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Motivating Example: A Bivariate Spatial Regression

Data in Levels

Variables are measured in percentiles across the 21k zip codes



Motivating Example (ctd)



GLS Spatial Difference to Avoid Spurious Regression



Parameter Stability?

Familiar issues: Why these two states? Why states in the first place?

⇒ How to test generic null of parameter constancy in spatial regression?



Literature

Time series regression stability tests

• Discrete breaks: Chow (1960), Quandt (1960),   

• Validity under general conditions: Andrews (1993),   

• Martingale Variation: Nyblom (1989), Elliott and Müller (2006),   

• Time variation in second moments: Hansen (2000),   

Spatial regression stability tests

• Chow test (with autoregressive spatial errors): Anselin (1990)

• Local spatial regressions: Fotheringham et al. (2002, 2024) (inference assumes i.i.d. errors)



This Paper

• Nyblom (1989)-like test for spatial variation in regression coefficients

⇒ Locally best test against Lévy-Brownian motion variation in canonical model

• Valid under general conditions

— Allows for (weakly) spatially correlated, non-Gaussian errors (analogous to Andrews (1993))

— Accommodates spatially varying second moments (analogous to Hansen (2000))



Outline

1. Canonical Gaussian model and locally best test

2. Validity under general conditions

3. Monte Carlo results

4. Application to 1514 bivariate zip-code level regressions using American Community Survey (ACS)

data



Canonical Model

 =  +   + ,  = 1     

=  +  with  =  + ( − )

• ( ) ∈ R2 associated with observed location  ∈ S ⊂ R,  ≥ 1

•  ∼ N (0 1),  nonstochastic

• Hypotheses of interest

0 :  =  vs  :  6=  for some 1 ≤   ≤ 

• Impose invariance  →  +

⇒ Test is a function of OLS residuals ̂

• Best invariant test against {}=1 = {1 }=1 rejects when
P
=1 

1
 ̂ is large ⇒ no UMP test



Locally Best Test

• Maximize weighted average power

⇒ Same as maximizing power against  stochastic with p.d.f. equal to weighting function

⇒ We use

∗ :  −  = (),  = 1     

where (·) is Lévy-Brownian motion (LBM), i.e. E[()()] = 1
2
(||||+ ||||− ||− ||)

• Locally best invariant test of  = 0 against   0 rejects for large values of

∗ = −1̂0Σ̄̂

where  = diag(1     ) and Σ̄ is covariance matrix of (demeaned) LBM evaluated at

1     



Sample Realizations of LBM for  = 2

Martingale-like variation in space: (+ )− () ∼ () for  ∈ R and   ∈ R with |||| = 1



Rewriting the Locally Best Test

• With spectral decomposition Σ̄ = Λ0 we have

∗ = −1̂0Σ̄̂

=
X

=1
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• Convenient for asymptotics: truncate at largest  eigenvalues
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Eigenvectors for ACS Data



Asymptotics in General Model

• Model:  =  +  =  + ,  =  + ( − )

• Test statistic:

 =

X
=1


2
 with  = −12

X
=1

̂ = −12
X
=1

̃

• Assumptions

1. {}=1 ⊂ S ⊂ R with empirical c.d.f. →  with bounded density  on S

2. For uniformly converging  : S 7→ R, −12P
=1 () ⇒ N

³
0
R
()2Ω()()

´
and −1P

=1 
2
 ()

→ R
Ω()()() for some functions ΩΩ : S 7→ R

3.  −  = −12()



Limit Distribution of 

• From above, exploiting that  =  + ( − ),

 = −12
X
=1

̂

= −12
X
=1

̃

= −12
X
=1

̃ + −12
X
=1

̃
2
 ( − )

• Using the assumption, we get
⇒  ∼ N ( )

where  = 0 under null hypothesis, and

 ⇒  0Λ
where Λ collects the largest  eigenvalues of a covariance kernel of demeaned LBM on S



Feasible Inference

• Estimate  by spatial kernel estimator HAC estimator with elements

̂ = −1
X

=1

̂ exp(− || − ||)̂, ̂ = ̃̂

for large  ( →∞ induces consistency)



American Community Survey

• 62 socioeconomic variables (education, income, employment, race, health, marital status,   ), 5 year
averages 2018-2022, variables measured in percentiles across the 21k zip codes

⇒ 1514 bivariate regressions

• GLS difference transform applied to all variables

•  = 21 194 zip codes in 48 states + DC



Monte Carlo Simulations

• Same locations {}=1 as ACS data

• Let  ∼ G be mean-zero Gaussian × 1 vector with E[] = exp[−|| − ||]. DGPs:
1.  and  are generated by independent G processes
2.  is randomly selected from the 62 variables and  follows a G process
3. {   } are a pair of series from 1,514 bivariate regressions,  =   and  =   where

  ∼ G

• Results:
— Generally good size control even under heteroskedasticity

— Familiar relationship between HAC bandwidth  and degree of robustness against spatial corre-

lation, and a corresponding trade-off in power



Empirical Results in 1514 Bivariate Regression

Quantile (across 1514 regressions)

0.05 0.25 0.50 0.75 0.95

OLS estimates with HAC SE

|
̂
| 0.63 3.75 8.28 14.6 29.4

|̂| 0.01 0.05 0.11 0.22 0.45

Spatial Variation in 

15 p-value 0.00 0.02 0.07 0.20 0.52

∆1000km(̂
) 0.03 0.03 0.05 0.09 0.18

Notes:

• ̂ is median unbiased estimate of  in  −  ∼ () based on 15

• ∆1000km(̂
) is implied standard deviation over 1000km



Motivating Example Revisited



Estimate of Spatial Variation

⇒ Right panel exploits (approximately) jointly normal distribution of  weighted averages  and LBM

variation  −  = () with  = ̂



Conclusion

• Generalize standard time series tool of generic regression stability testing to spatial case

• Allow for spatially correlated errors and heterogeneity in second moments

• Empirical finding of widespread instability in bivariate regressions using ACS data

• Interpretability under instability?

— Coefficient no longer BLP given location (could use smoothed estimates)

— Extrapolationt to other regions highly questionable



Thank you!


