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Abstract

Standard extreme value theory implies that the distribution of the largest observa-

tions of a large cross section is well approximated by a parametric model, governed by

a location, scale and shape parameter. The extremes of a panel of independent cross

sections are all governed by the same parameters as long as the underlying distribution

as well as the size of the cross sections are time invariant. We derive inference about

these parameters, and tests of the null hypothesis of time invariance, under asymp-

totics that do not require the number of extremes or the number of time periods to

increase. We further apply Hamiltonian Monte Carlo techniques to estimate the path

of time-varying parameters. We illustrate the approach in four examples of U.S. data:

damages from weather-related disasters, financial returns, city sizes and firm sizes.
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1 Introduction

Extreme value theory characterizes the approximate distribution of the largest k observa-

tions in a sample of n i.i.d. observations. In particular, if the underlying population has a

tail that is sufficiently well approximated by the Generalized Pareto (GP) distribution, then

the largest observations approximately follow a (joint) Generalized Extreme Value (GEV)

distribution. The location, scale and tail index parameters of this GEV approximation are

functions of the sample size n, and the location, scale and shape parameter of the under-

lying GP distribution. Thus, the extreme observations may be used to learn about the

tail properties of the underlying population. There is a well-developed literature on corre-

sponding inference procedures based on k → ∞ asymptotics; see, for instance, Embrechts,

Klüppelberg, and Mikosch (1997), Coles (2001), de Haan and Ferreira (2007) and Gomes

and Guillou (2015) for reviews and references.

Approximations based on k → ∞ asymptotics may be inaccurate in small to moderate

sample sizes, however: On the one hand, selecting k large can lead to substantial biases, as the

GP tail approximation may only hold for a small fraction of the underlying population. On

the other hand, a small k invalidates the central limit theorems and similar approximations

justifying the k → ∞ asymptotics. As an alternative, Müller and Wang (2017) derive

asymptotically valid inference for extreme quantiles and tail expectations by considering

the small sample problem of observing a fixed k number of observations from the GEV

distribution directly.

Now suppose we observe the largest observations from T independent samples, collected

at different points in time t = 1, . . . , T . If the sample sizes nt and the underlying GP

parameters are time invariant, then the resulting T vectors of the k largest observations

are independent, with the same GEV parameters. We generalize Müller and Wang’s (2017)

generalized likelihood ratio statistic to conduct inference about these parameters, or functions
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thereof, based on nt = n → ∞ but fixed-k, fixed-T asymptotics. Under such asymptotics,

it is not possible to consistently estimate the GEV parameters, so for null hypotheses that

involve nuisance parameters, one must derive critical values that reflect this uncertainty. We

also generalize these results for observations of exceedances, that is values that exceed a

given (extreme) threshold.

Within this same framework, we also develop a test for the null hypothesis of temporal

stability of the GEV parameters. Our suggested test statistic here is that derived in Nyblom

(1989), but again with a critical value that is adjusted for the small sample distribution

induced by the GEV observations.

If the null hypothesis of parameter stability is rejected, it is natural to ask how the pa-

rameters evolve over time. We take a Bayesian perspective and model the evolution of the

(suitably transformed) underlying parameters as Gaussian random walks, which provide a

flexible characterization of the parameter paths. The computation of the posterior parameter

path is a non-Gaussian filtering/smoothing problem. Gaetan and Grigoletto (2004) rely on a

particle filter algorithm.1 We instead suggest a simpler and computationally faster approach

based on Hamiltonian Monte Carlo (HMC). The support of the GEV distribution depends

on its parameters, so HMC is not directly applicable. We overcome this by suitably ex-

trapolating the likelihood to the entire Euclidian space, followed by an importance sampling

correction of the HMC output. We find that this approach, implemented in the Bayesian

posterior package Stan, reliably yields accurate posteriors in minutes, even for problems with

large T (T = 522 in one of our illustrations), and can also be applied for fast computation

of Bayes factors using Meng and Wong’s (1996) “simple identity.”

1 Also see Coles (2001), Huerta and Sansó (2007), do Nascimento, Gamerman, and Lopes (2016), Nakajima

et al. (2012, 2017), among others, for related models with time variation in GEV parameters.
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We illustrate our approach in four empirical examples. The first example concerns the

damages from U.S. weather-related disasters that exceed one billion (2023 inflation adjusted)

dollars for the months 1980:1-2023:6, as depicted in Figure 1.2 The censoring at τ = $1 billion

leads to an endogenous number kτ of exceedances for each of the T = 522 months, with kτ

ranging from zero to six. In this application, the number of all weather-related events

in a given month, nt, is not observed. It is hence meaningful to ask whether nt, and/or

the underlying GP parameters are time varying, as could be induced by a time varying

capital stock, time-varying population density in disaster-prone regions such as the coasts,

or climate change (cf. Smith and Katz (2013), Katz (2015), and Pielke, Gratz, Landsea,

Collins, Saunders, and Musulin (2008)). We find substantial time variation in the GEV

parameters describing these data, even after normalizing the data to adjust for changes in

the value of the aggregate capital stock.

Second, we consider the smallest and largest daily return of the SP500 index over non-

overlapping six month periods from 1926 through 2022. In order to reduce the obvious time

dependence in return volatility, the daily returns are standardized by a (constant parameter)

GARCH(1,1) model, an approach that goes back to McNeil and Frey (2000). In this exercise

there are T = 194 biannual observations and k = 1; see Figure 2. We find strong evidence

of time variation, suggesting that the extreme left-tail risk of the stock market undergoes

multidecadal swings with low risk in the middle of our sample relative to the GARCH(1,1)

benchmark. This complements research based on time varying extreme value theory by

Chavez-Demoulin, Embrechts, and Sardy (2014) and Mao and Zhang (2018) that focusses

on much shorter time intervals.

2 The data are from the NCEI U.S. Billion-Dollar Weather and Climate Disasters dataset. Appendix A

in the online appendix provides a detailed description of all data used in this paper.
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Our third example considers the population of the k = 30 largest U.S. cities in the T = 4

years 1900, 1940, 1980 and 2020 relative to total U.S. population. See panel (a) of Figure 3

which plots the logarithm of city sizes for each of the four years. Gabaix (1999, 2016) argues

that city sizes follow Zipf’s law, which corresponds to an underlying Pareto distribution with

tail index equal to unity. We find a tail index that is significantly less than unity, reject the

null hypothesis of constant GEV parameters, but find that the estimated parameter time

paths exhibit little variation.

The fourth and final example considers the largest k = 30 U.S. firms by employment in

the T = 4 years 1950, 1973, 1996 and 2019, normalized by total U.S. employment, as depicted

in panel (b) of Figure 3. An influential paper by Axtell (2001) argues that U.S. firms sizes

are approximately Pareto with unit shape coefficient, and that this distribution is stable

over time, but more recent evidence by Kondo, Lewis, and Stella (2023) sheds doubt on that

finding. With our choice of k = 30, we focus exclusively on the extreme right tail of firms.

We find evidence against the unit shape parameter, but little evidence against the null of

constant coefficients, a finding that is inconsistent with a “rise of superstar firms” (cf. Autor,

Dorn, Katz, Patterson, and Reenen (2020)) over that period.

The remainder of the paper is organized as follows. The next section reviews extreme

value theory and takes a first look at the data assuming the GP parameters and sample sizes

nt are time invariant. Section 3 introduces time variation and discusses our test of the null

hypothesis of time invariance. Section 4 concludes.
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2 Constant Parameter Models

2.1 Extreme Value Theory for k Largest Observations

Consider an i.i.d. sample W1, . . . ,Wn from a population with c.d.f. F . Let X1 ≥ X2 ≥ · · · ≥

Xn be the order statistics, so that X1 is the sample maximum, and we are interested in

the k largest values X = (X1, . . . , Xk). Assume initially that F is equal to the c.d.f. of a

Generalized Pareto (GP) distribution, that is

F (w) = FGP(w) = 1−
(
1 + ξ

(
w − ν

ω

))−1/ξ

, w ∈ Sν,ω,ξ

where (ν, ω, ξ) are the location, scale and shape parameters, expressions of the form

(1 + ξx)−1/ξ are understood to equal e−x for ξ = 0, and the support of FGP equals

Sν,ω,ξ = (−∞, ν − ω/ξ) for ξ < 0, Sν,ω,ξ = R for ξ = 0 and Sν,ω,ξ = (ν − ω/ξ,∞) for

ξ > 0. The quantile function F−1
GP : (0, 1) 7→ R of FGP is given by

F−1
GP(q) = ω

(1− q)−ξ − 1

ξ
+ ν.

A standard calculation (cf. Proposition 1.6.9 of Reiss (1989)) shows that the order

statistics Uj:n (so U1:n is the sample minimum) of n i.i.d. uniform random variables have

joint distribution

{Uj:n}nj=1 ∼

{
κnn

−1

j∑
i=1

Ei

}n

j=1

(1)

where Ei are i.i.d. standard exponential and κ−1
n = n−1

∑n+1
i=1 Ei. By the Law of Large

Numbers, κn
p→ 1 as n→ ∞.

By construction, the order statistics {Xn−j+1}nj=1 are related to the {Uj:n}nj=1 via the
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quantile function, that is

{Xn−j+1}nj=1 ∼ {F−1
GP(Uj:n)}nj=1 ∼

{
ω
(1− Uj:n)

−ξ − 1

ξ
+ ν

}n

j=1

so, noting that Uj:n ∼ (1− Un+1−j:n),

{Xj}kj=1 ∼

{
ω
U−ξ
j:n − 1

ξ
+ ν

}k

j=1

a∼

{
ωnξ (

∑j
i=1Ei)

−ξ − 1

ξ
+ ω

nξ − 1

ξ
+ ν

}k

j=1

(2)

∼ GEVk(ω
nξ − 1

ξ
+ ν, ωnξ, ξ) (3)

where the approximate distributional equality “
a∼” sets κn = 1, and the joint Generalized

Extreme Value distribution GEVk(µ, σ, ξ) has density

fGEV(x|µ, σ, ξ) = σ−k exp

[
−
(
1 + ξ

xk − µ

σ

)−1/ξ

− (1 + 1/ξ)
k∑

j=1

log(1 + ξ
xi − µ

σ
)

]
(4)

where expressions of the form (1 + 1/ξ) log(1 + ξx) are understood to equal x for ξ = 0,

and the support is characterized by the inequalities x1 ≥ x2 ≥ · · · ≥ xk and ξxj ≥ ξµ − σ

for j = 1, . . . , k. We thus have a mapping from the underlying GP parameters (ν, ω, ξ) and

the sample size n to the GEV parameters (µ, σ, ξ) = (ω nξ−1
ξ

+ ν, ωnξ, ξ) of the k largest

observations, and the only approximation involved in this mapping is κn ≈ 1. Up to location

and scale, the GEV1 distribution nests the Weibull, Gumbel and Fréchet distributions as

special cases for ξ < 0, ξ = 0 and ξ > 0, respectively.

Now suppose that only the right tail of F is characterized by a GP distribution, that is,

for some w0 with 0 < F (w0) < 1, F (w) = FGP(w) for all w ≥ w0. Then (2) continues to

hold conditional on Uk:n ≤ 1− F (w0), since the quantile function of F for q ≥ F (w0) is just

as in the above calculation. Under the approximation κn ≈ 1, Uk:n in (1) has mean k/n and

6



standard deviation
√
k/n, so it suffices that the extreme right tail with probability mass of

a little more than k/n behaves like a GP distribution.

With k fixed, k/n converges to zero as n → ∞, so it suffices that the asymptotic tail

behavior of F is that of a GP distribution. This turns out to be a necessary and sufficient

condition for extreme value theory to apply—see, for instance, Theorem 5.1.1 in Reiss (1989)

for a precise statement. All “textbook” continuous distributions fall in this class, including

distribution with finite support (ξ < 0), standard thin-tailed distributions such as the normal

or log-normal distribution (ξ = 0), and fat-tailed distributions such as the student-t or F-

distribution (ξ > 0). In practice and for finite n, these results suggest that for many

populations F , the approximation (3) is quite accurate for some choice of GP parameters

(ν, ω, ξ), at least for a small enough k. Thus, with a judicious choice of k, we can learn about

(µ, σ, ξ), and thus also (ω, ν, ξ), via the likelihood (4).

When ξ > 0, so that F has unbounded support in the right tail, the GEV location

parameter µ = ω nξ−1
ξ

+ν is dominated for large n by the term ωnξ/ξ = σ/ξ. Standard Fréchet

extreme value theory correspondingly makes the additional approximation that µ ≈ σ/ξ, so

that n−ξX1
a∼ GEV1(ω/ξ, ω, ξ) ∼ Fréchet. For instance, this is implicitly applied in the

derivation of the popular Hill (1975) estimator of the tail index ξ. We do not do so in the

following because even if the tail of F is exactly GP, so that (3) is an excellent approximation

for all moderately large n, for any n one can always choose the GP location parameter ν

such that ω nξ−1
ξ

+ ν is arbitrarily different from ωnξ/ξ. In other words, the additional

approximation µ ≈ σ/ξ is not uniformly valid over all underlying populations for which (3)

yields accurate approximations. Instead, the restriction µ = σ/ξ is one of the null hypotheses

we consider below. Note that if the GP parameters satisfy ν = ω/ξ, then µ = σ/ξ, and the

GP distribution with ν = ω/ξ is simply the Pareto distribution. Relying on µ ≈ σ/ξ in the

GEV approximation (3) thus implicitly assumes that the tail of F is well approximable by a
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(non-shifted) Pareto distribution, and this is another way of motivating the null hypothesis

of our test below.

The generalization to a panel of independent samples is straightforward: Let Xt ∈ Rk be

the largest k observations of the sample Wt,1, . . . ,Wt,n, t = 1, . . . , T . Then under the same

assumptions that lead to (3), we obtain a large-n justified approximate likelihood of the

form
∏T

t=1 fGEV(Xt|µ, σ, ξ), where (µ, σ, ξ) = (ω nξ−1
ξ

+ ν, ωnξ, ξ). If the samples are weakly

dependent then this approximation can still be justified — see, for instance, Leadbetter

(1983) for precise conditions.

2.2 Inference Using k Largest Observations

We now discuss inference about (functions of) the GEV parameters (µ, σ, ξ) under fixed-k,

fixed-T and n → ∞ asymptotics. The large sample validity of this inference only requires

that extreme value theory in (3) becomes an accurate approximation as n → ∞ for each

X = Xt, and that the Xt are asymptotically independent.3 The values of (µ, σ) typically

depend on n under such asymptotics; however, the inference procedures that we discuss are

uniformly valid in (µ, σ) ∈ R× (0,∞) in the small sample problem of observing

Xt ∼ i.i.d. GEVk(µ, σ, ξ), t = 1, . . . , T (5)

so this potential dependence is innocuous.

3 Formally, we need that the total variation distance between the distribution of {Xt}Tt=1 and T inde-

pendent copies of the GEVk(µn, σn, ξ) distribution converges to zero for some sequence (µn, σn) as n → ∞.

See Chapter 5 of Reiss (1989) for sufficient conditions.
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2.2.1 Choice of k

The quality of inference based on the approximation (5) depends on k, the number of largest

observations whose distribution is approximated by the GEV distribution. In practice, the

choice of k involves a familiar efficiency-robustness tradeoff: A large value of k enables more

informative inference, but as discussed in the last section, it requires that the underlying

population has an approximate GP distribution over a relatively larger fraction of the tail

with approximate mass k/n. Indeed, if the underlying population is exactly GP, then (5) is

an accurate approximation for all k ≤ n. On the other hand, for any n one can construct

underlying populations for which (5) is only a good approximation for small k, and mistakenly

choosing k large then yields misleading inference.

One might hope that one could use the data to estimate an appropriate value of k = k̂n,

but without further assumptions, this it not possible: As shown in Müller and Wang (2017)

for T = 1, if a method correctly chooses k̂n → ∞ for i.i.d. data from a Pareto distribution,

then there exists a sequence of populations for which large-sample inference using k̂n is

arbitrarily misleading, yet one would have obtained valid large-sample inference about the

tail properties for any fixed k. The lesson is that one cannot devise a robust two-step process,

where k is estimated in the first step and then used in a GEV analysis in a second step.

In practice, then, one must choose k in some other way. This could be based on pragmatic

considerations such as data availability, or a choice of k = 1 to avoid complications arising

from potential dependence in the underlying sample. More substantively, one may have a

priori knowledge about plausible shapes of the tail properties of the underlying population.

Alternatively, one can report inference results for a range of values of k, so that readers

learn what kind of empirical conclusions are obtained as the tail condition is progressively

strengthened.
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2.2.2 Generalized Likelihood Ratio Statistic

The remaining challenge is how to conduct valid inference in the small sample problem of

observing (5) for a given pair of (k, T ). Suppose we want to test H0 : (µ, σ, ξ) ∈ Θ0 ⊂ R3, for

some given Θ0.
4 For instance, Θ0 could restrict ξ to take on the value ξ0. Let Θ1 ⊂ R3 be

the unrestricted parameter space, which we choose to equal {(µ, σ, ξ) : σ > 0, ξ > −0.99}

in our applications. We suggest using the generalized likelihood ratio statistic

LR = sup
(µ,σ,ξ)∈Θ1

ln
T∏
t=1

fGEV(Xt|µ, σ, ξ)− sup
(µ,σ,ξ)∈Θ0

ln
T∏
t=1

fGEV(Xt|µ, σ, ξ). (6)

This generalizes the test statistic employed in Müller and Wang (2017) for T = 1 for inference

about the quantiles and tail expectation of the underlying GP distribution to arbitrary Θ0

and T ≥ 1. For a test based on LR to be valid, it must control size for all values in Θ0.
5 All

of our choices of Θ0 are such that the distribution of LR only depends on (µ, σ, ξ) through

ξ, so ξ is the only relevant nuisance parameter.6 Müller and Wang (2017) restrict attention

to values of ξ in [−0.5, 0.5] and apply a simple sup bound, that is, their critical value cvsup

is chosen so that the 1 − α quantile of LR is smaller than cvsup for all ξ ∈ [−0.5, 0.5].

Our empirical results below are valid for the larger range [−0.5, 1.5], and for some Θ0, a

corresponding sup bound on the critical value induces tests to be heavily undersized for

4 The set Θ0 could depend on n, but we omit such dependence in our notation.

5 The results in Bücher and Segers (2017) suggest that as T → ∞, the critical values converge to their

usual chi-square quantiles, but we seek inference that is valid for small T .

6 This follows directly from the form of the GEV density in (4).
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some ξ.

Instead of using a sup bound critical value, we use a critical value that is a function of

ξ̂, the MLE of ξ, where the function is chosen so that, like the sup-bound critical value,

it controls size uniformly over the range ξ under consideration and additionally the test is

approximately unbiased for all values of ξ in this range. Specifically, we use the function

cv(ξ̂) = exp(−a0−a1ξ̂−a2ξ̂
2
), where the coefficients (a0, a1, a2) are chosen to approximately

maximize minξmin≤ξ≤ξmax
Pξ(LR > cv(ξ̂)) subject to the constraint maxξmin≤ξ≤ξmax

Pξ(LR >

cv(ξ̂)) ≤ α, where α is the level of the test. Appendix B in the online appendix provides

details on how to numerically determine the coefficients (a0, a1, a2). In the empirical analysis

we use α = 0.05 and in the tables below we present the ξ̂-adjusted LR statistic LRξ̂-adjusted =

LR / cv(ξ̂), so that the the null is rejected at the 5% level when LRξ̂-adjusted > 1.

2.2.3 Specific Hypotheses of Interest

We consider four null hypotheses. The first simply specifies ξ, H0 : ξ = ξ0.
7 We thus

conduct inference about the tail index of the GEV distribution, which is also the tail index

of the underlying F . In contrast to standard inference about ξ (such as based on the Hill

(1975) or Pickands (1975) estimator), the validity of this inference does not require k to

diverge. In practice and with k small, it thus allows testing whether the extreme right tail

of F with approximate mass k/n is characterized by a tail index equal to ξ0. Second, we test

H0 : q0.9(µ, σ, ξ) = q0, where q0.9(µ, σ, ξ) = µ+σ((− ln 0.9)−ξ−1)/ξ is the 90% quantile of the

GEV1(µ, σ, ξ) distribution. Under the approximation (3), by definition, sample maxima from

7 For this test, the distribution of the LR statistic does not depend on any nuisance parameters, so we

can directly use the critical value computed by simulation.
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the same population F exceed q0.9(µ, σ, ξ) only 10% of the time. It also corresponds to the

1−h/n quantile of F , where h solves 0.9 = e−h, so h ≈ 0.1 (cf. Müller and Wang (2017)). In

our empirical work, we invert the tests ξ = ξ0 and q0.9 = q0 to construct confidence intervals

for ξ and q0.9. For the third null hypothesis, we test H0 : µ = σ/ξ, ξ ≥ ε for some small

ε > 0, which we choose to be ε = 0.03 in our applications. This corresponds to ν = ω/ξ,

i.e. the validity of the Pareto (rather than shifted Pareto) tail approximation discussed at

the end of Section 2.1. Finally, we test the constraint corresponding to Zipf’s law in the

extreme right tail H0 : µ = σ/ξ, ξ = 1, that is, we add ξ = 1 to the previous null hypothesis.

Gabaix (1999), for instance, argues that for city sizes a tail index of ξ = 1 is to be expected.

2.3 Extreme Value Theory for Exceedances

So far we considered the behavior of the largest k observations of an i.i.d. sampleW1, . . . ,Wn.

Suppose instead that we observe all Wi that exceed a given threshold τ , that is, we observe

Y = {Wi : Wi ≥ τ} with kτ ≥ 0 elements. Let Ys have the same elements as Y sorted

descendingly, and note that there are kτ ! equally likely Y vectors that map to a given Ys.

The vector Ys behaves just like the vector of largest observations X, but with a sample-

dependent value of k = kτ , where kτ is such that Xkτ ≥ τ and Xkτ+1 < τ . If we let τ depend

on n such that the expected number of exceedances remains bounded, the approximation

(3) therefore induces an approximate distribution for Y. The density of Y ∈ Rkτ under this

approximation is given by

fτ (y|µ, σ, ξ) =
1

kτ !

∫ τ

−∞
fGEV((y

s, xkτ+1)|µ, σ, ξ)dxkτ+1

=
1

kτ !σkτ
exp

[
−
(
1 + ξ

τ − µ

σ

)−1/ξ

− (1 + 1/ξ)
kτ∑
j=1

log(1 + ξ
yi − µ

σ
)

]
(7)
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where the first equality reflects the fact that all we know about Xkτ+1 is that it is smaller

than τ , and the second follows from the relationship between the GEV1 p.d.f. and c.d.f.

The density (7) can be re-expressed into a more intuitive form by introducing two new

parameters λ, ψ > 0. With σ = ψλξ and µ = τ + ψ(λξ − 1)/ξ, the density in (7) can be

rewritten as

fτ (y|λ, ψ, ξ) =
λkτ e−λ

kτ !

kτ∏
i=1

1

ψ
(1 + ξ

yi − τ

ψ
)−(1+1/ξ), (8)

which is recognized as the product of a Poisson density for the number of exceedances kτ

with parameter λ = (1 + ξ(τ − µ)/σ))−1/ξ = n(1 − FGP(τ)), and a GP density for the kτ

exceedances Yi − τ with parameter (0, ψ, ξ).

The generalization to a panel of independent exceedances with thresholds τ t is immediate,

where in the approximate model

Yt ∼ independent with density fτ t(y|µ, σ, ξ), t = 1, . . . , T (9)

with corresponding likelihood
∏T

t=1 fτ t(Yt|µ, σ, ξ) =
∏T

t=1 fτ t(Yt|λt, ψt, ξ), and the notation

emphasizes that (µ, σ) are time-invariant while (λt, ψt) vary with τ t.

2.4 Inference Using Exceedances

Inference can again be based on the generalized likelihood ratio statistic, analogous to (6).

There is one complication, though: The distribution of LR for exceedances under the four

null hypotheses considered in Section 2.2 not only depends on ξ, but for a constant threshold

τ also on λ in the Poisson-GP parameterization (8), and for a time varying τ t on all three

parameters. It is impossible to numerically bound the relevant quantile of the null distribu-

tion of LR uniformly in λ > 0, as one would need to consider values arbitrarily close to zero,
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so P(kτ > 0) → 0, and arbitrarily large values of λ that lead to nt → ∞.

Instead, we suggest using a Bonferroni approach: First use the likelihood ratio statistic

of H0 : (µ, σ, ξ) = (µ0, σ0, ξ0) to form a 99% confidence set S0 ⊂ R3 for the GEV parameter

(µ, σ, ξ)—since there are no nuisance parameters, the null distribution is known for any value

of (µ0, σ0, ξ0). Then for each of the four hypothesis tests of interest, numerically obtain a

critical value adjustment as a function of ξ̂ so that we obtain a 4% level test uniformly over

S0. By construction, this yields valid 5% level tests in the small sample problem (9).

2.5 Illustrations

Table 1 summarizes results for each of the empirical examples discussed in the Introduction.

We highlight a few results from the table.

Weather-Disaster Damages. The first row of the table shows the results using the damage

data plotted in Figure 1. The distribution of damage extremes is characterized by a large

tail index, with a 95% confidence interval spanning 0.66 to 1.06 and monthly damages that

exceed $5 billion in one out of ten months on average (that is, q0.9 > 5). The null µ = σ/ξ is

rejected, indicating that damage extremes are not well-described by the Fréchet distribution.

Moreover, as is evident in Figure 1 and as we will see more formally in Section 3, there is a

marked increase over the sample period in the number of damages that exceed $1 billion each

month and in the value of damage extremes. One potential explanation for these increases is

that the value of assets potentially affected by weather disasters have increased over time, so

damages rise even absent changes in the severity of weather. To account for this, researchers

routinely normalize damages to adjust for the value of assets at risk from weather events

(e.g., Pielke and Landsea (1998) and Pielke, Gratz, Landsea, Collins, Saunders, and Musulin

(2008)). With this in mind, the second row of the table repeats the empirical work using
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damages that are normalized by the real quantity of the U.S. capital stock.8 The table

suggests that extremes of normalized damages are well described by the Fréchet distribution

with ξ = 1.0. But, to preview results in Section 3, normalized damages continue to exhibit

marked increases over the sample period. (Also see Figure ?? in the online appendix.)

Returns. The data plotted in Figure 2 suggests an asymmetry in the distribution of

positive and negative extremes, and this visual impression is quantified in Table 1 which

reports a larger tail index for negative extremes and a more extreme 90th quantile. Table 1

also shows that the µ = σ/ξ constraint is rejected for large returns, suggesting a departure

from the Fréchet distribution underlying commonly used estimators for the shape parameter

ξ. In the left tail, the 95% confidence interval for ξ includes values as large as 0.41, suggesting

that the GARCH innovations might have fewer than 1/0.41 ≈ 2.44 moments.

City and Firm Sizes. To our eyes the most notable result is that ξ is less than unity for

both city and firm sizes. While the null that µ = σ/ξ is not rejected, the null that includes

ξ = 1.0 is rejected, so these extremes are inconsistent with Zipf’s law. These results use the

largest k = 30 cities and firms, but the conclusions hold for cities for values of k between 20

and 100 and for firms with k between 10 and 100.

A caveat for these results is that they are predicated on independence of the samples

over time, here with constant GEV parameters and in Section 3 after conditioning on the

potentially time varying GEV parameters values. For monthly weather damages and 6-month

samples of daily returns, temporal dependence is arguably sufficiently weak as to have little

meaningful effect on the validity of the tests and confidence intervals, as suggested by the

analysis in Leadbetter (1983) mentioned in Section 2.1. However, there is much stronger

dependence for the city sizes, where 11 of the largest 30 cities in 1900 were also among the

8 See Appendix A in the online appendix for details of the data construction.
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30 largest cities in 2020. As in the case with inference about a mean parameter, this positive

correlation presumably acts like a reduction in the effective sample size T , suggesting that

the tests using city size data are somewhat oversized. In Section 3 we study this in more

detail in the context of a test for time-varying GEV parameters. Interestingly, while there

is considerable overlap in the largest 30 cities over time, there is far less overlap in firm sizes

where none of the largest 30 firms in 1950 (the first year in our sample) remained in the

top-30 in the final year, 2019.

3 Time Variation

If the data takes the form of a panel of extremes, that is, T > 1, a natural question is

whether the parameters that characterize the extremes are stable over time. In this section,

we develop a test of that null hypothesis, and suggest a Bayesian approach to the estimation

of the parameter path in an unstable model.

3.1 Testing for Time Varying GEV Parameters

It is entirely straightforward to introduce time varying parameters in the approximate dis-

tribution for the extremes discussed in Sections 2.1 and 2.3: Simply subscript the GEV

parameters (µ, σ, ξ) by t, so that under the approximation induced by extreme value theory,

the observations are given by

Xt ∼ independent GEVk(µt, σt, ξt), t = 1, . . . , T and

Yt ∼ independent with density fτ t(y|µt, σt, ξt), t = 1, . . . , T
(10)
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for the k largest observations and the exceedances over τ t, respectively. We seek a test of

parameter constancy:

H0 : (µt, σt, ξt) = (µ1, σ1, ξ1), t = 2, . . . , T. (11)

One idea would be to use again the generalized likelihood ratio statistic for this purpose.

However, this would require estimating an unrestricted set of GEV parameters for each t,

and when k (or kτ ) is small, this parameter would be informed by a very small number of

observations. To obtain an approach that works for all (k, T ) pairs with T > 1, we instead

rely on the test statistic developed by Nyblom (1989). He derived the locally best test of

the null hypothesis of parameter constancy against the alternative of martingale-type time

variation in a parametric model. For a model with time varying parameter θ = θt and

likelihood
∏T

t=1 f(Xt|θt), the feasible version of Nyblom’s (1989) test is given by

LT = T−2

T∑
t=1

(
T∑
l=t

Sl(θ̂)

)′

V̂ −1

(
T∑
l=t

Sl(θ̂)

)
(12)

where St(θ) = ∂ ln f(Xt)/∂θ are the scores, θ̂ is the MLE satisfying
∏T

t=1 f(Xt|θ̂) =

supθ

∏T
t=1 f(Xt|θ), and V̂ = −T−1

∑T
t=1 ∂St(θ)/∂θ

′|θ=θ̂ is an estimator of the average in-

formation. Under standard regularity assumptions and T → ∞ asymptotics, Nyblom shows

that L ⇒
∫ 1

0
(W (s)− sW (1))′(W (s)− sW (1))ds, where W is a standard Wiener process of

the same dimension as θ.

We do not want to rely on T → ∞ asymptotics for the validity of our inference. So

instead, we again numerically determine a critical value that is small sample valid under

(10) and (11). For the largest k observations, a calculation shows that the distribution of

LT only depends on the GEV parameter through ξ, just like the LR statistic of Section 2.2.9

9 To see this, let X̃t = aXt + b with a > 0, with corresponding parameter θ̃, MLE
ˆ̃
θ, score S̃, information
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So we use the same critical value construction as discussed there. For the exceedances, we

again find a more complicated dependence of the distribution of LT on the GEV parameters,

so we apply the same Bonferroni approach as discussed in Section 2.4.

To test the null that the coefficients are stable against the alternative that a subset of

the coefficients is time varying, one simply uses a version of LT that only considers the score

for the potentially time-varying coefficients.

Additionally, it is straightforward to generalize Nyblom’s locally best test to simultane-

ously test the null of parameter stability together with null values for the constant param-

eters, that is H0 : θt = θ1 and θ1 = θ1,0. Appendix C in the online appendix discusses the

generalization; see Rossi (2005) for a discussion of several alternative approaches in a large-T

framework. The resulting test statistic is

L∗
T = T−2

T∑
t=1

(
T∑
l=t

Sl(θ1,0)

)′

V̂ −1

(
T∑
l=t

Sl(θ1,0)

)
+ T−1

(
T∑
t=1

St(θ1,0)

)′

V̂ −1

(
T∑
t=1

St(θ1,0)

)
(13)

where the first term is the same as LT with the score evaluated at the null value θ = θ1,0 and

the second term is the usual LM statistic for testing the null that θ1 = θ1,0. Because the null

specifies the value of θ1, the null distribution of L∗
T does not depend on nuisance parameters

and is readily computed. When the null hypothesis specifies a subset of the values of θ1, the

score can be evaluated at the MLE of θ1 computed under the null and the critical value can

be computed using the procedures discussed above.

Ṽ and Nyblom statistic L̃T . Then S̃l(
ˆ̃
θ) = a−1Sl(θ̂) and

ˆ̃V = a−2V̂ , so that L̃T = LT .
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3.2 Estimation of the Parameter Path

In addition to testing whether the parameters are stable through time, it is also of practical

interest to estimate their paths. This is most naturally done in a Bayesian framework, which

we now adopt.

3.2.1 Parametrizing the Sources of Time Variation

One approach is to simply form a prior on paths of the GEV parameters directly. We found

it useful, however, to instead consider potential sources of time variation that stem from the

underlying population and the number of cross sectional observations.

Recall from Section 2.1 that the GEV parameters (µ, σ, ξ) are related to the GP param-

eters (ν, ω, ξ) via (µ, σ, ξ) = (ω nξ−1
ξ

+ ν, ωnξ, ξ). Thus, (µ, σ) may vary in time because the

underlying population F has a time varying GP tail, or because the number of observations n

is time varying. To isolate these effects, consider the following reparameterization of (µ, σ, ξ)

in terms of (ξ, α, s,m): Let n = n0α, where n0 is of the same order as n, so α > 0 captures

the sample size relative to the baseline n0. We have

σ = (ωnξ
0)α

ξ = sαξ

µ = ν + ω (n0α)ξ−1
ξ

= m+ sα
ξ−1
ξ

(14)

with s = ωnξ
0 and m = ν + (ω/ξ)(nξ

0 − 1).

We model time variation in (µt, σt) for t = 1, . . . , T by independent time variation in

(αt, st,mt) via the mapping (14). Changes in αt correspond to a time varying number of

underlying observations nt—for instance, in the damages data set, one could imagine that

we observe more exceedances simply because there are more weather-related events, without

any change in the damage distribution F . Time variation in (st,mt), in contrast, corresponds
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to changes of the GP tail of the underlying population Ft.

3.2.2 Choice of Prior

Our prior on the paths (ξ, α, s,m) is

ξt = ξmin + (ξmax − ξmin)
eξ̃t

1+eξ̃t
, ξ̃t = ξ̃0 + γξηξ,t

ln(αt) = ln(α0) + γαηα,t

ln(st) = ln(s0) + γsηs,t

mt = m0 + γmηm,t

(15)

where the four ηt’s are mutually independent random walks with N (0, 1/T ) increments and

η0 = 0, and ξmin = −0.9 and ξmax = 2.1. For the initial conditions, we choose a N (0, 1.52)

prior for ξ̃0, which induces a nearly flat prior for ξ0 over the [−0.5, 1.5] interval, lnα0 = 0 (a

normalization that associates n0 with the time t = 0 value of n), and improper flat priors on

ln s0 and m0, where these flat priors ensure that Bayesian inference is invariant with respect

to location and scale transformations of the data, so it doesn’t matter, for instance, whether

damages are measured in millions or billions of dollars.

The γ parameters govern the degree of time variation in the prior: The difference between

the t = T and t = 0 value of the (transformed) parameters has standard deviation γ. We

use an exponential prior for γ with mean g. In particular, gα = gs = 0.5, so that the mean

standard deviation of the change in α and s is 0.5 log points over the sample period. We set

gξ = 1; a one unit increase in ξ̃ raises ξ0 = 0.5 to ξT = 0.73. The parameter m is measured

in the same units as the data, and to preserve the invariance, we set gm = s0.
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3.2.3 Computing the Posterior

With our random walk prior on the transformed parameters, estimation of the parameter

path is a filtering/smoothing problem in a state-space system with linear and Gaussian

evolution for the state (15), but non-Gaussian measurements given in equation (10). This

makes the determination of the posterior a difficult computational problem.

To address this difficulty, we take advantage of the recent development of powerful Hamil-

tonian Monte Carlo (HMC) methods. HMC improves sampling over other MCMC methods

by also relying on information about the derivatives for each sampled parameter point, and

evaluation of the derivatives is straightforward for the prior and likelihood induced by (15)

and (10). We can thus treat the entire path {ξt, αt, st,mt}Tt=1 as part of the parameter

in the HMC algorithm, and still obtain fast convergence despite the potentially very large

parameter space.

For our empirical work, we rely on Stan, a popular HMC implementation that includes

automatic differentiation. A remaining challenge is that the support of the observations (10)

depends on the parameters. Stan’s posterior exploration regularly visits such values, and

simply “rejecting” them leads to poor convergence. We overcome this by smoothly extrapo-

lating the likelihood beyond the support of the GEV distribution, followed by an importance

sampling correction that restores validity of the sampler for the original likelihood.

Specifically, consider the likelihood (4). Dropping time subscripts to ease notation, we

have

ln fGEV(X|µ, σ, ξ) = −k lnσ − exp(h(Zk)) + (1 + ξ)
k∑

j=1

h(Zj)

where h(z) = ln[(1 + ξz)−1/ξ] and Zj = (Xj − µ)/σ. As 1 + ξz → 0, h(z) diverges to

+∞ for ξ > 0, and h(z) diverges to −∞ for ξ < 0. The idea is to extend h to a function

h̃ : R 7→ R with domain equal to R by a linear extrapolation of h(z) for all arguments for
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which 1 + ξz < χ, for some small threshold χ > 0. This yields

h̃(z) =

 −(1/ξ) lnχ− (z − χ−1
ξ
)/χ for 1 + ξz < χ

ln[(1 + ξz)−1/ξ] otherwise.

For numerical stability, we select the threshold χ such that |h(1+ ξz)| = 6 when 1+ ξz = χ,

which yields χ = exp(−6|ξ|). The “extended support” extrapolation of the GEV likelihood

then becomes ln f̃GEV(X|µ, σ, ξ) = −k lnσ − exp(h̃(Zk)) + (1 + ξ)
∑k

j=1 h̃(Zj).

Sampling from the kernel with fGEV replaced by f̃GEV does not yield the desired posterior;

but to correct this, all we have to do is to reweight the draws that rely on the extrapolated

likelihood by the ratio fGEV/f̃GEV. In our applications it turns out that these weights are

very close to unity for essentially all draws, so the reweighting ends up being negligible for

practical purposes.

The likelihood of the exceedances (7) has a similar form, so we can apply the same

approach there.

With this in place, we find that Stan reliably estimates the posterior in seconds or at most

a few minutes, even for T = 522 where the entire parameter vector including the parameter

paths has more than 2000 elements.10

3.2.4 Computing Bayes Factors

It is useful to compare alternative specifications for the time varying model by the corre-

sponding Bayes factor. This can be readily computed from Stan’s posterior draws of the two

competing models using Meng and Wong’s (1996) “simple identity.” Examples are provided

10The Stan script for the TV-GEV model is included in the online appendix and replication files for
all results reported in this article are available in the Review ’s replication archive and at https://www.

princeton.edu/~mwatson/publi.html.
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in the next subsection.

3.3 Illustrations

Nyblom Tests for Stability. Table 2 shows the Nyblom parameter stability tests for each

dataset. There is overwhelming evidence for instability for the parameters describing weather

damages (normalized or not), and strong evidence of instability for the parameters describing

returns. The results for city and firm sizes are less clear: the k = 30 results shown in the

table reject stability at the 5% significance level for city sizes, but not for firm sizes. Results

for larger values of k (not shown) suggest some evidence of instability for firm sizes, but

generally don’t reject the null of stability for city sizes. For city and firm sizes we also tested

the null of stability together with the restrictions µ = σ/ξ and ξ = 1 (the time-invariant

Zipf’s law null) using the L∗
T statistic in (13); in both cases the test statistic had a p-value

of 0.06 for k = 30 and smaller p-values for larger k.11

Estimated Parameter Paths. Bayes estimation of the TVP-GEV model (14)-(15) pro-

duces posterior paths for (α,m, s, ξ) and the resulting GEV parameters. Figure 4 shows a

selected summary of these posteriors focusing on ξ and the 90th quantile q0.9 of the (time

varying) GEV1(µt, σt, ξt) distribution. While the results in the figure speak for themselves,

we highlight the three we found most interesting. First, damages associated with weather ex-

11 As discussed in Section 2.5, there is considerable overlap in the list of the 30 largest U.S. cities over

the sample period. This temporal dependence potentially affects the size of the ξ̂-adjusted Nyblom test. To

investigate this we carried out a simulation experiment using Gabaix’s (1999, Proposition 1) data generating

process for a Pareto distribution. The results indicated that the ξ̂-adjusted Nyblom test was somewhat

undersized, suggesting that the test rejections for cities (and perhaps firms) are not spuriously generated by

the sampling dependence.
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tremes have increased markedly over the 1980-2023 period. The estimated (posterior mean)

value of q0.9 increased from $2.7 billion in 1980 to $13.4 billion in 2013. For normalized

damages, the increase was from $6.6 billion to $12.9 billion. Second, while the constant-

parameter results for returns showed an asymmetry in right and left tail risk (where the

magnitude of the extreme quantile for smallest returns was 1.2 standard deviations greater

than for largest returns), Figure 4 shows important time variation in this asymmetry that

ranges from a low of 0.4 in the mid-1970s to more than 2.5 standard deviations at the end

of the sample. Third, in contrast to the results for weather damages and returns, there is

little estimated time variation in the parameters for city and firm size and the time-varying

parameter results in Figure 4 are similar to the constant parameter results shown in Table

1.

Sources of Time Variation. The TVP-GEV model (14) and (15) highlighted two potential

sources of time variation: time variation in the underlying GP parameters (ν, ω, ξ) and time

variation in the sample size n, where the former is captured by the parameters (m, s, ξ) and

the latter is captured by the parameter α. To investigate the source of time variation in

the GEV parameters we estimate three restricted TVP models and computed Bayes factors

relative to the unrestricted TVP model. The first model imposes the restriction that all of

the parameters (α,m, s, ξ) are constant, the second imposes the restriction that (m, s, ξ) are

constant but allows α to vary, and in the third α was constant but (m, s, ξ) are allowed to

vary.

Table 3 reports the logarithm of the Bayes factors for the three models. Three results

stand out. First, as expected, the Bayes factors strongly prefer the time varying model

relative to the constant parameter for weather damages and returns. Second, a potential

explanation for the time variation in extreme weather damages is that the distribution of

damages has not changed (that is (m, s, ξ) have remained constant) but there are simply more
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weather events (α has increased). The Bayes factors are inconsistent with this explanation.

Finally, given the posterior results for city and firm size reported in Figure 4, it is not

surprising to see that Bayes factors strongly prefer the constant parameter models to the

general TVP-GEV model. That said, the results suggest that the model with time varying

α is preferred to the model with constant parameters for firm sizes.

4 Concluding Remarks

This paper studies inference about the distribution of extremes using panel data. The

paper makes five contributions. First, it proposes tests for restrictions on the parameters

of the Generalized Extreme Value (GEV) distribution characterizing a panel of extremes

or exceedances. Second, it proposes a test for determining whether these parameters are

constant through time. In both cases the tests are designed to be valid when the number of

time periods, T and the number of extremes in each time period, k, might be small, thus

avoiding commonly used large-k and large-T approximations. Third, the paper proposes a

time varying parameter GEV model that focuses on two distinct sources of instability in the

distribution of extremes: variation in the underlying population and variation in the sample

size from which the extremes are chosen. The resulting TVP-GEV model is a hidden Markov

model with a linear Gaussian state equation but a non-Gaussian measurement equation. The

fourth contribution of the paper is to show how Bayes estimation of this nonlinear TVP-

GEV model can be readily achieved using Hamiltonian Monte Carlo methods. The final

contribution is an application of the methods to four data sets.

In the TVP-GEV model proposed here, suitably transformed versions of the GEV param-

eters evolve as Gaussian random walks. This random walk specification provides a simple

but flexible method for tracking the evolution of parameters over the sample period. That
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said, alternative specifications might be preferred in some applications — for example, some

parameters might evolve as functions of observables, follow alternative linear time series

models, or be driven by non-Gaussian shocks. It is straightforward to modify the suggested

HMC estimation approach to handle these alternatives.

The focus of this paper has been on testing for time variation and in-sample tracking of

the potentially time varying parameters. Another interesting question involves forecasting:

how likely is it that an extreme of a certain magnitude or larger will be realized at some

future date? Such questions are readily answered using the predictive distribution that arises

as a by-product of the Bayes estimation of the model, although alternatives to the random

walk evolution of parameters might be desirable in some applications.
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Notes: The figure shows weather-related disaster damages that exceed one billion ($2023) for each month

from 1980:1 through 2013:6. See Appendix A in the online appendix for a description of the data.

Figure 1: Damages from U.S. weather-related disasters that exceed one billion dollars ($2023)
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Notes: The figure shows the largest and smallest GARCH(1,1) standardized returns over non-overlapping

6-month periods. See Appendix A in the online appendix for a description of the data.

Figure 2: Largest and Smallest Standardized Daily Returns over 6 Month Periods

28



Notes: City size is population relative to total U.S. population. Firm size is employment relative to total

private U.S. employment. See Appendix A in the online appendix for a description of the data.

Figure 3: Thirty Largest Cities and Firms in the United States
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Table 1: Constant Parameter Results

MLE 95% Confidence Interval
LRξ̂-adjusted

for null:

ξ σ µ q0.9 ξ q0.9 µ = σ/ξ
µ = σ/ξ

and ξ = 1

Weather Damages 0.84 0.86 0.45 6.22 0.66 to 1.06 5.11 to 7.82 1.46 1.25

Weather Damages

(normalized)
1.00 0.87 0.90 8.25 0.80 to 1.22 6.68 to 10.61 0.01 0.02

Largest Returns 0.06 0.54 2.43 3.73 -0.04 to 0.15 3.54 to 3.99 2.27 64.8

Smallest Returns 0.28 0.68 -2.85 -4.96 0.17 to 0.41 -5.53 to -4.58 0.08 56.1

City Size 0.65 1.34 2.02 8.89 0.43 to 0.93 3.92 to 31.43 0.18 1.57

Firm Size 0.42 0.48 1.00 2.81 0.23 to 0.69 1.56 to 7.92 0.90 3.49

Notes: The 5% critical value is 1.0 for the test statistics in the final two columns. For the row labeled Smallest

Returns, the value shown in the q0.9 column is the q0.1 quantile (because smallest returns are negative).
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Table 2: ξ̂-adjusted Nyblom Test Statistic for Null Hypothesis of Constant Parameters

Application Test Statistic

Weather Damages 11.6

Weather Damages

(normalized)
4.2

Largest Returns 1.6

Smallest Returns 1.4

City Size 1.1

Firm Size 0.7

Notes: The 5% critical is 1.0 each test.
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Table 3: Log-Bayes Factors for Alternative Models of Time Variation

Application
Time-varying parameters

None α ξ, s,m

Weather Damages -55.2 -5.7 -0.8

Weather Damages

(normalized)
-20.9 -7.6 0.1

Largest Returns -9.9 -0.7 -0.6

Smallest Returns -13.5 1.6 -1.7

City Size 4.1 4.0 0.1

Firm Size 2.1 2.8 0.2

Notes: Values are the logarithm of the Bayes factor for the model relative to the model that allows time

variation in (α, ξ, s,m).
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1 Data Appendix

1.1 Weather Disaster Damages

The data are from the Billion-Dollar Weather and Climate Disaster dataset described at
https://www.ncei.noaa.gov/access/billions/. We use all of the events in the database except for droughts
and wildfires (because the duration of these events can extend for many months). The normalized data
are adjusted by the value of the real U.S. capital stock. We use the chain-type quantity index Table 1.2.
Chain-Type Quantity Indexes for Net Stock of Fixed Assets and Consumer Durable Goods from the BEA
Fixed Asset Tables. The data are annual observations from 1979-2022. We interpolate the annual series
to monthly observations from 1980:1-2022:12 and extrapolate through 2023:6 using the value from 2022:12.
Let At denote the value of the capital stock at time t and Dt denote the unadjusted value of damages. The
normalized damages are Dnorm

t = Dt/(At/A2023:6). The censoring threshold for the normalized damages is
τnormt = τ/(At/A2023:6), where τ is the censoring threshold for Dt, which is τ = $1 billion.

Figure 1 plots the damages (shown in the published article as Figure 1) along with the normalized
damages and the censoring thresholds.

1.2 Returns

We begin with value-weighted daily returns from the CRSP SP500 index available from January 2, 1926
through December 30, 2022. These returns are plotted in panel (a) of Figure 2. We fit a GARCH (1,1)
model using the full sample period and standardize the daily returns by subtracting the sample mean and
dividing by the fitted GARCH standard deviation. These standardized values are plotted in panel (b) of
Figure 2. Panels (c) and (d) (also reported as Figure 2 in the published article) are the largest and smallest
returns over non-overlapping 6-month periods.

1.3 Firm and City Size

Population values from the largest 100 cities for 1900, 1940, 1980 and 1920 are from
https://www.biggestuscities.com/. These are divided by aggregate U.S. population. Employment levels
are from Compustat for firms incorporated in the United States. These are divided by total U.S. private
employment (series USPRIV from the FRBSL FRED database).
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Figure 1: Damages and Normalized Damages

2 Computing the ξ̂-adjusted LR Critical Values

2.1 LR Statistic for k Largest Observations

The distribution of the LR statistic shown in equation (6) in the published article only depends on ξ. The
adjusted LR statistic depends on ξ̂, the MLE of ξ, with LRξ̂-adjusted= exp(a0+a1ξ̂+a2ξ̂

2
)×LR. The goal is

to find values of the parameters (a0, a1, a2) to maximize minξmin≤ξ≤ξmax
Pξ(LR

ξ̂-adjusted > 1) subject to the
constraint maxξmin≤ξ≤ξmax

Pξ(LR
ξ̂-adjusted > 1) ≤ α, where Pξ denotes the probability under ξ and α is the

level of the test. Throughout we set α = 0.05. We approximate (a0, a1, a2) as follows.
We subdivide the possible values of ξ ∈ [ξmin, ξmax] into an equal spaced grid with 10 values ξj , j =

1, . . . , 10. Here ξmin = −0.5 for the hypothesis concerning q0.9, ξmin = ε = 0.03 for the hypothesis H0 : µ =

σ/ξ, and ξmax = 1.5 in both cases. We generate N = 10, 000 independent draws (ξ̂
(l)

j ,LR
(l)
j ), l = 1, . . . , N

of the maximum likelihood estimator ξ̂ and the LR statistic for each value of ξ in the grid. The underlying
kTN independent exponential variables (cf. equation (2) in the published article) are held constant across
the 10 values of ξ in these simulations.

We construct an estimate of Pξj (LR
ξ̂-adjusted ≤ 1) as N−1

∑
l Φ(

1−LR
ξ̂-adjusted,(l)
j

h ), where Φ is the stan-
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Figure 2: Daily Returns and 6-month Extremes

dard normal CDF, h is a bandwidth parameter. (This estimate is preferred to the naive estimate,

N−1
∑

l 1[(LR
ξ̂-adjusted
j ≤ 1] because Φ(

1−LR
ξ̂-adjusted,(l)
j

h ) is a smooth function of (a0, a1, a2), and this fa-
cilitates numerical minimization.) We set the bandwidth h equal to 0.3 times the difference between the
97th and 93th percentile of the distribution of the unadjusted LRj statistic for the 5th value of ξ in the grid.

The target for Pξj (LR
ξ̂-adjusted
j ≤ 1) is 1− α. We found it useful to smooth these probabilities using the

logit transformation Ψ(p) = log( p
1−p ), and this yielded the minimization problem

min
a0,a1,a2

10∑
j=1

ℓ

Ψ

N−1
N∑
l=1

Φ

1− LR
ξ̂-adjusted,(l)
j

h

−Ψ(1− α)

 (1)

where ℓ is a loss function penalizing deviations of Ψ(N−1
∑

l Φ(
1−LR

ξ̂-adjusted,(l)
j

h )) from Ψ(1 − α). We used
the linex-loss l(x) = exp(−12x)+12x−1, where the asymmetry in the loss strongly penalizes overrejections.

After numerically solving (1), we adjust the value of a0 so that the largest null rejection probability is
exactly 5% on the grid. As a final check, we numerically explored potential overrejections for values of ξ
that fall between grid values, and found them to be within Monte Carlo error.
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2.2 LR Statistic for Exceedances

The initial level 99% confidence set for (µ, σ, ξ) is equal to

S0 = {(µ0, σ0, ξ0) : LRµ0,σ0,ξ0 < cv0.99µ0,σ0,ξ0
} ⊂ R3

where LRµ0,σ0,ξ0 = sup(µ,σ,ξ)∈Θ1
ln
∏T

t=1 fτt
(Yt|µ, σ, ξ)− ln

∏T
t=1 fτt

(Yt|µ0, σ0, ξ0) and cv0.99µ0,σ0,ξ0
is the 99th

percentile of the null distribution of LRµ0,σ0,ξ0 . Our initial goal is to draw 50 points from S0 at random.
To this end, we proceed as follows: We first compute the maximum likelihood estimator (µ̂, σ̂, ξ̂) and find
the 99.5% level critical value cv for the LR statistic of H0 : (µ, σ, ξ) = (µ0, σ0, ξ0) where (µ0, σ0, ξ0) =

(µ̂, σ̂, ξ̂). We then numerically determine µmin such that the LR statistic of H0 : (µ, σ, ξ) = (µ0, σ0, ξ0) with
(µ0, σ0, ξ0) = (µmin, σ̂, ξ̂) is equal to cv. The idea here is that cv0.99µ0,σ0,ξ0

does not vary a lot for relevant values
of (µ0, σ0, ξ0), so cv0.99µ0,σ0,ξ0

≤ cv, and µmin is smaller than what one would obtain had one used cv0.99
µmin,σ̂,ξ̂

.

The same procedure is then applied to µmax, σmin, σmax, ξmin and ξmax, with the end result of a hypercube
in R3 that contains S0. We then randomly draw values (µ0, σ0, ξ0) uniformly in this hypercube, and check
whether LRµ0,σ0,ξ0 < cv0.99µ0,σ0,ξ0

, where cv0.99µ0,σ0,ξ0
is obtained via simulation based on N = 10, 000 draws,

until we have collected 50 values for which we do not reject.
In the second step, we proceed just like in Section 2.1, except that the “grid” now consists of these 50

values.

3 Locally Best Test for the Null of Time Invariant Parameters with

Known Values

To begin consider the following generic testing problem with X ∼ f(x|ζ), X ∈ Rm, with null hypothesis
H0 : ζ = ζ0 and Ha : ζ ̸= ζ0, and interest focuses on weighted average power (WAP) for the values of ζ
under the alternative using the weighting function G. By standard arguments, the best WAP test is the
likelihood ratio test for H0 : ζ = ζ0 versus H∗

a : ζ ∼ G, that is, the test rejects for large value of the likelihood
ratio statistic LR =

∫
f(X|ζ)dG(ζ)/f(X|ζ0). Suppose that G is the normal distribution with mean ζ0 and

variance τ2H, so that under H∗
a , ζ = ζ0 + τZ with Z ∼ N (0, H). With τ2 small, ||τZ|| is small with high

probability, so ln[f(X|ζ0+τZ)/f(X|ζ0)] ≈ τZ ′S, where S denotes the score S = ∂ ln f(X|ζ)/∂ζ|ζ=ζ0
. Thus,

with τ2 small and ϕ the density of Z,

LR =

∫
f(X|ζ0 + τz)ϕ(z)dz

f(X|ζ0)

=

∫
exp[ln f(X|ζ0 + τz)− ln f(X|ζ0)]ϕ(z)dz

≈
∫

exp[τz′S]ϕ(z)dz

= EZ [exp(τZ
′S)] = exp[ 12τ

2S′HS]
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where the final equality applies the familiar formula for the moment generating function of the normal
distribution. Thus, the best local (small τ2) test of H0 versus H∗

a rejects for large values of L∗ = S′HS.
The test statistic L∗

T shown in equation (13) in the published article is an application of this result:
Let X = (X1, X2, ..., XT ), θt = (ξt, σt, µt), ζ = (θ1, θ2, ..., θT ), with ζ0 = (θ1,0, ..., θ1,0), and f(X|ζ) =∏

t f(Xt|θt). Under H∗
a assume that

θt = θ1,0 + η0 + T−1/2
t∑

j=1

ηj

where ηj ∼ iidN (0, τ2Ω). In this case, H = [(ll′ + JJ ′)⊗Ω] where l is a T × 1 vector of 1s and J is a T × T

lower triangular matrix of 1s. The resulting statistic has the form

L∗ = S′HS = L1 + L2

where

L1 =

(
T∑

t=1

St

)′

Ω

(
T∑

t=1

St

)
and

L2 =

T∑
t=1

T−1/2
T∑

j=t

Sj

′

Ω

T−1/2
T∑

j=t

Sj

 .

It is convenient to use Ω = Var(St)
−1, the inverse of the information matrix, so that L1 is recognized as the

LM test for testing that the constant parameter θ takes on the value θ1,0 and L2 is the Nyblom statistic for
testing for time variation assuming θ1 = θ1,0 is known.

4 Stan Script for the TV-GEV Model

The replication files for the published paper are available on the Review’s replication archive and at https:
//www.princeton.edu/~mwatson/publi.html. As noted in Section 3.2 of the published article, the time
varying parameter paths for the model parameters are computed using Hamilton Monte Carlo methods
implemented in Stan. For convenience, we include the Stan script for the TVP-GEV model below. The Stan
script for the TV-Exceedance model is similar and can be found in the replication files.

// Stan Script for TV-GEV model
functions {

real GEVcpdf_lpdf(real x, real mu , real sig , real xsi){
real z=(x-mu)/sig;
real tau=exp( -6.0* abs(xsi));
real lht;
if(1+ xsi*z<tau){

lht=-log(tau)/xsi -(z-(tau -1)/xsi)/tau;
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}
else{

lht=-log1p(xsi*z)/xsi;
}
return (1+xsi)*lht -log(sig);

}

real GEVpdf_lpdf(real x, real mu , real sig , real xsi){
real z=(x-mu)/sig;
real tau=exp( -6.0* abs(xsi));
real lht;
if(1+ xsi*z<tau){

lht=-log(tau)/xsi -(z-(tau -1)/xsi)/tau;
}
else{

lht=-log1p(xsi*z)/xsi;
}
return (1+xsi)*lht -log(sig)-exp(lht);

}

}

data {

real xi_min;
real xi_max;
int <lower=0> T;
int <lower=0> nobs;
matrix[nobs ,T] y;
real sg_xi;
real sg_alpha;
real sg_s;

}

parameters {

// Level values for parameters
real trans_xi_level;
real ln_s_level;
real m_level;
// Innovation standard deviations (unscaled) for random walks
real <lower =0.0, upper =5.0> g_xi;
real <lower =0.0, upper =5.0> g_alpha;
real <lower =0.0, upper =5.0> g_s;
real <lower =0.0, upper =5.0> g_m;
// Random walks
vector [T] h_xi;
vector [T] h_alpha;
vector [T] h_s;
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vector [T] h_m;

}

transformed parameters {

// set sg_m
real sg_m = exp(ln_s_level); // This preserves invariance to scale
// Scale factors for innovations
real gamma_xi = sg_xi*g_xi/sqrt(T);
real gamma_alpha = sg_alpha*g_alpha/sqrt(T);
real gamma_s = sg_s*g_s/sqrt(T);
real gamma_m = sg_m*g_m/sqrt(T);
// vector of zeros

vector [T] zeros = rep_vector (0.0,T);
// Random walks
vector [T] drw_xi = cumulative_sum(gamma_xi*h_xi)

-mean(cumulative_sum(gamma_xi*h_xi));
vector [T] drw_alpha = cumulative_sum(gamma_alpha*h_alpha)

-mean(cumulative_sum(gamma_alpha*h_alpha));
vector [T] drw_s = cumulative_sum(gamma_s*h_s)

-mean(cumulative_sum(gamma_s*h_s));
vector [T] drw_m = cumulative_sum(gamma_m*h_m)

-mean(cumulative_sum(gamma_m*h_m));
// Construct Basic Parameters
vector [T] trans_xi = trans_xi_level + drw_xi;
vector [T] ln_alpha = drw_alpha;

// note that level of ln_alpha is fixed at 0
vector [T] ln_s = ln_s_level + drw_s;
vector [T] m = m_level + drw_m;
// Transformed Parameters
vector [T] alpha = exp(ln_alpha);
vector [T] s = exp(ln_s);
// Construct GEV Parameters
vector [T] xi = xi_min + (xi_max -xi_min)*((exp(trans_xi))

./(1+ exp(trans_xi)));
vector [T] sigma = s.*( alpha.^xi);
vector [T] mu = m + (s./xi).*(( alpha .^xi) -1);

}

model {

// Priors
g_xi ~ exponential (1.0);
g_alpha ~ exponential (1.0);
g_s ~ exponential (1.0);
g_m ~ exponential (1.0);

trans_xi_level ~ normal (0.0 ,1.5);
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// Flat prior on ln_s_level and m_level (imposed in Stan)

h_xi ~ std_normal ();
h_alpha ~ std_normal ();
h_s ~ std_normal ();
h_m ~ std_normal ();

for (t in 1:T) {
for (j in 1:nobs -1) {

y[j,t] ~ GEVcpdf(mu[t],sigma[t],xi[t]);
}
y[nobs ,t] ~ GEVpdf(mu[t],sigma[t],xi[t]);

}

}
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