Testing Coefficient Variability in Spatial Regressions

Ulrich K. Müller and Mark W. Watson Princeton University

Munich Econometrics Workshop 2024

Motivating Example: A Bivariate Spatial Regression

Variables are measured in percentiles across the 21k zip codes

Motivating Example (ctd)

Scatter Plots and OLS estimates: Levels

GLS Spatial Difference to Avoid Spurious Regression

Parameter Stability?

 $\hat{\beta} = -0.25(0.02)$ $\hat{\beta} = -0.44(0.03)$ $\hat{\beta} = -0.18(0.07)$

Familiar issues: Why these two states? Why states in the first place?

 \Rightarrow How to test generic null of parameter constancy in spatial regression?

Literature

Time series regression stability tests

- \bullet Discrete breaks: Chow (1960), Quandt (1960), \ldots
- Validity under general conditions: Andrews (1993), ...
- Martingale Variation: Nyblom (1989), Elliott and Müller (2006), ...
- Time variation in second moments: Hansen (2000), ...

Spatial regression stability tests

- Chow test (with autoregressive spatial errors): Anselin (1990)
- Local spatial regressions: Fotheringham et al. (2002, 2024) (inference assumes i.i.d. errors)

This Paper

- Nyblom (1989)-like test for spatial variation in regression coefficients
	- ⇒ Locally best test against Lévy-Brownian motion variation in canonical model
- Valid under general conditions
	- Allows for (weakly) spatially correlated, non-Gaussian errors (analogous to Andrews (1993))
	- Accommodates spatially varying second moments (analogous to Hansen (2000))

Outline

- 1. Canonical Gaussian model and locally best test
- 2. Validity under general conditions
- 3. Monte Carlo results
- 4. Application to 1514 bivariate zip-code level regressions using American Community Survey (ACS) data

Canonical Model

$$
y_l = x_l \beta_l + \ldots + u_l, \quad l = 1, \ldots, n
$$

= $x_l \beta + e_l$ with $e_l = u_l + x_l (\beta_l - \beta)$

- \bullet $(y_l, x_l) \in \mathbb{R}^2$ associated with observed location $s_l \in \mathcal{S} \subset \mathbb{R}^d$, $d \geq 1$
- $u_l \sim \text{iidN}(0, 1)$, x_l nonstochastic
- Hypotheses of interest

$$
H_0: \beta_l = \beta \quad \text{vs} \quad H_a: \beta_l \neq \beta_\ell \text{ for some } 1 \leq l, \ell \leq n
$$

• Impose invariance $Y \to Y + Xb$

 \Rightarrow Test is a function of OLS residuals \hat{e}_l

 \bullet Best invariant test against $\{\beta_l\}_{l=1}^n=\{\beta_l^1\}_{l=1}^n$ rejects when $\sum_{l=1}^n\beta_l^1x_l\hat{e}_l$ is large $\;\Rightarrow$ no UMP test

Locally Best Test

- Maximize weighted average power
	- \Rightarrow Same as maximizing power against β_l stochastic with p.d.f. equal to weighting function \Rightarrow We use

$$
H_a^*: \beta_l - \beta = \kappa L(s_l), l = 1, \ldots, n
$$

where $L(\cdot)$ is Lévy-Brownian motion (LBM), i.e. $\mathbb{E}[L(s)L(r)]=\frac{1}{2}\left(||s||+||r||-||s-r||\right)$

• Locally best invariant test of $\kappa = 0$ against $\kappa > 0$ rejects for large values of

$$
\xi^* = n^{-1} \hat{e}' D_x \bar{\Sigma}_L D_x \hat{e}
$$

where $D_x = \text{diag}(x_1, \ldots, x_n)$ and $\bar{\Sigma}_L$ is covariance matrix of (demeaned) LBM evaluated at s_1,\ldots,s_n

Sample Realizations of LBM for $d = 2$

Martingale-like variation in space: $L(a + bs) - L(a) \sim W(s)$ for $s \in \mathbb{R}$ and $a, b \in \mathbb{R}^d$ with $||b|| = 1$

Rewriting the Locally Best Test

• With spectral decomposition $\bar{\Sigma}_L=R\Lambda R'$ we have

$$
\xi^* = n^{-1} \hat{e}' D_x \overline{\Sigma}_L D_x \hat{e}
$$

=
$$
\sum_{j=1}^n \lambda_j \left(n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l \right)^2
$$

=
$$
\sum_{j=1}^n \lambda_j Y_j^2 \text{ with } Y_j = n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l
$$

• Convenient for asymptotics: truncate at largest q eigenvalues

$$
\xi = \sum_{j=1}^{q} \lambda_j Y_j^2 \approx \sum_{j=1}^{n} \lambda_j Y_j^2 = \xi^*
$$

Eigenvectors for ACS Data

 $\!$ tenth eigenvector

Asymptotics in General Model

• Model:
$$
y_l = x_l \beta_l + u_l = x_l \beta + e_l
$$
, $e_l = u_l + x_l (\beta_l - \beta)$

• Test statistic:

$$
\xi_n = \sum_{j=1}^q \lambda_j Y_{n,j}^2 \quad \text{with} \quad Y_{n,j} = n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l = n^{-1/2} \sum_{l=1}^n \tilde{r}_{j,l} x_l e_l
$$

- Assumptions
	- $1. \ \ \{s_l\}_{l=1}^n \subset \mathcal{S} \subset \mathbb{R}^d$ with empirical c.d.f. $\,G_n \rightarrow G$ with bounded density g on \mathcal{S}
	- 2. For uniformly converging $h_n: \mathcal{S} \mapsto \mathbb{R}$, $n^{-1/2} \sum_{l=1}^n h_n(s_l) x_l u_l \Rightarrow \mathcal{N}\left(0, \int h(s)^2 \Omega_{xu}(s) dG(s)\right)$ and $n^{-1}\sum_{l=1}^nx_l^2h(s_l)\stackrel{p}{\to}\int\Omega_{xx}(s)h(s)dG(s)$ for some functions $\Omega_{xu},\Omega_{xx}:\mathcal{S}\mapsto\mathbb{R}$

3. $\beta_l - \beta = n^{-1/2}b(s_l)$

Limit Distribution of ξ

• From above, exploiting that $e_l = u_l + x_l(\beta_l - \beta)$,

$$
Y_{n,j} = n^{-1/2} \sum_{l=1}^{n} r_{j,l} x_l \hat{e}_l
$$

= $n^{-1/2} \sum_{l=1}^{n} \tilde{r}_{j,l} x_l e_l$
= $n^{-1/2} \sum_{l=1}^{n} \tilde{r}_{j,l} x_l u_l + n^{-1/2} \sum_{l=1}^{n} \tilde{r}_{j,l} x_l^2 (\beta_l - \beta)$

• Using the assumption, we get

$$
Y_n \Rightarrow Y \sim \mathcal{N}(B, V)
$$

where $B = 0$ under null hypothesis, and

$$
\xi \Rightarrow Y' \Lambda_q Y
$$

where Λ_q collects the largest q eigenvalues of a covariance kernel of demeaned LBM on $\mathcal S$

Feasible Inference

 \bullet Estimate V by spatial kernel estimator HAC estimator with elements

$$
\hat{V}_{i,j} = n^{-1}\sum_{l,\ell=1}^n \hat{\upsilon}_{l,i} \exp(-c_V ||s_l-s_\ell||) \hat{\upsilon}_{\ell,j}, \quad \hat{\upsilon}_{l,j} = \tilde{r}_{j,l} x_l \hat{e}_l
$$

for large c_V $(c_V \rightarrow \infty$ induces consistency)

American Community Survey

- \bullet 62 socioeconomic variables (education, income, employment, race, health, marital status, \ldots), 5 year averages 2018-2022, variables measured in percentiles across the 21k zip codes
	- \Rightarrow 1514 bivariate regressions
- GLS difference transform applied to all variables
- $n = 21,194$ zip codes in 48 states + DC

Monte Carlo Simulations

- \bullet Same locations $\{s_l\}_{l=1}^n$ as ACS data
- Let $\eta \sim \mathcal{G}_c$ be mean-zero Gaussian $n \times 1$ vector with $\mathbb{E}[\eta_l \eta_\ell] = \exp[-c ||s_l s_\ell||]$. DGPs:
	- 1. x_l and u_l are generated by independent \mathcal{G}_c processes
	- 2. x_l is randomly selected from the 62 variables and u_l follows a \mathcal{G}_c process
	- 3. $\{y^o_l,x^o_l\}$ are a pair of series from 1,514 bivariate regressions, $x_l=x^o_l\eta_{x,l}$ and $u_l=y^o_l\eta_{u,l}$ where $\eta_x, \eta_u \sim \textit{iidG}_c$
- Results:
	- Generally good size control even under heteroskedasticity
	- $-$ Familiar relationship between HAC bandwidth c_V and degree of robustness against spatial correlation, and a corresponding trade-off in power

Empirical Results in 1514 Bivariate Regression

Notes:

- $\hat{\kappa}^{MU}$ is median unbiased estimate of κ in $\beta_l \beta \sim \kappa L(s_l)$ based on ξ_{15}
- $\sigma_{\Lambda^{1000{\rm km}}}(\hat{\kappa}^{MU})$ is implied standard deviation over 1000km

Motivating Example Revisited

Estimate of Spatial Variation

 \Rightarrow Right panel exploits (approximately) jointly normal distribution of q weighted averages Y_n and LBM variation $\beta_l - \beta = \kappa L(s_l)$ with $\kappa = \hat{\kappa}^{MU}$

Conclusion

- Generalize standard time series tool of generic regression stability testing to spatial case
- Allow for spatially correlated errors and heterogeneity in second moments
- Empirical finding of widespread instability in bivariate regressions using ACS data
- Interpretability under instability?
	- Coefficient no longer BLP given location (could use smoothed estimates)
	- Extrapolationt to other regions highly questionable

Thank you!