects Z;, let W; = AZ;, where A;;€{0,1} and A'is
full rank.

= Generate A by drawing elements i.i.d. Bernoulli(g), 0 < ¢ < 1/2 until we obtain full rank matrix

e Theorem: Suppose for some Ag, a single coefficient on W; = AgZ; is non-zero, and that the
number of zeros K in the corresponding row of Ag satisfies 0 < limp—oo K/p < 1. Further
assume all baseline categories have population fractions of the same order. Then the probability of
W, = AZ; to be approximately sparse is no larger than (1 — g — )#¢ for all € > 0 and large enough
n.

= Proof leverages results in Tikhomirov (2020)




Offset in Hermite Polynomial Expansion

e Construct p scaled Hermite polynomials from scalar baseline variable z; ~ iid/N (0, 1),

~

Wij=Hj(z), Jj=1,...p

where scaling is such that E[ny] =1

e Suppose Y; = Hp(Z; + \) + Uj;, so for regression to be sparse, would need to use offset A, but
researcher uses zero offset.

e Theorem: (a) Suppose A = L/logp, L > 0. If L is fixed, then for 1 < 5 < L,/p/logp and all
large enough p, f"yzz)_j > Cel/2, where C' is an absolute constant, and approximate sparsity does not
hold.

(b) If L — 0, then approximate sparsity holds.

= If A is drawn at random from [0, 1], probability of approximate sparsity is of order O(1/ log p)




Potential Efficiency Gains of SBEs

e Recall model
Y; = D8+ Wjy+U; E[U;|D;,W;] =0
D; = Wi+ D; E[Ds|W;] =0

e If p < n can run OLS without any assumptions on ~ or ¢

e If p < n OLS is not semiparametrically efficient, but SBEs are

= How large are the potential gains?




Potential Efficiency Gains of SBEs

e Assumption OLS: (i) {U;, D;} are i.i.d. conditional on W
(iii) For n, K > 0: E[|Us|*t"| D, W] + E[|D;]*|W] < K, 1/E[D7|W] + 1/E[U?|D,W] < K

e Lemma: Let D; be the OLS residuals from regressing D, on W;. Under Assumption OLS

A n —2 n
BoLs =B pro1)  sBys = (z ﬁ%) (z ﬁ%UE)
=1 )

SOLS

e Semiparametric Efficiency Bound under homoskedasticity is limit of
2 = 2 b = 2772
sy = | > D; > DiU;

=- SBEs achieve bound, so potential gain of SE/S%LS (but OLS inference small sample optimal
under Gaussianity)




Potential Efficiency Gains of SBEs

e If U; is homoskedastic and Assumption OLS holds

2 _El(n—p) 50, D7
2 = op/ms o) n = s

= When Di Is homoskedastic, k = 1

e When p/n =0.2 and Kk = 1, sx/sprs = 0.9 (and 0.7 for p/n = 0.5)

= Kk < 1 only under large positive correlation of leverages P;; and E[BZ2|W]

e Under heteroskedasticity
2 52/s2
S* * *,hom
5 — 5 5 (1 —p/n)r(1+ op(1))
SoLS  S0LS/SOLS hom
= Larg_e differeﬁtia/ impact of heteroskedasticity corrections si/sihom and S%LS/SZOLS’hom needed
to obtain very different conclusions




Testing Sparsity

1. Hausman test: Compare Bz g with Bgpp:
e If sparsity holds, BSBE is efficient and asymptotically normal
e 5or.g is asymptotically normal regardless

= Large differences between 87 g and Bgpp indicate sparsity does not hold

2. F'-test: Check whether non-selected regressors explain too much of residual variation
e Under approximate sparsity, treating Lasso selection as truth is good enough approximation

e In high dimensions, asymptotic variance often hard to estimate; avoid by estimating variances
under the null of sparsity




Hausman Test

e Lemma: If Assumption OLS holds, then for any asymptotically linear estimator B* that achieves the
semiparametric efficiency bound,

VaN N\ N\ ~

Bors — B« 25 = 2,02 D; D;
~ N (0,1 sgr=Y wiUf wi=—-x— ==
SH ( ) H — 11 ? D' D D' D

e Theorem: Under additional regularity conditions, same conclusion holds when U; and ﬁi are replaced
by Lasso residuals

e When U is homoskedastic, s2, ~ s2 — 52, so when efficiency gain is small, B and B need
H OLS * y g OLS *

to be close

= Some authors compute SBEs as a “robustness check” of OLS. In fact, it's the opposite!




F'-test

e Consider regression Y; = X/o + ¢;, E[g;]X;] = 0 (can be outcome or propensity score regression)

e Suppose we knew set S* of non-zero regressors under null hypothesis of sparsity. Natural test
compares restricted and unrestricted sum of squared residuals

n mn
F=Y(I—-Ps:)Y-Y(IT—-P)Y=Y (&)Y ¢
1=1 1=1

where Ps = Xg(X5Xs) 1X% and P = X(X'X)~1X/

e Don't know &*, but under standard lasso assumptions can construct SBE & such that &; = Y; — X &
is good enough approximation to &5 =Y; — X &g+

= Holds even under approximate sparsity, suggests impossibility of testing “approximate sparsity”
vs “exact sparsity”




Limiting Distribution of F'-test

e Theorem: Under suitable assumptions, and under null hypothesis of approximate sparsity

F - Z’L 1 zP’L’L

= N(0,1)
2 2
\/227;5&] 7 ]Pz]
and with &, = Y; — X & and &; the OLS residuals
7 ~2 n 22 _ N P..
i=1%; 1=1%1 i—1 i ZZ:>N(O,1).

\/2 Zz#] ~2 2P2

e Amounts to checking whether lasso or post-lasso residuals are too large compared to OLS residuals,
allowing for heteroskedasticity




Testing Sparsity in BCH

Outcome Collinearity  Normalization
Test  repl. min  max min  max
violent crime H 3l.7 6.0 87.4 3l.7 8b.8
FO 9.5 95 95 95 95
FP 0.3 0.0 0.9 0.0 0.6
property crime H 32.6 61.8 93.4 70.9 89.7
FO 12.0 12.0 12.0 12.0 12.0
FP 28.8 126 35.0 0.0 29.9
murder H 21.0 19.7 225 204 22.6
FO 43.3 43.3 43.3 43.3 43.3
FP 0.4 0.2 1.1 04 1.2

p-values in percent of Hausman test (H), F-test for outcome (FO) and F-test for propensity score (FP)




Testing Sparsity in Ferrara (2022)

Outcome Collinearity  Normalization
Test repl. min  max min  max
% Semiskilled Black workers H 0.0 0.0 b5 0.0 0.0
FO 0.0 0.0 0.0 0.0 0.0
FP 34.5 19.6 49.7 34.5 53.3

p-values in percent of Hausman test (H), F-test for outcome (FO) and F-test for propensity score (FP)




Testing Sparsity in Enke (2020)

Outcome Collinearity
Test repl. min  max
Trump—avg. GOP H 6.1 49 95

FO 13.0 5.1 13.0
FP 946 63.1 964

Trump 2016 H 046 63.1 964
FO 0.0 0.0 0.5
FP 0.1 0.1 0.1
Trump primary H 15.5 59 16.6
FO 0.6 2.8 9.6
FP 0.0 0.0 0.0

p-values in percent of Hausman test (H), F-test for outcome (FO) and F-test for propensity score (FP)




Conclusion

e If SBEs are used, then one needs to provide substantive arguments why
— sparsity holds
— in a particular representation of column space
e Issues not specific to SBEs: Most machine learning methods lack invariance to linear reparameteri-
zations
— Less of a concern when used repeatedly to produce many forecasts

— But in economics, typically care about one particular estimate




Thank you!




