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Long-run forecasts of economic variables play an important role in policy, planning, and portfolio
decisions. We consider forecasts of the long-horizon average of a scalar variable, typically the growth
rate of an economic variable. The main contribution is the construction of prediction sets with asymptotic
coverage over a wide range of data generating processes, allowing for stochastically trending mean growth,
slow mean reversion, and other types of long-run dependencies. We illustrate the method by computing
prediction sets for 10- to 75-year average growth rates of U.S. real per capita GDP and consumption,
productivity, price level, stock prices, and population.
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1. INTRODUCTION

This article is concerned with quantifying the uncertainty in long-run predictions of economic
variables. Long-run forecasts and the uncertainty surrounding them play an important role in
policy, planning, and portfolio decisions. For example, in the U.S., an ongoing task of the
Congressional Budget Office (CBO) is to forecast productivity and real GDP growth over a 75-
year horizon to help gauge the solvency of the Social Security Trustfund. Uncertainty surrounding
these forecasts is then translated into the probability of trust fund insolvency.1 Inflation “Caps”
and “Floors” are option-like derivatives with payoffs tied to the average value of price inflation
over the next decade; their risk-neutral prices are determined by the probability that the long-run
average of future values of inflation falls above or below a pre-specified threshold.2 And, there
is a large literature in finance discussing optimal portfolio allocations for long-run investors and
how these portfolios depend on uncertainty in long-horizon returns.3

1. See Congressional Budget Office (2005).
2. See Fleckenstein et al. (2013), Hilsher et al. (2014), and Kitsul and Wright (2013), who use market prices on

various inflation-related derivatives to estimate market-based predictive distributions of inflation.
3. See, for example, Campbell and Viceira (1999), Pastor and Stambaugh (2012), and Siegel (2007).
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Let xt denote a time series, such as the inflation rate, the growth rate of real GDP or the
return on a portfolio of stocks. Sample data on xt are available for t =1,...,T , say 1947–2014.
Let xT+1:T+h =h−1∑h

t=1xT+t denote the average value of the series between time periods T +1
through T +h, say the 32-year horizon 2014–46. We are interested in the date T uncertainty
about the value of xT+1:T+h, as characterized by prediction sets that contain xT+1:T+h with a
pre-specified probability (such as 90%). This is a long-horizon problem, since the horizon h is
large relative to the number of available observations T (in the example, r =h/T ≈0.5).

We structure the problem so that the coverage probability can be calculated using asymptotic
approximations based on a central limit theorem. In particular, we suppose that both T and h are
large, and construct the prediction sets as a function of a relatively small number of weighted
averages of the sample values of xt . We apply a central limit theorem to the variable of interest
(xT+1:T+h) and the predictors, and study an asymptotic version of the prediction problem based on
the multivariate normal distribution. Were all the parameters of this normal distribution known
(or consistently estimable), the prediction problem would be a straightforward application of
optimal prediction in the multivariate normal model.

The problem is complicated by unknown parameters that characterize the stochastic process xt
and hence also the covariance matrix of the normal distribution in the large-sample problem. We
assume that the first differences �xt =xt −xt−1 are covariance stationary. (Recall that xt is a series
like the growth rate of real GDP, inflation, or asset returns, so this does not rule out stochastic
trends in these growth rates.) Since we are interested in a long-run prediction (xT+1:T+h, for
h large relative to T ) the crucial characteristic of xt is its (pseudo-) spectrum near frequency
zero. The relative paucity of sample information about these low-frequency properties precludes
a non-parametric approach. We, therefore, proceed by constructing a flexible parametric model
for the shape of the spectrum near frequency zero that nests the fractional, local-to-unity and
local-level forms of long-run persistence. The uncertainty about the parameter θ of this model in
turn becomes an important component of the uncertainty about xT+1:T+h.

We use both Bayes and frequentist methods to incorporate this uncertainty in our prediction
sets. The Bayes procedure is straightforward: given a prior for the parameter θ , and the Gaussianity
of the limiting problem, the predictive density for xT+1:T+h follows from Bayes rule, so that
prediction sets are readily computed. While Bayes sets have many desirable properties, they
have the potentially undesirable property of controlling coverage (i.e., the probability that the
set includes the future value of xT+1:T+h) only on average for values of θ drawn from the prior.
Thus in general, coverage will fall short of the nominal level for some values of θ , and the
specifics of this undercoverage will depend on the prior used. To address this limitation, we
robustify the Bayes prediction sets by enlarging them so that they have frequentist properties: the
resulting sets provide (possibly conservative) coverage for all values of θ . Using ideas borrowed
from Müller and Norets (2012), we do this in a way that minimizes the sets’ average expected
length.

In economics, arguably the most well-known predictive densities and corresponding
prediction sets are the “Rivers of Blood” shown in the Bank of England’s Inflation Report.
These are judgmental prediction sets for inflation that are computed over a 4-year horizon by the
members of the Bank’s Monetary Policy Committee. In contrast, we are interested in prediction
sets computed from probability models over long horizons, and the literature on this topic is
relatively sparse. Most of the existing literature on long-horizon forecasting stresses the difficulty
of constructing good long-term forecasts under uncertainty about the long-run properties of
the process. Granger and Jeon (2007) provide a mostly verbal account. Elliott (2006) compares
alternative approaches to point forecasts and compares their mean squared errors. Kemp (1999),
Phillips (1998), and Stock (1996, 1997) show that standard formulas for forecast uncertainty break
down in the long-horizon local-to-unity model, but they do not provide constructive alternatives.
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In the related problem of estimating long-run impulse responses, Pesavento and Rossi (2006)
construct confidence sets that account for uncertainty about the local-to-unity parameter. Chapter
8.7 in Beran (1994) discusses forecasting of fractionally integrated series, and Doornik and Ooms
(2004) use an ARFIMA model to generate long-run uncertainty bands for future inflation, but
without accounting for parameter estimation uncertainty. Two strands of literature study long-
run forecast uncertainty for time series that we analyse by constructing series-specific Bayesian
models. Pastor and Stambaugh (2012) compute predictive variances of long-run forecasts of
stock returns that account for parameter uncertainty. Lee (2011) and Raftery et al. (2012) study
long-run forecasts of population and fertility rates.

The outline of this article is as follows. Section 2 formalizes the long-horizon prediction
problem and discusses the low-frequency summaries of the sample data used in the analysis. This
section also introduces two running examples: forecasting the average growth rate of real per
capita GDP and the average level of consumer price index (CPI) inflation in the U.S. over the
next 25 years. Section 3 discusses and develops the requisite statistical tools for constructing the
long-horizon prediction sets. Two sets of tools are needed. The first is a central limit theorem
and associated covariance matrix that yields a large-sample Gaussian version of the prediction
problem. The second are methods for constructing Bayes and frequentist prediction sets for this
limiting problem. The Bayes procedures are standard; the frequentist procedures are not, and are
developed in Section 3.3. Section 4 takes up the important practical problems of parameterizing
the covariance matrix in the limiting problem (which involves parameterizing the spectrum of xt
near frequency 0), choosing a prior for the Bayes prediction sets and a related weighting function
for the frequentist sets (to obtain a scalar criterion for comparing the efficiency of sets), and
choosing the number of low-frequency averages of the sample data to use (which involves a classic
trade-off between efficiency and robustness). Taken together, Sections 2– 4 develop methods for
constructing prediction sets with well-defined large-sample optimality properties; these methods
are illustrated using the GDP and inflation running examples throughout these sections. Section 5
uses simulations and pseudo-out-of-sample experiments to evaluate the performance of these
sets in small samples. One focus of this analysis is the effect of level and/or volatility “breaks”
on the prediction sets. Following this extensive background, Section 6 applies these methods
to construct prediction sets spanning up to 75 years for eight U.S. economic time series: the
running examples of real GDP and CPI inflation, the rates of growth of per capita consumption
expenditures, total factor and labour productivity, population, stock prices, and an alternative
measure of price inflation. Section 7 concludes.

2. THE PREDICTION PROBLEM

Let xt be the economic variable of interest which is observed for t =1,...,T . The objective is to
construct a prediction set, denoted by A, of the average value of xt from periods T +1 to T +h,

xT+1:T+h =h−1
h∑

t=1

xT+t (1)

with the property that P(xT+1:T+h ∈A)=1−α, where α is a pre-specified constant. The prediction
set A is constructed using the sample data for xt , so that A=A

({xt}T
t=1

)
.4 We restrict A in two

ways. First, we allow A to depend on the sample data only through a small number low-frequency

4. Of course, when xt is the first difference of another variable yt , so that xt =yt −yt−1, then forecasts of yT+h can be
constructed from forecasts of xT+1:T+h using the identity yT+h =yT +hxT+1:T+h. Moreover, prediction sets for xT+1:T+h
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weighted averages of the sample data, and secondly, we restrict A to be scale and location
equivariant. We discuss each of these restrictions in turn.

Cosine transformations of the sample data: Because h is large, the prediction sets involve long-
run uncertainty about xt . It is, therefore, useful to transform the sample data into weighted averages
that capture variability at different frequencies—we will be interested in the weighted averages
corresponding to low frequencies. Thus, consider the weighted averages (x1:T ,XT ), with x1:T =
T−1∑T

t=1xt , XT = (XT (1),...,XT (T −1))′, and where XT (j) is the j-th cosine transformation

XT (j)=
∫ 1

0
�j(s)x�sT�+1ds= ιjT T−1

T∑
t=1

�j

(
t−1/2

T

)
xt (2)

with �j(s)=√
2cos(jπs) and ιjT = (2T/jπ )sin(jπ/2T )→1. The cosine transforms have two

properties that we will exploit. First, they isolate variation in the sample data corresponding
to different frequencies: x1:T captures zero-frequency variation and XT (j) captures variation at
frequency jπ/T . Secondly, because the �j weights add to zero, XT (j) is invariant to location
shifts of the sample, a property we use when we construct equivariant prediction sets.

The T ×1 vector (x1:T ,XT ) is a non-singular transformation of the sample data {xt}T
t=1, but

we will construct prediction sets based on a truncated information set that includes only x1:T
and the first q cosine transforms, XT ,1:q = (XT (1),XT (2),...,XT (q))′ and where q is much smaller
than T −1. Thus, the prediction sets we consider are of the form A=A(x1:T ,XT ,1:q), and so rely
solely on variability in the data associated with frequencies lower than qπ/T . We compress the
sample information into the q+1 variables (x1:T ,XT ,1:q) for two reasons. The first is tractability:
with a focus on this truncated information set, the analysis involves a small number of variables
(the (q+2) variables (xT+1:T+h,x1:T ,XT ,1:q)), and because each of these variables is a weighted

average of {xt}T+h
t=1 , a central limit theorem derived in the next section allows us to study a limiting

Gaussian version of the prediction problem that is much simpler than the original finite-sample
problem. The second motivation for truncating the information set is robustness: we use the
low-frequency information in the sample data (x1:T and the first q elements of XT ) to inform us
about a low-frequency, long-run average of future data, but we do not use high-frequency sample
information (the last T −1−q elements of XT ). While high-frequency information is informative
about low-frequency characteristics for some stochastic processes (e.g. tightly parameterized
ARMA processes), this is generally not the case, and high-frequency sample variation may lead
to faulty low-frequency inference. Müller and Watson (2013, 2013) discuss this robustness issue
in detail. In Section 4 below, we present numerical calculations that quantify the efficiency-
robustness trade-off embodied by the choice of q in the long-run prediction problem.

Invariance: In our applications, it is natural to restrict attention to prediction sets that are
invariant to location and scale, so for example, the results will not depend on whether the data
are expressed as growth rates in percentage points at an annual rate or as percent per quarter.
Thus, we restrict attention to prediction sets with the property that if y∈A(x1:T ,XT ,1:q) then
m+by∈A(m+bx1:T ,bXT ,1:q) for any constants m and b �=0 (where the transformation of XT ,1:q
does not depend on m because, as mentioned above, XT ,1:q is location invariant). Invariance
allows us to restrict attention to prediction sets that depend on functions of the sample data that
are scale and location invariant; in particular, we can limit attention to constructing prediction

and yT+h are readily converted into prediction sets for monotonic transformation of these variables. For example, a
prediction set for the average growth rate of real GDP (xT+1:T+h) yields a prediction set for the log-level of real GDP
(yT+h) or the level of real GDP (exp(yT+h)).

 at Princeton U
niversity on N

ovem
ber 8, 2016

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/


[17:04 15/9/2016 rdw003.tex] RESTUD: The Review of Economic Studies Page: 1715 1711–1740

MÜLLER & WATSON LONG-RUN PREDICTIONS 1715

(a) Growth rate of real per-capita GDP 
(i) Series and low-frequency component                        (ii) Cosine transform

(b) Inflation (CPI)
(i) Series and low-frequency component                     (ii) Cosine transform        

Figure 1

Low-frequency components and cosine transforms.

Notes: The low-frequency components in (i) are the projection of the series onto cos[(t−0.5)π j/T ] for j=0,...,12. The
cosine transforms shown in (ii) are the standardized values, Xs

T ,1:q.

sets for Ys
T given Xs

T ,1:q, where Ys
T =YT /

√
X′

T ,1:qXT ,1:q with

YT =xT+1:T+h −x1:T (3)

and Xs
T ,1:q =XT ,1:q/

√
X′

T ,1:qXT ,1:q.5

Running examples: Two of the economic time series studied in Section 6 are the growth rate of
U.S. real per capita GDP and the rate of inflation in the U.S. based on the CPI. We use these series
as running examples to illustrate concepts as they are introduced. Panels (i) in Figure 1 plot the

5. Setting m=−x1:T /
√

X′
T ,1:qXT ,1:q and b=1/

√
X′

T ,1:qXT ,1:q implies that for any invariant set A, y∈
A(x1:T ,XT ,1:q) if and only if (y−x1:T )/

√
X′

T ,1:qXT ,1:q ∈A(0,XT ,1:q/
√

X′
T ,1:qXT ,1:q), and thus also xT+1:T+h ∈

A(x1:T ,XT ,1:q) if and only if Ys
T ∈A(0,Xs

T ,1:q).
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quarterly values of these time series from 1947 to 2014, along with the low-frequency components
of the time series formed as the projection of the series onto cos[(t−1/2)π j/T ] for j=0,...,12.
(The value q=12 is used in the empirical analysis in Section 6 for reasons discussed below.)
The coefficients in the projection are the cosine transformations, XT ,1:q, and their standardized
values, Xs

T ,1:q are plotted in panels (ii). These low-frequency components of the data are the
summaries of the sample data we use to construct long-horizon prediction sets. Looking at panels
(i), inflation exhibits much more low-frequency variation than GDP growth rates over the sample
period; this is manifested in panels (ii) by the relatively larger magnitude of inflation’s first few
cosine transformations, capturing pronounced low-frequency movements. �

3. STATISTICAL PRELIMINARIES

The last section laid out the finite-sample prediction problem. In this section, we review and
develop the statistical theory that will guide our approach to constructing prediction sets.We divide
the section into three subsections. The first provides a central limit theorem that characterizes the
large-sample behaviour of the weighted averages (XT ,1:q,YT ), and provides a characterization
of the limiting covariance matrix based on the properties of the (pseudo-) spectrum of xt near
frequency zero. The second subsection illustrates this framework in the fractional I(d) model
and reports prediction sets for known d and Bayes prediction sets using a prior for d. The final
subsection discusses the generic problem of robustifying Bayes prediction sets to obtain sets with
frequentist coverage uniformly over the parameter space.

3.1. Large-sample approximations

To derive the asymptotic behaviour of (XT ,1:q,YT ), note that each element can be written as a
weighted average of xt , t =1,...,T +h. Thus, let g : [0,1+r] 	→R denote a generic weighting
function, where r = limT→∞(h/T )>0, and consider

ηT =T1−κ

∫ 1+r

0
g(s)x�sT�+1ds (4)

for a suitably chosen constant κ. In our context, the elements of XT ,1:q are cosine transformations
of the in-sample values of xt (cf. equation (2)), so that g(s)=√

2cos(jπs) for 0≤s≤1 and g(s)=0
for s>1; YT defined in equation (3) is the difference between the out-of-sample and in-sample
average values of xt , so that g(s)=−1 for 0≤s≤1 and g(s)=r−1 for 1<s≤1+r. These weights
integrate to zero, so that the (unconditional) expectation of xt plays no role in the study of ηT .

In Appendix A, we provide a central limit theorem for ηT under a set of primitive conditions
about the stochastic process describing xt and these weighting functions. We will not list the
technical conditions in the text, but rather give a brief overview of the key conditions before stating
the limiting result and discussing the form of the limiting covariance matrix. In particular, the
analysis is carried out under the assumption that�xt =�xT ,t is a double array process with moving
average representation �xT ,t =cT (L)εt , where εt is a possibly conditionally heteroskedastic
martingale difference sequence with more than two unconditional moments, which allows for
some forms of short memory stochastic volatility.6 The moving average coefficients in cT (L) are
square summable for each T , so that �xT ,t has a spectrum, denoted by FT (λ). The motivation

6. The restriction E[�xt]=0 rules out a deterministic trend in xt . This restriction is plausible in our empirical
analysis in which xt denotes growth rates of real variables like per capita GDP, inflation rates, and asset returns.
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for allowing cT (L) and FT to depend on T is to capture many forms of persistence, as stemming
from an autoregressive root local-to-unity, ρT =1−c/T , for instance.

The main regularity condition of the central limit theorem concerns the behaviour of the
(pseudo-) spectrum of xT ,t , RT (λ)=FT (λ)/|1−e−iλ|2, for frequencies close to zero. (In general,
RT is only a pseudo spectrum, since

∫ π
−π RT (λ)dλ might not exist; for instance, it does not if

�xT ,t is white noise, so that xT ,t is a random walk.) In particular, we assume that there exists a
function S :R 	→R such that for all fixed K >0,

lim
T→∞

∫ K

0
|T1−2κRT (

ω

T
)−S(ω)|dω→0 (5)

where S is such that
∫∞

0 ω2S(ω)dω<∞. Intuitively, S describes the limiting behaviour of RT
close to frequency zero, and we correspondingly denote it as the “local-to-zero” spectrum.

Under these and additional technical assumptions, Theorem 1 in the Appendix A shows that
ηT has a limiting normal distribution,7 and as an implication

T1−κ

[
XT ,1:q

YT

]
⇒
[

X
Y

]
∼N (0,�)∼N

(
0,

(
�XX �XY
�YX �YY

))
(6)

with X= (X1,...,Xq)′ (we omit the dependence of X on q to ease notation). The asymptotic
covariance matrix � is a function of the local-to-zero spectrum S, as discussed further below.

The limiting density of the invariants Xs
T ,1:q =XT ,1:q/

√
X′

T ,1:qXT ,1:q and

Ys
T =YT /

√
X′

T ,1:qXT ,1:q follows directly from (6) and the continuous mapping theorem,

[
Xs

T ,1:q
Ys

T

]
⇒
[

Xs

Ys

]
=
[

X/
√

X′X
Y/

√
X′X

]
. (7)

Note that as a consequence of the imposed scale invariance, the convergence in equation (7)
holds irrespective of the scaling factor κ in Equation (4), and the distribution of (Xs,Ys) does not
depend on the scale of �. Explicit expressions for the densities fXs and f(Xs,Ys) of Xs and (Xs,Ys)
as a functions of �XX and � are provided in Appendix B.

With � known, it is straightforward to compute prediction sets of Ys given Xs =xs: a
calculation shows that the distribution of Ys conditional on Xs =xs satisfies (see Appendix B)

Ys −�YX�−1
XX xs√

�YY −�YX�−1
XX �XY

√
xs′�−1

XX xs/q
∼Student-tq (8)

so that prediction sets for Ys of a given level 1−α are readily computed using Student-t quantiles.
These sets in turn imply asymptotically justified prediction sets for Ys

T via equation (7), and thus
also for xT+1:T+h via the definition of (Xs

T ,1:q,Ys
T ) and equation (3).

In particular, when xT ,t is I(0) with long-run variance σ 2 (i.e. the local-to-zero spectrum
is flat, S(ω)= (2π )−1σ 2), it turns out that �YX =0, �XX =σ 2Iq, �YY = (1+r−1)σ 2, and the

7. As in any central limit theorem, the conditions underlying Theorem 1 imply that no single shock has a substantial
impact on the overall variability of ηT . This assumption might be violated by rare but catastrophic events stressed in the
work of Rietz (1988) and Barro (2006), for example. Note, however, that such events would need to substantially impact
the average x̄T+1:T+h over a long horizon to invalidate a normal approximation.
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1−α prediction set for Y is given by the interval with endpoints ±tq
(1−α/2)

√
q(1+r−1)X′X,

where tq
(1−α/2) is the (1−α/2) quantile of the Student-t distribution with q degrees of

freedom. The asymptotically justified prediction set for xT+1:T+h is, therefore, x1:T ±tq
(1−a/2)(1+

r−1)1/2T−1/2sLR, where s2
LR = (T/q)X′

T ,1:qXT ,1:q. Note that this interval becomes smaller for a
larger horizon r because a law of large numbers effect reduces the variability of the average of
future values, with the residual uncertainty under r →∞ stemming from sampling uncertainty
about the population mean E[xt].

More generally, the asymptotic covariance matrix � can always be expressed as a function
of the local-to-zero spectrum S and the weighting functions gj that correspond to the j-th element
of (X′,Y )′. In particular, Corollary 1 of Appendix A implies that

�j,k =
∫ ∞

0
S(ω)wjk(ω)dω (9)

where wjk(ω)=2Re[
(∫ 1+r

0 gj(s)e−iωsds
)(∫ 1+r

0 gk(s)eiωsds
)
]. The elements of the covariance

matrix of (X′,Y )′ are thus weighted averages of the local-to-zero spectrum S, with weights wjk(ω)
that are functions of the Fourier transforms of the weights gj(·) used to construct X and Y .

The weights wjk(ω) are plotted in the Supplementary Appendix; we highlight three features
here. First, wjk(ω) with j �=k, integrates to zero, which implies that for a flat local-to-zero spectrum
S (corresponding to an I(0) model), � is diagonal, as already noted above. Secondly, the weight
associated with the predictor Xj is mostly concentrated in the interval π j±2π , so the variance
of Xj is determined by the value of S in this frequency band. Thirdly, the weight associated with
Y has its mass concentrated near ω=0; for example, when r =1/2, the variance of Y is mostly
determined by the shape of S on the interval ω∈[0,4π ]. The implication of these results is that
the conditional variance of Y given X depends on the local-to-zero spectrum, with the shape of
S for, say, ω<12π , essentially determining its value, even for large q. In terms of the original
time series, frequencies of |ω|<12π correspond to cycles of periodicity T/6. For instance, with
60 years worth of data (of any sampling frequency), the shape of the spectrum for frequencies
below 10-year cycles essentially determines the uncertainty of the forecast of mean growth over
the next 30 years.

3.2. Prediction sets in the I(d) model

A leading example of this analysis is given by the fractional I(d) model, which has a (pseudo-)
spectrum proportional to |λ|−2d for λ close to zero; this yields the local-to-zero spectrum S(ω)∝
|ω|−2d , and the central limit result from the last subsection is applicable for −1/2<d <3/2. The
I(d) model captures a wide range of long-run dependence patterns including the usual I(0) and
I(1) models, but also persistence patterns between and outside these two extremes. With negative
values of d it also allows for long-run anti-persistence (which may arise from overdifferencing),
and with d >1 it allows for processes more persistent than an I(1) process.8

Running example (continued): Panels (i) of Figure 2 show the appropriately centred and scaled
Student-t predictive densities from equation (8) for the average growth rate of U.S. real per capita
GDP and the average value of CPI inflation over the next 25 years for various values of d in the
I(d) model. For real GDP growth rates, predictive densities are shown for d =−0.4, 0.0, 0.2, and
0.5, and for inflation the predictive densities are shown for d =0.0, 0.4, 0.7, and 1.0. For both

8. We discusss the numerical determination of � in the fractional model in the Supplementary Appendix.
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(a) Growth rate of real per-capita GDP 

(i) 25-year ahead I(d)-predictive densities (ii) Low-frequency log-likelihood values for d

(b) Inflation (CPI)

(i) 25-year ahead I(d)-predictive densities (ii) Low-frequency log-likelihood values for d

Figure 2

Predictive densities and low-frequency log-likelihood values for the I(d) model.

Notes: Panels (i) show the known-d prediction sets and Bayes prediction sets using the prior d ∼U[−0.4,1.0]. The low-
frequency I(d) likelihood is computed using Xs

T ,1:q and its asymptotic distribution given in the text; values are relative
to the I(0) model.

series, as d increases, the variance of the predictive density increases because more persistence
leads to larger variability in future average growth. The mode of the I(0) predictive density is
given by the in-sample mean (see the discussion following equation (8)), and the mode shifts to
the left for d >0 reflecting the persistent effect of the slow growth and low inflation experienced
at the end of sample. In contrast, the mode of the d =−0.4 predictive density (shown for real GDP
growth rates) is larger than the in-sample mean because faster than average growth is required to
return the log-level of GDP to its pre-Great Recession trend growth path.

Evidently, both the length and location of 25-year-ahead prediction sets depend critically on
the d. This raises the question: what is the value of d for these series?

Panels (ii) summarize what the sample data say about the value of d. It plots the “low-
frequency” log-likelihood values for d based on Xs

T ,1:12 and its large-sample density from
equation (7), and with the log-likelihood of the I(0) model normalized to zero. The numbers
for real per capita GDP suggest only limited persistence for this series (values of d >0.6 yield a
log-likelihood 3 points lower than the I(0) model), but values of d ranging from −0.4 (suggesting
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some reversion to a linear trend in the log-level of GDP, so that the growth rate is overdifferenced)
to 0.2 (slight persistence in the GDP growth rates) all fit the data reasonably well. In contrast,
the inflation data suggest much more persistence: the likelihood has a maximum at d =0.65 with
corresponding log-likelihood value that is 2.3 points larger than the I(0) model.

Taken together, the results in panels (i) and (ii) indicate that much of the 25-year-ahead forecast
uncertainty is associated with uncertainty about the degree of persistence in the stochastic process,
which in the I(d) model is governed by the value of the parameter d. �

Bayes prediction sets: A natural way to incorporate this parameter uncertainty is to use a
Bayes approach, where the limited-sample information is combined with a prior on d. This is
straightforward: with � the prior on d, the Bayes predictive density for Ys conditional on Xs =xs

is given by

f �
Ys|Xs (ys|xs)=

∫
f(Xs,Ys)|d(xs,ys)d�(d)∫

fXs|d(xs)d�(d)

with f(Xs,Ys)|d and fXs|d the densities of (Xs,Ys) and Xs in equation (7) with the value of � implied
by a local-to-zero spectrum S(ω) proportional to |ω|−2d .

Bayes prediction sets can be readily computed from the predictive density. For example, the

“highest predictive density” (HPD) set for Ys is AHPD(xs)=
{

ys : f �
Ys|Xs (ys|xs)>cv(xs)

}
, where

cv(xs) solves
∫

AHPD(xs) f �
Ys|Xs (ys|xs)dys =1−α. This HPD Bayes set is the smallest length set

that satisfies the coverage constraint relative to f �
Ys|Xs . Alternative Bayes prediction sets, such

as equal-tailed sets, can be used instead. Thus, let ABayes(xs) denote a generic Bayes prediction
set for Ys as a function of xs. Because Ys =Y/

√
x′x and xs =x/

√
x′x, equivariance implies the

extension to generic x via ABayes(x)={y :y/√x′x∈ABayes(x/
√

x′x)}.
Running example (continued): Panels (i) of Figure 2 shows the resulting Bayes predictive

densities for x̄T :T+h with a uniform prior on d ∈[−0.4,1.0]. This mixture of Student-t densities is
no longer necessarily symmetric, as the the underlying Student-t densities do not have the same
mode. So for instance, for the GDP series, one obtains a left-skewed Bayes predictive distribution
since larger values of d both increase uncertainty and shift the most likely future values to the
left. �

3.3. Frequentist robustification of Bayes prediction sets

As discussed in Section 3.1, the distributions of (X,Y ) and (Xs,Ys) depend on the covariance
matrix �, which in turn depends on the low-frequency spectrum S of xt . In the next section,
we discuss a parameterization of the spectrum that is more general than the I(d) model, so in
general, �=�(θ ) where θ is a parameter vector. In this section, we discuss the general problem
of constructing frequentist prediction sets that incorporate uncertainty about the value of θ . We
provide additional details in Appendix C.

The (frequentist) coverage probability of a set A, Pθ (Y ∈A(X)), generally depends on the value
θ . A Bayes prediction set has coverage probability of 1−α, on average relative to the prior �, that
is
∫

Pθ (Y ∈ABayes(X))d�(θ )=1−α, but in general, Pθ (Y ∈ABayes(X))<1−α for some values
of θ . In this subsection, we “robustify” Bayes sets by enlarging them so they have frequentist
coverage: inf θ∈�Pθ (Y ∈A(X))≥1−α. There is no unique way to achieve this. We focus on sets
with smallest weighted expected length.

To be specific, let A(X) denote an arbitrary prediction set, and Vθ (A)=Eθ [vol(A(X))] denote
its expected length (which depends on θ ). The goal is to choose A to minimize Vθ (A) over the
parameter space � for θ . In many problems, including the one considered in this article, there is
no set A that simultaneously minimizes Vθ (A) for all θ ∈� while maintaining coverage, so there
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is an inherent trade-off of expected length over different values of θ . Let W denote a weighting
function that makes this trade-off explicit. Consider the following problem:

min
A

∫
Vθ (A)dW (θ ) (10)

subject to

Equivariance: y∈A(x) implies by∈A(bx) for all x,y and |b| �=0 (11)

Frequentist coverage: inf
θ∈�

Pθ (Y ∈A(X))≥1−α, and (12)

Bayes superset: ABayes(x)⊂A(x) for all x. (13)

Because the objective function depends on the weighting function W , so will the solution, and
we discuss specific choices for W in the following section. The constraint (11) imposes scale
equivariance—recall that location invariance in the original problem is imposed by the choice
of Y and X. The coverage constraint that defines a (1−α)-frequentist prediction set is given by
equation (12).

The constraint (13) can be motivated in a variety of ways. One motivation is ad hoc and
simply says that the goal is to robustify a Bayes set by enlarging it so it has frequentist coverage
properties. Another focuses on properties of frequentist sets that do not impose constraint (13).
Notably, conditional on particular realizations of X these sets can have unreasonably small length;
indeed they can be empty. In particular, even with θ known (i.e. �={θ}), solving equation (10)
subject to equations (11) and (12) does not in general yield the known-θ prediction set (8), but
rather a prediction set whose coverage of Y is equal to 1−α only on average over repeated
draws of X, but not conditional on the observed X. Müller and Norets (2012) show that imposing
constraint (13) eliminates these arguably unattractive properties. We find the Müller and Norets
arguments compelling and, therefore, enforce the constraint (13) for the frequentist sets used in
the empirical analysis of Section 6. However, for comparison we also study solutions that do not
impose constraint (13) in Section 4 and the Supplementary Appendix.

The solution to the program (10)–(13) can be found in three steps: the first step transforms
the problem to impose equivariance (11); the second uses a “least favourable distribution” for θ

to simplify the coverage constraint (12); and the third enforces constraint (13). We discuss these
steps in turn.

Equivariance: If A(X) is scale equivariant, then Y ∈A(X) if and only if Y ∈√
X′XA(Xs).

Thus, vol(A(X))=√
X′Xvol(A(Xs)) and Vθ (A)=Eθ [gθ (Xs)vol(A(Xs))], where gθ (Xs)=

Eθ [
√

X′X|Xs]. Imposing this restriction, the objective function (10) becomes

min
A

∫
Eθ

[
gθ (Xs)vol(A(Xs))

]
dW (θ ), (14)

and the coverage (12) and Bayes superset (13) constraints can be rewritten as

inf
θ∈�

Pθ (Ys ∈A(Xs))≥1−α (15)

ABayes(xs)⊂A(xs) for all xs. (16)

Note that equations (14–16) only involve the value of A evaluated at xs, which lives on a
smaller subspace xs′xs =1 compared to x∈R

q, but on that subspace, A is unrestricted. The
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solution to equation (14) subject to equations (15) and (16), A∗(xs), then implies the solution
A∗(x)={y :y/√x′x∈A∗(x/

√
x′x)} to the original problem (10) subject to equations (11–13).

Frequentist Coverage: For the coverage constraint (15), suppose for a moment that θ is a
random variable with distribution �, and consider solving equation (14) subject to the resulting
single coverage constraint ∫

Pθ (Ys ∈A(Xs))d�(θ )≥1−α. (17)

A calculations yields the solution

A�(xs)=
{

ys :
∫

f(Ys,Xs)|θ (ys,xs)d�(θ )∫
gθ (xs)fXs|θ (xs)dW (θ )

>cv

}
(18)

where cv is chosen to satisfy constraint (17) with equality. Of course, while A� satisfies the
average coverage constraint (17), it does not necessarily satisfy the uniform coverage constraint
(15) required for a frequentist prediction set. However, because any set satisfying constraint (15)
also satisfies constraint (17), the value of the objective (14) evaluated at A� provides a lower bound
for any set satisfying constraint (15). Therefore, if a distribution �† can be found under which A�†

satisfies constraint (15), then A�† solves the minimization problem (14) subject to the uniform
coverage constraint (15). Such a �† is called the “least favourable distribution” for the problem.
Elliott et al. (2015) develop numerical methods for approximating least favourable distributions
in related problems, and we use a variant of those methods here. See the Supplementary Appendix
for details.

Bayes superset: The final step—incorporating the constraint (16)—is straightforward: it
simply amounts to replacing equation (18) with the set

AMN (xs)=
{

ys :
∫

f(Ys,Xs)|θ (ys,xs)d�†(θ )∫
gθ (xs)fXs|θ (xs)dW (θ )

>cvMN

}
∪ABayes (19)

where (�†,cvMN ) are now such that
∫

Pθ (Ys ∈AMN (Xs))d�†(θ )=1−α and inf θ∈�Pθ (Ys ∈
AMN (Xs))≥1−α (cf. Müller and Norets, 2012).

4. PARAMETERIZATIONS FOR LONG-HORIZON PREDICTION SETS

Implementation of the prediction sets discussed in the last section requires four ingredients: (1)
a parameterization of S, the local-to-zero spectrum, which yields the covariance matrix �(θ ) via
equation (9); (2) a Bayes prior �(θ ), which yields the Bayes prediction set ABayes; (3) a frequentist
weighting function W (θ ), which quantifies the trade-off of expected length for various values of
θ in the objective function (10); and (4) a choice for q, the number of cosine weighted averages
used for the prediction problem. These are discussed in the following three subsections.

4.1. Parameterizing the low-frequency spectrum

The I(d) model introduced in Section 3.2 above is a flexible one-parameter model that captures
a wide range of long-run persistence patterns. Because of its simplicity, flexibility, and use in
other empirical analyses involving long-run behaviour of economic time series, we use the I(d)
parameterization for our equal-tailed Bayes prediction sets ABayes.

However, a concern is that the family of I(d) local-to-zero spectra may not be sufficiently
flexible to capture all forms of long-run dependencies in economic time series. This suggests

 at Princeton U
niversity on N

ovem
ber 8, 2016

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/lookup/suppl/doi:10.1093/restud/rdw003/-/DC1
http://restud.oxfordjournals.org/


[17:04 15/9/2016 rdw003.tex] RESTUD: The Review of Economic Studies Page: 1723 1711–1740

MÜLLER & WATSON LONG-RUN PREDICTIONS 1723

(a) (b)Fractional Model bcd-Model

Figure 3

Logarithm of the local-to-zero spectrum for selected models.

Notes: The scale of the local-to-zero spectra S are normalized such that ln(S(π ))+ln(S(15π ))=0.

the need for a richer class of local-to-zero spectra, and we construct such a class by considering
two other models that have proven useful for modelling low-frequency characteristics in other
contexts. The first is the local-level model that expresses xt as the sum of an I(0) process and an
I(1) process, say xt =e1t +(bT )−1∑t

s=1e2s, where {e1t} and {e2t} are mutually uncorrelated I(0)
processes with the same long-run variance. The I(1) component has relative magnitude 1/b and
is usefully thought of as a stochastically varying “local mean” of the growth rate xt , as arising
from some forms of stochastic breaks. In this model, S(ω)∝b2 +ω−2. The second model is the
local-to-unity AR(1) model, widely used to model highly persistent processes. In this model
xt = (1−c/T )xt−1 +et , where et is an I(0) process, and a straightforward calculation shows that
S(ω)∝1/(ω2 +c2). (Note that (b,c)→ (∞,∞) and (b,c)→ (0,0) recover the I(0) and I(1) model,
respectively.) The I(d), local-level and local-to-unity models are nested in the parameterization

S(ω)∝
(

1

ω2 +c2

)d

+b2 (20)

where b=c=0 for the I(d) model, d =1, and c=0 for the local-level model, and d =1, and b=0
for the local-to-unity model.9

Figure 3 plots the logarithm of the local-to-zero spectrum of the I(d) model in panel (a), and
of this “bcd-model” in panel (b). The bcd-parameterization allows us to capture a wide range of
monotone shapes for the low-frequency (pseudo-) spectrum of xt , including, but not limited to,
the three benchmark models discussed above. In the analysis below we let θ = (b,c,d), so that
�(θ ) is given by equation (9) with the local-to-zero spectrum S as in equation (20).

4.2. Bayes and frequentist weighting functions

In the empirical analysis in Section 6, we assume that S is characterized by the bcd-model, with
−0.4≤d ≤1.0 and b,c≥0.10 As mentioned above, we construct Bayes sets using a prior that puts

9. This is recognized as the local-to-zero spectrum of the process xt =e1t +(bTd )−1zt , where (1−ρT L)dzt =e2t

with ρT =1−c/T and {e1t} and {e2t} are mutually uncorrelated I(0) processes with the same long-run variance. It is also
recognized as the spectrum of the Whittle–Matérn process from spatial statistics (e.g. Lindgren, 2013). Autocovariances
for this process are derived in the Supplementary Appendix.

10. For the variables we study (growth rates of real variables, inflation rates, and asset returns), values of d >1.0
are unnecessary, but these values may be appropriate in other applications, and we note that the results in Section 3.1
hold for the bcd-model with −0.5<d <1.5, and b,c≥0.
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TABLE 1
Coverage for nominal 67% and 90% prediction sets, r =0.5, q=12

67% Prediction Sets 90% Prediction Sets

ABayes AMN
d AMN

(b,c,d) ABayes AMN
d AMN

(b,c,d)

b=0, c=0, d ∼U[−0.4,1.0] 0.67 0.71 0.73 0.90 0.93 0.94

Coverage minimized over:
b= 0, c=0, −0.4�d �1.0 0.55 0.67 0.68 0.81 0.90 0.90
b�0, c�0, −0.4�d �1.0 0.54 0.57 0.67 0.81 0.84 0.90

Notes: ABayes is the equal-tailed Bayes prediction set using the prior b=0, c=0, d ∼U[−0.4,1.0]; AMN
d robustifies

the Bayes set so it has frequentist coverage for b= 0, c= 0, d ∈[−0.4,1.0]; AMN
(b,c,d) robustifies the Bayes set so it

has frequentist coverage for b� 0, c�0,d ∈[−0.4,1.0]

all weight on the I(d) model (so that b=c=0); we use a prior with uniform weight on values
of d ∈[−0.4,1.0]. The AMN sets robustify these Bayes sets so they have frequentist coverage
for all values of b,c≥0 and d ∈[−0.4,1.0]. The analysis is usefully thought of in terms of the
various spectral shapes plotted in Figure 3, and the Bayes prior is seen as putting equal weight
on the various shapes in panel (a). Because S may take on shapes other than those represented
by the I(d) models in panel (a), the AMN sets robustify the Bayes analysis to ensure frequentist
coverage over all shapes shown in panel (b).

Construction of the AMN sets requires specification of the weighting function W in
equation (10). As noted in Section 3.3, the function W determines the trade-off between expected
length for various of θ , which is necessary because there is no single prediction set that minimizes
expected length for all θ . Our choice of W is guided by the observation that, even with θ known,
the minimized values of Vθ (A) vary greatly over the values of θ . For example, in the I(d) model
with known d, prediction sets are much wider when d =1 (so that xt ∼ I(1)) than when d =0
(xt ∼ I(0)). To account for these differences, we scale Vθ (A) so that it is expressed in units of
the expected length of the predictions set for known θ . Denote this scaled version of Vθ (A) by
Rθ (A)=Vθ (A)/Vknown

θ , where Vknown
θ is the expected length of the prediction set for known

value of θ implied by equation (8). In terms of Rθ (A) we use a weighting function that coincides
with the Bayes prior: uniform on d ∈[−0.4,1.0] and with b=c=0 (so in terms of Vθ (A), the
weighting function W is proportional to 1/Vknown

θ ).11

Table 1 shows coverage rates for 67% and 90% prediction sets for h=rT , with r =0.5 using
q=12 cosine transforms. (This is the value of q we will use in the empirical analysis, and
is discussed more fully in the next subsection.) Table 1 answers two questions. First, what is
the frequentist coverage of the Bayes prediction sets across the range of processes represented
by the spectra in panels (a) and (b) of Figure 3? And secondly, does the I(d) model provide
sufficient flexibility so that the additional parameters b and c are unnecessary in practice? The
table, therefore, displays coverage rates for three prediction sets: the Bayes set, ABayes; the set
robustified to have correct frequentist coverage over d but with b=c=0, denoted AMN

d ; and
the set robustified to have correct frequentist coverage over (b,c,d), AMN

(b,c,d). Coverage rates
are shown for three configurations of (b,c,d). In the first, values of (b,c,d) are drawn from
the prior, so ABayes has correct coverage; in the second, the coverage probability is minimized
over −0.4≤d ≤1.0 with b=c=0, so AMN

d has correct coverage; and in the third, the coverage

11. We investigate how this weighting function performs relative to other possible weighting in the
Supplementary Appendix, where we also compute the cost (in terms of expected length) of the Bayes superset constraint
(16).
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probability is also minimized over b,c≥0, so AMN
(b,c,d) has the correct coverage. The table indicates

that ABayes exhibits substantial undercoverage for some values of d and (b,c,d). It also indicates
substantial undercoverage of AMN

d for some values of (b,c,d). Evidently, controlling coverage
over d does not provide adequate coverage for long-run persistence patterns associated with non-
zero values of b and c. Thus, because some economic variables are arguably well described by
stochastic processes with non-zero value of b and c, it seems prudent to construct the AMN

(b,c,d)
sets.12

We draw four conclusions from Table 1 and the analysis of W detailed in the
Supplementary Appendix. First, Bayes sets constructed using a uniform prior on d exhibit
substantial undercoverage for some values of d. Secondly, robustifying these sets to achieve
frequentist coverage over d is inadequate for some processes with non-zero values of b and c.
Thirdly, for many values of (b,c,d) our benchmark choices of � and W produce sets with expected
length close to the smallest achievable length under the coverage constraint. And finally, for most
values of (b,c,d) there is little cost in terms of expected length for constructing frequentist sets
that are supersets of Bayes sets (and, therefore, share some their desirable properties).

4.3. Choice of q

As discussed in Section 2, the choice of q may usefully be thought of as a trade-off between
efficiency and robustness. In principle, the central limit theorem for (X′

T1:q,YT )′ discussed in
Section 3.1 holds for any fixed q, at least asymptotically. And the larger q, the smaller the
(average) uncertainty about YT . This suggests that one should pick q large to increase efficiency
of the procedure.

At the same time, one might worry that approximations provided by the central limit theorem
for (X′

T1:q,YT )′ become poor for large q. The concern is not only that the high-dimensional
multivariate Gaussianity might fail to be an accurate approximation; more importantly, any
parametric assumption about the shape of the local-to-zero spectrum becomes stronger for larger
q. In particular, for a given sample size T , the assumption that the spectrum of xt over the
frequencies [−qπ/T ,qπ/T ] is well approximated by the spectrum of the bcd-model becomes
less plausible the larger q. Roughly speaking, we fit a parametric model to the q observations
XT ,1:q, so a concern about non-trivial approximation errors arises for large q, irrespective of the
sample size T .

We are thus faced with a classic efficiency and robustness trade-off. Recall from the discussion
in Section 3.1, that the object of interest—the variability of long-run forecasts, as embodied by
the conditional variance of Y given X—is a low frequency quantity that is essentially governed
by properties of xt over frequencies [−12π/T ,12π/T ]. Since the predictors XT (j) provide
information for frequency jπT , this suggests that the marginal benefit of increasing q beyond
q=12 is modest, at least with the spectrum known.

With the spectrum unknown, X with larger q provides additional information about its scale
and its shape. The scale effect is most easily understood in the I(0) model. As discussed above,
the I(0) prediction set is x1:T ±tq

(1−a/2)(1+r−1)1/2T−1/2sLR, where s2
LR = (T/q)X′

T ,1:qXT ,1:q.

The average asymptotic length of this forecast is thus 2T−1/2tq
(1−a/2)(1+r−1)1/2E

√
X′X/q with

12. The approximate least favourable distributions (ALFDs) that underlie the AMN
(b,c,d) sets are plotted in the

Supplementary Appendix. The ALFD is non-degenerate and has most of its mass on spectra that are relatively flat
for larger ω, but with a pronounced pole at zero (these spectra arise, for instance, in the local-level model with moderate
b). Intuitively, in the local-level model, the strong mean reversion of the I(0) component masks the pronounced long-run
uncertainty, making it relatively hardest to control coverage.
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TABLE 2
25-year-ahead prediction sets

Series 67% 90%

ABayes AMN AI(0) ABayes AMN AI(0)

GDP/Pop (1.3, 2.6) (1.2, 2.6) (1.4, 2.5) (0.7, 3.0) (-0.3, 3.0) (0.9, 3.0)
Inflation (0.3, 4.8) (0.3, 4.8) (2.3, 4.8) (-1.8, 6.5) (-2.6, 6.8) (1.4, 5.7)

Notes: The table shows the prediction sets for the average value of the growth rate of real per capita GDP and
inflation from 2014-2039 using the benchmark values of the �, W , and q.

X∼N (0,σ 2Iq), which decreases in q, since tq
(1−a/2)E

√
X′X/q is a decreasing function of q.13

But the benefit of increasing q is modest: for a 90% interval, the average length for q∈{24,48,∞}
is only {3.0%,4.4%,5.8%} shorter than for q=12, for instance.

When the shape of the spectrum is unknown but parametrized, as in the bcd-model,
increasing q beyond 12 provides additional information about the shape of the spectrum over
the crucial frequencies [−12π/T ,12π/T ]. Table B.2 in the Supplementary Appendix quantifies
the combined scale and shape effects by reporting the value of the objective

∫
Vθ (A)dW (θ ) in the

program (10) for q∈{6,12,24,48}. In this θ unknown case, there is an 8% decrease in average
length as q increases from q=12 to q=24 and a further reduction of 5% for q=48.

In our view, these potential gains are still relatively moderate and do not outweigh concerns
about spectral misspecification that arise with a large choice of q. We, therefore, suggest
constructing the prediction sets by default with q=12, but also report results for different values
of q in Section 6.

Running example (continued): Table 2 shows the 67% and 90% ABayes and AMN 25-year-ahead
predictions sets for real GDP growth and inflation using the benchmark values of the Bayes prior
(�), weighting function (W ), and q=12. The 67% ABayes and AMN sets coincide, while the 90%
AMN sets are somewhat wider than the ABayes sets. For comparison, the table also shows the
prediction sets computed from the I(0) model. These are similar to the ABayes and AMN sets for
GDP (although the 67% I(0) set is shifted to the left for reasons discussed above), but are much
different for inflation (where the I(0) are shifted the right and are much narrower), and where
both results are as expected given the predictive densities and log-likelihood values displayed in
Figure 2. Section 6 discusses these empirical results in more detail. �

5. FINITE SAMPLE EXPERIMENTS

In the last two sections, we developed a large-sample framework for constructing Bayes and
frequentist long-run prediction sets that is tailored to models of long-run persistence typically
used for economic time series. This large sample analysis is sufficiently general to allow for
in-sample and out-of-sample stochastic breaks in the series, as long as these breaks occur with
sufficient frequency that sample averages satisfy the central limit theorem discussed in Section 3.
And the large-sample analysis also accommodates short-memory stochastic shifts in volatility. But
does this large-sample analysis provide reliable prediction sets for the sample sizes and stochastic
processes typically encountered in applied economics? This section addresses this question using
two sets of finite sample experiments. The first set of experiments are Monte Carlo simulations in
which we generate data with level and volatility breaks designed to mimic the kinds of breaks seen

13. This is analogous to the wider confidence intervals that arise from the use of inconsistent HAC estimators as
developed by Kiefer et al. (2000) and Kiefer and Vogelsang (2005), for example; see Müller (2014) for a review.
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in some macroeconomic time series. The second set of experiments uses rolling samples of daily
interest rates and stock returns to construct pseudo-out-of-sample prediction sets and uses actual
values of these interest rates and returns to evaluate these sets. We discuss these experiments in
the following two subsections.

5.1. Monte Carlo simulations with breaks in level and volatility

Post-sample breaks of arbitrary size can undermine any attempt at prediction, so the methods
proposed here are not immune to arbitrarily defined breaks. That said, a more relevant concern is
how well the methods fare in the face of breaks that plausibly have occurred in the kinds of series
to which the methods are to be applied. We address that question in this subsection. Statistical
characterizations of uncertainty require a probability framework, so we consider breaks that occur
probabilistically. And, because of the macroeconomic applications we carry out in Section 6,
the models for these breaks are motivated by the behaviour of important macroeconomic time
economic series in the post-WWII U.S.

We consider five models. The first two involve breaks in the level of xt

xt =μt +ut (21)

where μt denotes the “level” of xt and ut is a zero-mean stochastic process that is independent
of μt . We suppose that μt shifts discretely by an amount ±δ at irregular time periods determined
by the indicator st , so that

μt =μt−1 +stδt (22)

where st is an i.i.d. Bernoulli process with P(st =1)=p, and δt =±δ with equal probability
independent of st . Because μt follows a martingale, an I(1) process, its sample averages are
characterized by the Gaussian limits in Section 3 (as an I(1) model for fixed p,δ>0 and a special
case of the local-level model in section 4.1 for fixed p>0 and δ=O(T−1)). That said, when p is
small, shifts in μt occur infrequently and the finite sample behaviour of sample averages may be
quite different from their large-sample Gaussian limit.

The second two models involve breaks in volatility. In these models, xt has components that
can be represented as σtet , where et is an I(0) process and σt is a volatility process that evolves as
ln(σt)=μt , where μt follows equation (22). While the central limit used in Section 3 allows for
certain forms of heteroscedasticity, it does not allow volatility to evolve as an I(1) process. Thus,
the volatility models in this section involve stochastic processes that are strictly more general
than the processes analysed above, even in large samples.

The final model involves breaks in both the level and volatility of xt . Specifically, following
Pesaran et al. (2006) (also see Chib, 1998), xt follows a different AR(1) process (with intercept
and possibly a unit root) within each of a sequence of regimes. Regimes end stochastically
according the Bernoulli process st above, although with a regime-specific value of p, and new
regimes begin with new parameter values for the AR process and p drawn from a fixed probability
distribution.

We choose model parameters to match specific characteristics of post-WWII U.S. quarterly
macroeconomic data. Thus, we chose T to correspond to 65 years, and as above we consider
forecast horizons of h=0.5T with q=12 and the prior (�) and weighting function (W ) described
in Section 4. For models 1–4, we choose two values for the break frequency: plarge =1/40 (so
a break occurs, on average, once every 40 quarters) and psmall =1/260 (so a break occurs, on
average, once during the sample period). The other parameter values depend on the experiment
and are motivated by the behaviour of particular U.S. macroeconomic time series.
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Model 1 is motivated by the growth rate of average labour productivity, which visually
appears to be an I(0) process but around a time varying level (see the Supplementary Appendix
Figure C.4). Labour productivity growth averaged 2.2% per year in the post-WWII period, but
experienced decade-long swings that were roughly 1 percentage point higher (early 1960s and
late 1990s) or lower (1970s and early 1980s) than the average. The first model, therefore, takes the
form (21) with ut ∼ iidN (0,σ 2

u ), where σu is chosen to match the long-run standard deviation of
average labour productivity, and the magnitude of the breaks in μt was chosen to yield a sensible
value for the interquartile range (IQR) of μT −μ0. Specifically, for each value of p we chose two
values for δ, where the first, δsmall, yielded an IQR of 0.5% and the second, δlarge, yielded an
IQR of 1.5%.

Model 2 is similar to Model 1, but is motivated by the behaviour of nominal interest rates,
which follow a pattern consistent with equation (21) but with ut a highly serially correlated
process. Thus for this experiment, ut was generated by an AR(1) process with coefficient 0.98,
Gaussian innovations with variance chosen to match 10-year U.S. Treasury Bonds, and δsmall and
δlarge chosen so that the IQR for μT −μ0 was 2.0% and 4.0%, respectively.

Model 3 is designed to capture features in the data like the “Great Moderation”: a low-
frequency reduction in the volatility in real U.S. macroeconomic variables. For example, the
standard deviation of growth rates of measures of real aggregate activity (GDP, employment,
etc.) fell rather abruptly by roughly 30% in the early 1980s (e.g. Stock and Watson, 2002). Thus,
in this model the data were generated as xt =σtet , with et ∼ iidN (0,1) and ln(σt)=μt generated
as described above with δsmall and δlarge chosen so that the IQR for ln(σT /σ0) was 0.25 and 0.75,
respectively.

Model 4 is designed to capture the changes in variability and persistence evident in the U.S.
inflation process. Stock and Watson (2007), Cogley and Sargent (2014), and others argue that
these features can be captured by a local-level model with stochastic volatility. Thus, in this
model we generate data as xt =e1t +∑t

s=1σse2s, where e1t and e2t are mutually independent
i.i.d. standard normal random variables, ln(σt)=μt follows the process described above, and
the parameters are chosen to mimic estimates of the time-varying IMA(1,1) representation of the
model found in U.S. data (e.g. Watson, 2014). Specifically, σ0 is chosen so that the MA coefficient
is 0.5 in the initial period, and δsmall and δlarge were chosen so that the IQR of the full-sample
change in the MA coefficient was 0.5 and 0.8.

Model 5 uses parameter values from Pesaran et al. (2006) of their analysis of nominal U.S.
Treasury Bill rates from 1947 to 2002 and, therefore, captures the changing volatility and
persistence in post-WWII interest rates.14

Results for the various experiments are shown in Table 3, where panel (a) shows results for the
ABayes sets and panel (b) shows results for the AMN sets. The first row of each panel shows results
for the model with p=0 (so that breaks are absent); the other rows show results for psmall, plarge,
δsmall and δlarge. When p=0, Models 1 and 3 are i.i.d. processes for which both ABayes and AMN

have coverage rates that exceed their nominal level. This overcoverage occurs because ABayes

provides correct average coverage for I(d) processes that includes both small and large values
of d, and coverage for small d is less than the average coverage. Similar reasoning explains the
overcoverage for AMN , which is designed to achieve uniform coverage over (b,c,d). And with
p=0, Model 2 is well approximated by the local-to-unity model with c=260(1−0.98)=5.2 and
Model 4 is well approximated by an I(1) process; AMN satisfies the coverage constraint in both
models, while ABayes severely undercovers in model 4, achieving the same undercoverage shown
previously in Table 1 for the I(d) model. Moving to the results with p>0, ABayes has coverage

14. The specific parameter values are discussed in the Supplementary Appendix.
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TABLE 3
Coverage probability for simulated data, T=65 years, r =0.5, and q=12

Model 1: Model 2: Model 3: Model 4: Model 5:
Break in Break in Break in Break in volatility, PPT Break

level, I(0) level, AR(1) volatility, I(0)+I(1) model
model model I(0) model model

Nom. level 67% 90% 67% 90% 67% 90% 67% 90% 67% 90%

(a) ABayes

p= 0 0.72 0.94 0.65 0.89 0.72 0.94 0.55 0.81 0.65 0.88
plarge δsmall 0.68 0.92 0.64 0.89 0.71 0.94 0.57 0.77

δlarge 0.58 0.85 0.63 0.88 0.71 0.92 0.8 0.73

psmall δsmall 0.69 0.93 0.64 0.89 0.71 0.94 0.57 0.79
0.62 0.80

δlarge 0.62 0.88 0.63 0.88 0.71 0.93 0.57 0.75

(b) AMN

p= 0 0.74 0.95 0.70 0.94 0.74 0.95 0.67 0.90 0.72 0.93
plarge δsmall 0.71 0.94 0.71 0.94 0.74 0.95 0.67 0.85

δlarge 0.67 0.90 0.70 0.93 0.73 0.94 0.65 0.79

psmall δsmall 0.72 0.94 0.71 0.93 0.74 0.95 0.68 0.87
0.68 0.85

δlarge 0.69 0.91 0.71 0.93 0.74 0.94 0.66 0.82

Notes: The table shows coverage probability of ABayes and AMN sets for four models subject to breaks in level (Models 1
and 2) or volatility (Models 3 and 4), or breaks and volatility (Model 5). In Models 1–4 breaks occur in each time period
with probability p and are of size δsmallor δlarge. The models are described in the text. Models 1–4 use 65 years of quarterly
data. Model 5 uses 65 years of monthly data.

rates notably less than its nominal level in Models 4 and 5; coverage rates for nominal 67% AMN

are approximately correct for all models, but there is some undercoverage in Models 4 and 5.
In summary, we conclude that the build-in safeguards against non-stationarities in our

approach seem to be mostly adequate for series that are comparable to post-WWII U.S.
macroeconomic series.

5.2. Pseudo-out-of-sample forecasts

The last section examined the performance of long-run prediction sets using simulated data, but
how well do the sets perform for actual data? Ideally, pseudo-out-of-sample experiments could
be used to answer this question using economic time series from a wide array of stochastic
processes. However, this is difficult in our setting—where we are interested in long-horizon
forecasts for macroeconomic series in developed economies like the U.S.—because the available
macroeconomic data provide little pseudo-out-of-sample information.

But the salient definition of a long-run forecast is that the horizon is long relative to the
sample data. And in contrast to macroeconomic data, there are long time series on high-frequency
financial variables. One empirical test of the methods developed here is thus to see whether
forecasts constructed from, say, daily observations from 1 year of financial data, have reasonable
empirical coverage for forecasts of the average value over the following half year. We carry out
two pseudo-out-of sample experiments.

For the first experiment, we use value-weighted S&P daily returns, rt , from CRSP from 1926
to 2014, for a total of 23,535 returns. The pseudo-out-of-sample exercise uses a rolling sample of
T =260 observations to construct prediction sets for the average value of rt and r2

t over the next
h=0.5T =130 periods, where the choice of T matches the sample size used in the last section and
in much of the empirical analysis in Section 6. Rolling through the sample in this way allows us
to compute 23,145 (or 178 non-overlapping) pseudo-out-of sample prediction sets. The second
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TABLE 4
Coverage rates for prediction sets in pseudo-out-of-sample experiments rolling sample, T =260 days, q=12 and r =0.5

Prediction set 3-month Treasury
Returns Squared returns Bill interest rate

67% 90% 67% 90% 67% 90%

ABayes 0.71 0.92 0.64 0.84 0.53 0.73
AMN 0.73 0.93 0.69 0.88 0.65 0.85
AI(0) 0.67 0.88 0.42 0.69 0.11 0.24

Notes: The table shows empirical coverage rates for ABayes and AMN prediction sets in 23,145 (=178 non-overlapping)
pseudo-out-of-sample periods for the average value of SP500 returns and squared returns, and 15,007 (=115 non-
overlapping) periods for the average value of 3-month Treasury Bill interest rate.

experiment is similar, but uses daily observations on nominal interest rates for 3-month U.S.
Treasury Bills from 1954 to 2014.

Results for 67% and 90% prediction sets are summarized in Table 4. For the return series, both
ABayes and AMN have sample coverage rates slightly larger than their nominal values; this result is
not unexpected given the results in the preceding sections. Squared returns are significantly more
persistent than the level of returns, and are often given as an example of an economic time series
that exhibits I(d) low-frequency behaviour (see, for instance, Ding et al., 1993). Table 4 indicates
that the pseudo-out-of-sample coverage for ABayes is slightly lower than its nominal level, while
the coverage of AMN remains near its nominal level; again, these results are not unexpected given
the simulation results of the last subsection. Daily values of nominal interest rates are highly
persistent and exhibit shifting volatility; coverage rates for ABayes are substantially below their
nominal levels, while coverage rates for AMN are much closer to the nominal level; these results
are broadly in line with those from Model 5 of the last section. In contrast, for squared returns
and the interest rate series, forecast intervals computed from the I(0) model have coverage far
below nominal level, underlying the necessity to flexibly adjust to various forms of persistence.

5.3. A final pseudo-out-of-sample forecast

The results from the Monte Carlo simulations lead us to conclude that predictions sets based on
asymptotic approximations developed in Sections 3 and parameterizations in Section 4 perform
reasonably well in the face of the kinds of breaks that have occurred in the post-WWII U.S.
macroeconomy. This conclusion is buttressed by the results from the pseudo-out-of-sample
forecasts for daily asset returns and interest rates. Of course, this does not imply that these
prediction sets will produce sensible ex post results in all circumstances, and we end this section
with one example.

Data on per capita GDP suggests that the U.S. economy was dramatically more volatile in
the pre-WWII period than after. For example, the standard deviation of annual per capita GDP
growth rates fell from 7.8% over 1901–46 to just 2.4% over 1947–2014. Estimates of long-run
standard deviations show a similar reduction (8.5% falling to 2.6%). While the source of the
decline is a matter of debate (see Balke and Gordon, 1989; Romer, 1989; and Watson, 1994 for
discussion), imagine using the data from 1901 to 1946 to construct a prediction set for average
growth over the following 46 years, from 1947 to 1992. Using the formula below equation (8),
the I(0) prediction set is x̄1901:1946 ±t12

1−α
×(2×46)1/2 ×sLR, where sLR is the estimated long-

run standard deviation constructed from the pre-war data with q=12. Using x̄1901:1946 =1.86%
and sLR =8.54%, the 67% prediction set is wide: (0.1%,3.7%). Indeed, given the low volatility
experienced since 1947, the prediction set is implausibly wide; had it been constructed using the
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post-1946 value of sLR =2.6% it would have been much narrower, (1.3%,2.4%). (The realized
value of average GDP growth over 1947–1992 was x̄1947:1992 =2.1%.)

What do we make of the 1946 prediction set? Here are two observations. First, there was
considerable uncertainty about the future of U.S. growth following WWII, with many forecasters
predicting a return to the growth patterns experienced during the 1930s and others predicting rapid
growth (see Walton and Rockoff, 2013). The 1946 prediction set was arguably more plausible
in 1946 than it is today. Secondly, while the Monte Carlo simulations suggested relatively small
coverage distortions associated with low-frequency volatility shifts, these shifts (1) were not as
large as the 2.5-fold decrease in volatility in post-WWII GDP and (2) were two-sided (volatility
increases and decreases), while the single realization for GDP was necessarily one sided. A lesson
from this example is that in some circumstances it may be important to explicitly incorporate
large and potentially predictable breaks in volatility, and the required modifications are outlined
in the article’s final section.

6. PREDICTION SETS FOR U.S. MACROECONOMIC TIME SERIES

In this section, we present prediction sets for eight U.S. economic time series for forecast horizons
ranging from 10 to 75 years using sample data through 2014. These series include the growth
rate of per capita values of real GDP and CPI inflation used as the running examples, and also
the growth rates of real per capita consumption expenditures, population, productivity (both total
factor and labour productivity), real stock returns, and prices as measured by the PCE deflator.
We construct prediction sets using post-WWII quarterly samples, and for several series, samples
that extend into the early 20th century. We also examine prediction sets for inflation in Japan as a
contrast to results for U.S. inflation. Sources and details of construction of the data are presented in
the supplementary Data Appendix. Supplementary appendix Figures C.1–C.14 provide a variety
of summary statistics for each series including a plot of the series, its low-frequency components,
normalized cosine transformations, low-frequency I(d) log-likelihood values, and 67% and 90%
Bayes, MN and I(0) prediction sets for all horizons between 10 and 75 years. Table 5 reports a
summary of the prediction sets for prediction sets for 10-, 25-, 50-, and 75-year horizons.

We now discuss the results for specific series in more detail.
Real per capita GDP: The Bayes prediction sets for per capita GDP narrow as the forecast

horizon increases, consistent with the reduction in variance of the sample mean for an I(0) process.
The frequentist sets coincide with the Bayes sets for (relatively) short horizons but include smaller
values of average GDP growth rates at longer horizons. Apparently, to guarantee high coverage
uniformly in the bcd-model at long horizons, the frequentist sets allow for the possibility of more
persistence in the GDP process, so that the slow-growth rates of the past decade are predicted
to potentially persist into the future. A comparison of the prediction sets constructed using the
post-WWII data and the long annual (1901–2014) series shows that the pre-WWII data tend to
widen the predictions sets, presumably because of the higher (long-run) variance in the pre-WWII
data discussed above.

At the 75-year horizon the 80% Bayes prediction interval is 1.3–2.5, which roughly coincides
with the 80% interval reported by the Congressional Budget Office (2005) for 75-year forecasts
beginning in 2004. The coincidence of the Bayes/CBO sets arises despite important differences in
the way they are computed. The CBO interval is based on simulations computed from its long-run
model with inputs such as TFP growth simulated from estimated I(0) models. The CBO interval
differs from the Bayes interval in two important respects. First, because the simulations are carried
out using fixed values of the model parameters, the CBO method ignores the parameter uncertainty
in x1:T (as an estimate of μ) and s2

LR (as a an estimate of the long-run variance). Ignoring this
uncertainty leads the CBO interval to underestimate uncertainty in the predictions. Secondly,
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TABLE 5
Prediction sets

(a) 67% coverage

Series Forecast horizon (in years)

10 25 50 75

Quarterly post-WWII series

GDP/Pop (1.1 3.0) (1.3 2.6) (1.5, 2.4) (1.5 2.4)
[1.2, 2.6] [0.7, 2.4] [0.5, 2.4]

Cons/Pop (1.2 3.0) (1.4 2.7) (1.5, 2.6) (1.6, 2.5)
[1.2, 2.6] [1.0, 2.5]

TF prod (0.3 1.8) (0.5 1.8) (0.6 1.8) (0.6 1.8)
[0.1, 1.8] [−0.2, 1.9] [-0.42.2] [−0.6, 2.4]

Labour prod (0.8 2.6) (1.0 2.6) (1.2 2.5) (1.3 2.5)
[0.8, 2.7] [0.8, 2.7] [0.6, 2.8]

Population (0.6, 1.0) (0.5, 1.1) (0.4, 1.2) (0.4, 1.3)
[0.5, 1.0] [0.4, 1.2] [0.2, 1.4] [0.0, 1.5]

Inflation (PCE) (0.2 3.7) (0.0, 4.1) (−0.2 4.5) (−0.4, 4.7)

Inflation (CPI) (0.4 4.5) (0.3 4.8) (0.2 5.1) (0.1, 5.3)
[−0.1, 5.3]

Infl. (CPI,Japan) (−1.4, 4.4) (−1.7, 4.9) (−2.1, 5.4) (−2.4, 5.7)
[−1.7, 4.4] [−2.4, 4.9] [−3.8, 5.4] [−4.7, 6.3]

Stock returns (1.8 15.3) (2.6, 13.8) (3.0, 13.1) (3.1, 12.9)
[2.9, 13.1] [1.3, 13.0]

Longer span data series

GDP/Pop (0.2, 4.5) (0.9, 3.4) (1.2, 2.9) (1.4, 2.7)

Cons/Pop (0.2, 2.6) (0.6, 2.5) (0.8, 2.4) (0.8, 2.4)
[0.6, 2.6] [0.5, 2.9] [0.3, 3.1]

Population (0.5 1.2) (0.5 1.3) (0.5, 1.4) (0.5, 1.4)
[0.4, 1.4]

Inflation (CPI) (−0.2 5.9) (0.3, 5.6) (0.6, 5.4) (0.7 5.4)

Stock returns (0.7, 13.2) (2.9 11.0) (3.8, 9.9) (4.2, 9.5)

(continued)

in the CBO model, GDP growth is I(0), while the Bayes method allows values of d that differ
from d =0. The log-likelihood values plotted in Figure 2 suggest that GDP growth is plausibly
characterized by a process with some low-frequency anti-persistence, and this translates into
less forecast uncertainty than the CBO’s I(0) model. Thus, the CBO method tends to understate
forecast uncertainty because it ignores parameter uncertainty in the estimated mean and long-run
variance, and to overstate forecast uncertainty because its model does not capture long-run anti-
persistence associated with negative values of d. Apparently, these two errors cancel, so that the
CBO prediction interval essentially coincides with the Bayes set.

Productivity: The log-likelihood values for d indicate that productivity (TFP and average
labour productivity) may have somewhat greater than I(0) persistence; see Figures C.3 and C.4.
This translates into prediction sets that are wider than I(0) sets, particularly for frequentist sets at
large forecast horizons. Bayes intervals are essentially flat as the forecast horizon increases (unlike
in an I(0) model, where the intervals narrow), while the frequentist sets widen (the unmodified
Bayes intervals systematically undercover for larger values of d, forcing the frequentist intervals
to more heavily weigh the possibility of larger d).

Population: U.S. population growth shows considerable low-frequency variability over the
20th century and the post-WWII period. Immigration and fertility dynamics are presumably at the
source of these long swings. The low-frequency MLE of d is very close to unity over both sample
periods, with the I(1) log-likelihood more than 7 points higher than in the I(0) model. Table 5
and Supplementary Figures C.5 and C.12 show prediction intervals that widen as the forecast
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TABLE 5
Continued

(b) 90% coverage

Series Forecast horizon (in years)

10 25 50 75

Quarterly post-WWII series

GDP/Pop (0.3, 3.7) (0.7, 3.0) (0.8, 2.8) (0.9, 2.7)
[−0.3, 3.0] [−0.6, 2.9] [−0.93.2]

Cons/Pop (0.4, 3.7) (0.7, 3.1) (0.8, 3.0) (0.9, 2.9)
[0., 3.1] [−0.3, 3.1] [−0.6, 3.4]

TF prod (−0.3, 2.4) (−0.2, 2.3) (−0.1, 2.3) (−0.1, 2.4)
[−0.6, 2.4] [−1.1, 2.7] [−1.5, 3.1] [−1.9, 3.5]

Labour prod (0.0, 3.2) (0.0, 3.0) (0.0, 3.1) (0.0, 3.2)
[0.0, 3.4] [−0.2, 3.1] [−0.6, 3.6] [−0.9 3.9]

Population (0.4, 1.2) (0.3, 1.3) (0.1, 1.5) (0.0, 1.6)
[0.3, 1.2] [0.1, 1.5] [−0.2, 1.7] [−0.5, 2.0]

Inflation (PCE) (−1.1, 5.0) (−1.8, 5.6) (−2.6, 6.5) (−3.2, 7.1)
[−1.3, 5.0] [−2.7 6.1] [−4.4, 7.8] [−5.8, 9.2]

Inflation (CPI) (−1.2, 6.) (−1.8, 6.5) (−2.5, 7.2) (−3.1, 7.9)
[−1.4, 6.0] [−2.6, 6.8] [−4.4, 8.5] [−5.8, 9.8]

Infl. (CPI,Japan) (−3.7, 6.7) (−4.7, 7.7) (−5.9, 9.0) (−6.9, 10.0)
[−4.7, 6.7] [−6.8, 8.8] [−9.6, 11.7] [−12.0, 14.0]

Stock returns (−3.1, 21.0) (−2.0, 20.1) (−2.2, 20.2) (−2.5 20.5)
[−3.8, 20.1] [−7.3, 22.7] [−9.8, 25.2]

Longer span data series

GDP/Pop (−1.4, 6.2) (−0.1, 4.3) (0.4, 3.6) (0.7, 3.3)
[−1.8, 6.5]

Cons/Pop (−0.7, 3.5) (−0.3, 3.1) (−0.2,3.0) (−0.1, 3.0)
[−0.7, 4.0] [−0.6, 3.5] [−0.9, 3.9] [−1.3, 4.2]

Population (0.3, 1.5) (0.2, 1.6) (0.1, 1.7) (0.0, 1.8)
[0.1, 1.6] [−0.2, 1.8] [−0.4, 2.0]

Inflation (CPI) (−2.6, 8.2) (−2.3, 7.8) (−2.4, 8.0) (−2.7, 8.3)
[−2.9,8.1] [−3.7, 9.0]

Stock returns (−3.9, 18.4) (−0.2 15.2) (1.1, 13.9) (1.6 13.4)
[−5.7, 18.4] [1.2, 13.4]

Notes: This table shows the 67% and 90% prediction sets for forecast horizons, h= 10, 25, 50, and 75 years. The ABayes

sets are shown in parentheses and are based on the I(d) model with uniform prior for −0.4 �d � 1.0. The AMN sets are
shown in brackets, and are omitted if they coincide with the ABayes sets. By construction the AMN sets control asymptotic
coverage in the bcd-model with −0.4 �d � 1.0, and b and c unrestricted.

horizon increases, a natural characteristic of I(1) predictive densities. There is little difference in
the sets constructed using the post-WWII samples and long-samples.

Inflation: As discussed above, the inflation process is characterized by more than I(0)
persistence, and this is reflected in the prediction sets in two ways. First, they are not centred at
the sample mean of the series, but rather at a level dictated by the values near the end of sample
period, and secondly, the prediction sets widen with the forecast horizon. The prediction intervals
indicate considerable uncertainty in inflation even at relatively short horizons; this is true for both
Bayes and frequentist sets. For example, while the 10-year 67% Bayes prediction set for U.S.
CPI inflation is (0.4,4.5), the 90% set widens to (−1.2,6.0).

These predictions sets may strike some readers as too large, but it is instructive to consider the
history of Japan where the 10-year moving average of CPI inflation was less than zero from 2003
through 2013 (Supplementary Figure C.8). Moreover, they are in line with predictive densities
derived from asset prices. For example, Kitsul and Wright (2013) use CPI-based derivatives
to compute market-based risk-neutral predictive densities for 10-year-ahead average values
of inflation. They find deflation (average inflation less than 0%) probabilities that averaged
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TABLE 6
Prediction sets for various values of q, 25-year horizon

67% 90%

q= 6 q=12 q= 24 q= 6 q=12 q= 24

Quarterly post-WWII data
GDP/Pop (0.6, 2.3) (1.3, 2.6) (1.5, 2.6) (−0.1, 2.7) (0.7, 3.0) (0.9, 3.0)

[0.2, 2.3] [1.2,2.6] [−0.8, 2.7] [−0.3, 3.0] [0.0, 3.0]
Cons/Pop (0.9, 2.6) (1.4, 2.7) (1.4, 2.6) (0.0, 3.1) (0.7, 3.1) (0.7, 3.1)

[−0.5, 3.1] [0.0, 3.1] [0.0, 3.1]
TF prod (0.1, 1.6) (0.5, 1.8) (0.6, 1.8) (−0.5, 2.1) (−0.2, 2.3) (0.1, 2.2)

[−0.2, 1.6] [−0.2, 1.9] [−0.2, 2.0] [−1.1, 2.3] [−1.1, 2.7] [−1.0, 2.7]
Labour prod (1.0, 2.6) (1.0, 2.6) (1.2, 2.5) (0.2, 3.1) (0.0, 3.0) (0.5, 3.0)

[0.9, 2.5] [−0.4, 3.1] [−0.2, 3.1] [−0.2, 3.2]
Population (0.5, 1.2) (0.5, 1.1) (0.5, 1.1) (0.3, 1.5) (0.3, 1.3) (0.3, 1.3)

[0.4, 1.3] [0.4, 1.2] [0.4, 1.1] [0.0, 1.6] [0.1, 1.5] [0.1, 1.4]
Inflation (PCE) (0.4, 4.7) (0.0, 4.1) (−0.2, 3.8) (−1.7, 6.3) (−1.8, 5.6) (−2.0, 5.3)

[−3.1, 6.5] [−2.7 6.1] [−2.6, 5.4]
Inflation (CPI) (0.6, 5.3) (0.3, 4.8) (0.0, 4.5) (−1.8, 7.0) (−1.8, 6.5) (−2.1, 6.2)

[−3.3, 7.2] [−2.6, 6.8] [−2.5, 6.2]
Infl. (CPI, Japan) (−1.6, 5.2) (−1.7, 4.9) (−1.3, 4.9) (−4.7 8.0) (−4.7, 7.7) (−3.9, 7.7)

[−3.7, 5.2] [−2.4, 4.9] [−8.2, 9.7] [−6.8, 8.8] [−5.5, 7.9]
Stock returns (2.0, 13.1) (2.6, 13.8) (2.7, 12.8) (−3.1, 18.8) (−2.0, 20.1) (−0.6 16.4)

[−3.8, 20.1] [−9.0 24.0]
Longer span data series
GDP/Pop (0.8, 2.9) (0.9, 3.4) (0.8, 3.2) (−0.2, 3.8) (−0.1, 4.3) (−0.3, 4.1)
Cons/Pop (0.7, 2.5) (0.6, 2.5) (0.9, 2.6) (−0.1, 3.3) (−0.3, 3.1) (0.2, 3.3)

[0.6, 2.6] [0.9, 2.7] [−0.3, 3.4] [−0.6, 3.5] [−0.2, 3.7]
Population (0.8, 1.6) (0.5, 1.3) (0.5, 1.3) (0.4, 1.9) (0.2, 1.6) (0.2, 1.5)

[0.3, 2.0] [0.1, 1.6] [0.1, 1.5]
Inflation (CPI) (0.3, 6.1) (0.3, 5.6) (0.8, 5.3) (−2.3, 8.7) (−2.3, 7.8) (−1.1, 7.0)

[−1.6, 7.5]
Stock returns (2.0,11.5) (2.9, 11.0) (2.8, 9.2) (−2.4, 15.8) (−0.2, 15.2) (0.4, 11.8)

[−0.4, 11.8]

Notes: ABayes sets are shown in parentheses and AMN sets are shown in brackets when they differ from Bayes sets. See
notes to Table 5 for additional information.

approximately 15% over 2011 and “high inflation” (average inflation greater than 4%) of 30%.15

The corresponding probabilities computed from the Bayes predictive density constructed using
the post-WWII data are 11% for deflation and 28% for high inflation.

Stock Returns: Post-WWII real stock returns exhibit slightly more persistence than what
is implied by the I(0) model, and this translates into prediction sets that are wider than that
implied by the I(0) model. For example, at the 25-year horizon, the 67%-I(0) prediction set (from
Supplementary Figure C.9) is (3.4,11.2) while the corresponding Bayes and MN prediction sets
(from Table 7) are (1.8,15.3). The longer-span data suggest somewhat less persistence (the MLE
of d is −0.2 for the 1926–2014 sample) yielding Bayes and frequentist prediction intervals that
are somewhat narrower than those constructed using the post-WWII data.

Pastor and Stambaugh (2012) survey the large literature on long-run stock return volatility and
construct Bayes predictive densities using models that allow for potentially persistent components
in returns. While their results rely on more parametric models than ours—they use all frequencies
and exact Gaussian likelihoods—our empirical conclusions are similar. Using our notation,

15. See Kitsul and Wright (2013), Figures 3 and 4. Fleckenstein et al. (2013) estimate somewhat lower probabilites
for deflation, but similar probabilities for inflation exceeeding 4%. (See their Figures 4 and 5.) For a related calculation,
see Figure 3 in Hilsher et al. (2014).
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Pastor and Stambaugh (2012) are concerned with the behaviour of the variance of
√

hx̄T+1:T+h
and how this variance changes with the forecast horizon h. If the variance of

√
hx̄T+1:T+h is

unchanged as h increases, and if the predictive density is Gaussian, then the width of prediction
intervals for x̄T+1:T+h will be proportional to h−1/2. Pastor and Stambaugh find that the variance
of

√
hx̄T+1:T+h is not constant, but rather increases with h. Consistent with this, we find Bayes

prediction sets that narrow as h increases, but more slowly than h−1/2.
Results for different values of q: As discussed in Section 4, the choice of q=12 involved an

efficiency/robustness trade-off, where a larger value of q results in more information about the
scale and shape parameter, but potential misspecification because the higher-frequency spectrum
may not be well described by the same model and parameter. It is, therefore, interesting to see
how the prediction sets vary with q, and this is reported in Table 6, which shows the 67% and
90% prediction sets for the 25-year-ahead forecasts for q=6,12, and 24. Looking across all of
the entries, the prediction sets behave roughly as expected, in the sense that they remain centred
at roughly the same value but tend to narrow as q increases. For example, averaging across the
14 series, the 67% MN prediction set is 11% narrower using q=24 than with q=12 broadly
consistent the results discussed in Section 4.

7. CONCLUSIONS

This article has considered the problem of quantifying uncertainty about long-run predictions
using prediction sets that contain the realized future value of a variable of interest with pre-
specified probability. The long-run nature of the problem both simplifies and complicates the
problem relative to short-run predictions. The problem is simplified because of our focus on
forecasting long-run averages using a relatively small number of (low-frequency) weighted
averages of the sample data. As we show, these averages conveniently have an approximate
joint normal distribution under fairly general conditions. However, the prediction problem is
complicated because the covariance matrix of the limiting normal distribution depends on the
shape of the spectrum over very low frequencies, and there is limited sample information about
this shape. Uncertainty about the low-frequency characteristics of the stochastic process is then
an important component of the uncertainty about long-run predictions.

We proposed a flexible parametric model (the bcd-model) to characterize the shape of the
spectrum at low frequencies. Uncertainty about the shape then becomes equivalent to uncertainty
about the values of the bcd-parameters. Incorporating this parameter uncertainty into prediction
uncertainty is straightforward in a Bayesian framework, and we provide the details in the context
of the long-run prediction problem. However, because of the paucity of sample information
about these long-run parameters, the resulting Bayes prediction sets may depend importantly
on the specifics of the prior. This motivates us to robustify the Bayes sets by enlarging them
so that, by construction, they control coverage uniformly over all values of the bcd-parameters.
We construct minimum expected length frequentist prediction sets using an approximate “least
favourable distribution” for the parameters, and we generalize these to conditionally sensible
frequentist prediction sets using ideas from Müller and Norets (2012).

We apply these methods and construct prediction sets for nine macroeconomic time series for
forecast horizons of up to 75 years. In general, we found that for many series, the prediction sets are
wider than those that one obtains from the I(0) model, but narrower than one would obtain from,
say, the I(1) model. From a statistical point of view, this underlines the importance of modelling
the spectral shape at low frequencies in a flexible manner. Substantively, it demonstrates that
even after accounting for a wide variety of potential long-run instabilities and dependencies, it is
still possible to make informative probability statements about (very) long-run forecasts.
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While the analysis presented in this article accommodates a wide range of low-frequency
persistence patterns, it was not designed to directly accommodate large breaks in volatility such
as those evident in the pre- and post-WWII U.S. GDP growth rate data. In principle, it is possible
to explicitly account for non-negligible non-stationarities in the volatility process by postulating a
stochastic process for the volatility path, and integrating out this additional source of uncertainty
(similar to the approach of Müller and Watson, 2013 in their Section 3.3, for instance).

Also, our analysis has been univariate in the sense that we have constructed predictions
sets for a scalar random variable xT+1:T+h using sample values of xt . However, answers
to some questions require multivariate prediction sets. The statistical theory discussed and
developed in Section 3 carries over directly to multivariate settings. That said, there are important
practical obstacles to constructing multivariate prediction sets. These obstacles include finding a
convenient, but flexible, parameterization of the multivariate local-to-zero spectrum, constructing
accurate approximations to least favourable distributions with high-dimensional θ , and computing
accurate approximations to the density of relevant invariants. Overcoming these obstacles is left
to future research.

APPENDIX

A. A CENTRAL LIMIT THEOREM

Theorem 1. Let �xT ,t =∑∞
s=−∞cT ,sεt−s. Suppose that

(i) {εt,Ft} is a martingale difference sequence with E(ε2
t )=1, supt E(|εt |2+δ)<∞ for some δ>0, and

E(ε2
t −1|Ft−m)≤ξm (A.1)

for some sequence ξm →0;

(ii) for every ε>0 the exists an integer Lε >0 such that limsupT→∞T−1∑∞
l=LεT+1

(
T sup|s|≥l |cT ,s|

)2
<ε;

(iii)
∑∞

s=−∞c2
T ,s <∞ (but not necessarily uniformly in T). The spectral density of �xT ,t thus exists; denote it by

FT : [−π,π ] 	→R;
(iii.a) there exists a function S :R 	→R such that ω 	→ω2S(ω) is integrable, and for all fixed K,∫ K

0
|FT (

ω

T
)−ω2S(ω)|dω→0; (A.2)

(iii.b) for every diverging sequence KT →∞

T−3
∫ π

KT /T
FT (λ)λ−4dλ=

∫ πT

KT

FT (ω/T )ω−4dω→0; (A.3)

(iii.c)

T−3/2
∫ π

1/T
FT (λ)1/2λ−2dλ=T−1/2

∫ πT

1
FT (ω/T )1/2ω−2dω→0; (A.4)

(iv) for some fixed integer H, the function g : [0,H] 	→R is of bounded variation and satisfies
∫ H

0 g(s)ds=0.
Then

T−1/2
∫ H

0
g(s)xT ,�sT�+1ds⇒N (0,

∫ ∞

−∞
S(ω)

∣∣∣∣
∫ H

0
e−iωsg(s)ds

∣∣∣∣
2

dω) (A.5)

where xT ,t =∑t
s=1�xT ,s.

Remarks. Note that the linear process �xT ,t is not restricted to be causal. The m.d.s. structure of the driving errors εt

in assumption (i) allows for some departures from strict stationarity. It also accommodates conditional heteroscedasticity,
with the second-order dependence limited by the mixingale condition (A.1).

The linear coefficients cT ,s are scaled by the sample size T such that the convergence (A.5) holds with the same
scaling factor T−1/2 across various types of persistence, such as I(0) and I(1) models. See below for examples. Given
our interest in scale equivariant prediction sets, this scale normalization is without loss of generality.

Since for any fixed K , sup0≤ω≤K |T−2 ω2

|1−e−iω/T |2 −1|→0, assumption (iii.a) is equivalent to equation (5)

(with κ =3/2).
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To better understand the role of assumptions (ii) and (iii), consider some leading examples. Suppose first that �xT ,t

is causal and weakly dependent with exponentially decaying cT ,s, |cT ,s|≤C0e−C1s for some C0,C1 >0, as would arise

in causal and invertible ARMA models of any fixed and finite order. Then T−1∑∞
l=LT+1

(
T sup|s|≥l |cT ,s|

)2 →0 for any
L>0, ω2S(ω) is constant and equal to (2π )−1 times the long-run variance of �xT ,t , and conditions (A.3) and (A.4) hold,
since FT is bounded,

∫∞
KT

ω−4dω→0 for any KT →∞ and
∫∞

1 ω−2dω<∞.
Secondly, suppose �xT ,t is fractionally integrated with parameter d ∈ (−1/2,1/2) (corresponding to

xT ,t being fractionally integrated of order d+1). With �xT ,t scaled by T−d , cT ,s ≈C0T−dsd−1, so that

T−1∑∞
l=LT+1

(
T sup|s|≥l |cT ,s|

)2 →∫∞
L s2d−2ds, which can be made arbitrarily small by choosing L large. Further, for

λ close to zero, FT (λ)≈ (2π )−1C2
0 (λT )−2d , so that ω2S(ω)= (2π )−1C2

0ω−2d , and conditions (A.3) and (A.4) are seen to
hold under weak assumptions about higher frequency properties of �xT ,t . For instance, even integrable poles in FT at
frequencies other than zero can be accommodated.

Thirdly, suppose xT ,t is an AR(1) process with local-to-unity coefficient ρT =1−c/T and unit innovation variance.

Then cT ,0 =1 and cT ,s =−(1−ρT )ρs
T , s>0. Thus, T−1∑∞

l=LT+1

(
T sup|s|≥l |cT ,s|

)2 →c2
∫∞

L e−2csds, which can be

made arbitrarily small by choosing L large. Further, FT (λ)= (2π )−1|1−e−iλ|2/|1−ρT e−iλ|2, which is seen to satisfy
equation (A.2) with S(ω)= (2π )−1(ω2 +c2)−1. Conditions (A.3) and (A.4) also hold in this example, since FT (λ)≤1.

As a final example, suppose �xT ,t =Tεt −Tεt−1 (inducing xT ,t to be i.i.d. conditional on ε0, with a scaling such
that FT (λ) is Op(1) for λ=O(T−1)). Here, FT (λ)= (2π )−1T2|1−e−iλ|2 = (2π )−14T2 sin(λ/2)2, so that S(ω)= (2π )−1,

and condition (A.3) evaluates to 4(2π )−1
∫ πT

KT
T2 sin(ω/2T )2ω−4dω≤ (2π )−1

∫ πT
KT

ω−2dω→0, and condition (A.4) to

2(2π )−1/2T−1/2
∫ πT

1 T sin(ω/2T )ω−2dω≤ (2π )−1/2T−1/2
∫ πT

1 ω−1dω→0, where the inequalities follow from sin(λ)≤λ

for all λ≥0.
The number H is assumed to be an integer to ease notation. Note that a constant g would not satisfy assumption (iv),

as it does not integrate to zero, but all functions of interest in the context of this article do. The implication of Theorem 1
that is of interest for Section 3 follows from the following Corollary.

Corollary 1. For some 0<r <H −1, let gq+1 : [0,H] 	→R equal gq+1(s)=−1[0≤s≤1]+r−11[1<s≤1+r] and let
gj : [0,H] 	→R equal to gj(s)=1[s≤1]√2cos(π js) for j=1,...,q. Under the assumptions of Theorem 1(i)–(iii),

T−1/2
∫ H

0

⎡
⎢⎢⎢⎣

g1(s)
.
.
.

gq(s)
gq+1(s)

⎤
⎥⎥⎥⎦xT ,�sT�+1ds⇒N (0,�)

where �j,k =∫∞
−∞S(ω)

(∫ H
0 e−iωsgj(s)ds

)(∫ H
0 eiωsgk(s)ds

)
dω for j,k =1,...,q+1.

Proof. Follows from Theorem 1 and the Cramer–Wold device via

∣∣∣∣∣∣
∫ H

0
e−iωs

⎛
⎝q+1∑

j=1

λjgj(s)

⎞
⎠ds

∣∣∣∣∣∣
2

=
q+1∑

j,k=1

λjλk

(∫ H

0
e−iωsgj(s)ds

)(∫ H

0
eiωsgk(s)ds

)

since g(s)=∑q+1
j=1 λjgj(s) clearly satisfies the assumption in Theorem 1 (iv). ‖

B. DENSITY OF (XS,YS) AND RELATED RESULTS

Let Z= (X′,Y )′ and U =√
X′X. Write μl for Lebesgue measure on R

l , and νq for the surface measure of a q-dimensional
unit sphere. For x∈R

q, let x=xsu, where xs is a point on the surface of a q-dimensional unit sphere, and u∈R
+. By

Theorem 2.1.13 of Muirhead (1982), dμq(x)=uq−1dνq(xs)dμ1(u). Further, for y∈R, consider the change of variable
y=ysu with u∈R

+ and ys ∈R, so that dμ1(y)=udμ1(ys). We thus can write the joint density of (Xs,Ys,U) with respect
to νq ×μ1 ×μ1 as

(2π )−(q+1)/2|�|−1/2 exp[− 1
2

(
xsu
ysu

)′
�−1

(
xsu
ysu

)
]uq
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and the marginal density of Zs = (Xs′,Ys)′ with respect to νq ×μ1 is

fZs (zs) = (2π )−(q+1)/2|�|−1/2
∫ ∞

0
uq exp[− 1

2 u2(zs′�−1zs)]dμ1(u)

= (2π )−(q+1)/2|�|−1/2 1
2

∫ ∞

0
t(q−1)/2 exp[− 1

2 t(zs′�−1zs)]dμ1(t)

= (2π )−(q+1)/2|�|−1/2 1
2 �( q+1

2 )2(q+1)/2
(

zs′�−1zs
)−(q+1)/2

= 1
2 π−(q+1)/2|�|−1/2�( q+1

2 )
(

zs′�−1zs
)−(q+1)/2

where the second equality follows from the form of the Gamma density function, and � denotes the gamma function.
The implied marginal density of Xs is

fXs (xs)= 1
2 π−(q)/2|�XX |−1/2�( q

2 )
(

xs′�−1
XX xs

)−q/2
.

Similarly, with g(xs)=E[√X′X|Xs =xs], we obtain

fXs (xs)g(xs) =
∫ ∞

0
uf(Xs,U)(xs,u)dμ1(u)

= (2π )−q/2|�XX |−1/2
∫ ∞

0
uq exp[− 1

2 u2(xs′�−1
XX xs)]dμ1(u)

= 2−1/2π−q/2|�XX |−1/2�( q+1
2 )(xs ′�−1

XX xs)−(q+1)/2.

Finally, from equation (6), Ỹ =Y −�YX�−1
XX X∼N (0,�YY −�YX�−1

XX �XY ) and X are independent normal random
variables. Also, using well-known properties of a multivariate standard normal distribution, X′�−1

XX X∼χ2
q is independent

of X̃s =�
−1/2
XX X/

√
X′�−1

XX X. Since Xs is a one-to-one transformation of X̃s, we thus obtain

Ỹ√
X′�−1

XX X/q
√

�YY −�YX�−1
XX �XY

|Xs ∼Student-tq

and the result (8) follows by dividing the numerator and denominator by
√

X′X.

C. APPROXIMATE LEAST FAVOURABLE DISTRIBUTIONS

In practice, it will not be possible to compute a least favourable distribution �† that perfectly solves the program (14–16).
To make further progress, we follow Elliott et al. (2015) (EMW in the following), and first formally state a lower bound
on equation (14), and then define an ALFD �∗ that solves (10) within a tolerance of ε.

To ease notation, write VW (A)=∫ Vθ (A)dW (θ ) and Cθ (A)=Pθ (Ys ∈A(Xs)). Also, we make the dependence of the
set (18) on cv explicit by writing

A�,cv(xs)=
{

ys :
∫

f(Ys,Xs)|θ (ys,xs)d�(θ )∫
gθ (xs)fXs |θ (xs)dW (θ )

>cv

}
. (C.1)

We begin by proving the optimality of the set A�,cv in the problem minA VW (A) subject to
∫

Cθ (A)d�(θ )=1−α.

Lemma 1. Let A�,cv be such that
∫

Cθ (A�,cv)d�(θ )=1−α. Then A�,cv solves minA VW (A) subject to
∫

Cθ (A)d�(θ )≥
1−α.

Proof. Note that any A is equivalently characterized by the test-function ϕ :Rq ×R 	→{0,1} defined via ϕ(ys,xs)=
1[ys ∈A(xs)]. In this notation, VW (A)=∫ ∫ ∫ gθ (xs)fXs |θ (xs)ϕ(ys,xs)dνq(xs)dμ1(ys)dW (θ )=∫ ϕ(zs)f1(zs)dλq,1(zs), and∫

Cθ (A)d�(θ )=∫ ∫ ∫ fZs |θ (xs,ys)ϕ(ys,xs)dνq(xs)dμ1(ys)d�(θ )=∫ ϕ(zs)f0(zs)dλq,1(zs), where dλq,1(zs)=dνq(xs)×
dμ1(ys), f1(zs)=∫ gθ (xs)fXs |θ (xs)dW (θ ) and f0(zs)=∫ fZs |θ (zs)d�(θ ). Thus, the problem is equivalent to the problem of
finding the best test that rejects (that is ϕ=1) with probability at least 1−α when the “density” of Zs is f0, and minimizes
the rejection probability when the “density” of Zs is f1. These densities do not necessarily integrate to one, but the solution
still has to be of the Neyman–Pearson form (18), as can be seen by the very argument that proves the Neyman–Pearson
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Lemma: Set ϕ∗(ys,xs)=1[ys ∈A�,cv(xs)] and ϕ(ys,xs)=1[ys ∈A(xs)] for some A that satisfies
∫

Cθ (A)d�(θ )≥1−α.
Then

∫
ϕf0dλq,1 ≥1−α (we drop zs as the dummy variable of integration for notational convenience), and

0 ≤
∫

(ϕ∗ −ϕ)(f0 −cvf1)dλq,1

≤ cv(
∫

ϕf1dλq,1 −
∫

ϕ∗f1dλq,1)

where the first inequality follows from the definition of ϕ∗ and the second from 1−α=∫ ϕ∗f0dλq,1 ≤∫ ϕf0dλq,1. ‖
A second result mirrors Lemma 1 of EMW and bounds the value of minA VW (A), formalizing the result verbally

stated in Section 3.3.

Lemma 2. Let A�,cv as in Lemma 1. Then for any A that satisfies inf θ Cθ (A)≥1−α, VW (A)≥VW (A�,cv).

Proof. The result is immediate from Lemma 1 after noting that inf θ Cθ (A)≥1−α implies
∫

Cθ (A)d�(θ )≥1−α. ‖
Lemma 2 is useful, as it provides a set of lower bounds (indexed by �) on the achievable values of the objective

(14). Thus, if a � can be identified that implies a small lower bound in the sense that a small adjustment to the critical
value yields a set with uniform coverage and only marginally larger objective, the problem has been solved as a practical
matter. Again following EMW, we denote such a distribution an ALFD.

Definition 2. An ε-approximate least favourable distribution �∗ is a probability distribution on θ satisfying
(i) there exists cv∗ such that A�∗,cv∗ satisfies

∫
Cθ (A�∗,cv∗ )d�∗(θ )=1−α

(ii) there exists cv∗ε <cv∗ such that inf θ

∫
Cθ (A�∗,cv∗ε )≥1−α, and VW (A�∗,cv∗ε )≤VW (A�∗,cv∗ )+ε.

The strategy is thus to set some small tolerance level ε, and to numerically identify an ε-ALFD �∗. By definition,
A�∗,cv∗ε controls coverage uniformly, and invoking Lemma 2, its W -weighted average length is at most ε larger than of
any prediction set that controls coverage uniformly.

Generalizations of Lemmas 1 and 2 for A(xs) additionally restricted to be a superset of some given set B(xs) are
proven entirely analogously and are omitted for brevity (cf. Müller and Norets, 2012 and Lemma 3 in EMW).
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