Testing Coefficient Variability in Spatial Regressions

Ulrich K. Müller and Mark W. Watson Princeton University

Munich Econometrics Workshop 2024

Motivating Example: A Bivariate Spatial Regression

Variables are measured in percentiles across the 21k zip codes

Motivating Example (ctd)

Scatter Plots and OLS estimates: Levels

GLS Spatial Difference to Avoid Spurious Regression

Parameter Stability?

 $\hat{\beta} = -0.25 \ (0.02)$ $\hat{\beta} = -0.44 \ (0.03)$ $\hat{\beta} = -0.18 \ (0.07)$

Familiar issues: Why these two states? Why states in the first place?

 \Rightarrow How to test generic null of parameter constancy in spatial regression?

Literature

Time series regression stability tests

- Discrete breaks: Chow (1960), Quandt (1960), ...
- Validity under general conditions: Andrews (1993), ...
- Martingale Variation: Nyblom (1989), Elliott and Müller (2006), ...
- Time variation in second moments: Hansen (2000), ...

Spatial regression stability tests

- Chow test (with autoregressive spatial errors): Anselin (1990)
- Local spatial regressions: Fotheringham et al. (2002, 2024) (inference assumes i.i.d. errors)

This Paper

- Nyblom (1989)-like test for spatial variation in regression coefficients
 - \Rightarrow Locally best test against Lévy-Brownian motion variation in canonical model
- Valid under general conditions
 - Allows for (weakly) spatially correlated, non-Gaussian errors (analogous to Andrews (1993))
 - Accommodates spatially varying second moments (analogous to Hansen (2000))

Outline

- 1. Canonical Gaussian model and locally best test
- 2. Validity under general conditions
- 3. Monte Carlo results
- 4. Application to 1514 bivariate zip-code level regressions using American Community Survey (ACS) data

Canonical Model

$$y_l = x_l\beta_l + \ldots + u_l, \quad l = 1, \ldots, n$$

= $x_l\beta + e_l$ with $e_l = u_l + x_l(\beta_l - \beta)$

- $(y_l, x_l) \in \mathbb{R}^2$ associated with observed location $s_l \in \mathcal{S} \subset \mathbb{R}^d$, $d \geq 1$
- $u_l \sim iid\mathcal{N}(\mathbf{0}, \mathbf{1})$, x_l nonstochastic
- Hypotheses of interest

$$H_0: \beta_l = \beta$$
 vs $H_a: \beta_l \neq \beta_\ell$ for some $1 \le l, \ell \le n$

• Impose invariance $Y \rightarrow Y + Xb$

 \Rightarrow Test is a function of OLS residuals \hat{e}_l

• Best invariant test against $\{\beta_l\}_{l=1}^n = \{\beta_l^1\}_{l=1}^n$ rejects when $\sum_{l=1}^n \beta_l^1 x_l \hat{e}_l$ is large \Rightarrow no UMP test

Locally Best Test

- Maximize weighted average power
 - ⇒ Same as maximizing power against β_l stochastic with p.d.f. equal to weighting function ⇒ We use

$$H_a^*$$
: $\beta_l - \beta = \kappa L(s_l)$, $l = 1, \ldots, n$

where $L(\cdot)$ is Lévy-Brownian motion (LBM), i.e. $\mathbb{E}[L(s)L(r)] = \frac{1}{2}(||s|| + ||r|| - ||s - r||)$

• Locally best invariant test of $\kappa = 0$ against $\kappa > 0$ rejects for large values of

$$\xi^* = n^{-1}\hat{e}' D_x \bar{\Sigma}_L D_x \hat{e}$$

where $D_x = \text{diag}(x_1, \ldots, x_n)$ and $\overline{\Sigma}_L$ is covariance matrix of (demeaned) LBM evaluated at s_1, \ldots, s_n

Sample Realizations of LBM for d = 2

Martingale-like variation in space: $L(a + bs) - L(a) \sim W(s)$ for $s \in \mathbb{R}$ and $a, b \in \mathbb{R}^d$ with ||b|| = 1

Rewriting the Locally Best Test

• With spectral decomposition $\bar{\Sigma}_L = R \Lambda R'$ we have

$$\begin{aligned} \xi^* &= n^{-1} \hat{e}' D_x \bar{\Sigma}_L D_x \hat{e} \\ &= \sum_{j=1}^n \lambda_j \left(n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l \right)^2 \\ &= \sum_{j=1}^n \lambda_j Y_j^2 \quad \text{with} \quad Y_j = n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l \end{aligned}$$

• Convenient for asymptotics: truncate at largest q eigenvalues

$$\xi = \sum_{j=1}^{q} \lambda_j Y_j^2 \quad \approx \quad \sum_{j=1}^{n} \lambda_j Y_j^2 = \xi^*$$

Eigenvectors for ACS Data

tenth eigenvector

Asymptotics in General Model

• Model:
$$y_l = x_l\beta_l + u_l = x_l\beta + e_l$$
, $e_l = u_l + x_l(\beta_l - \beta)$

• Test statistic:

$$\xi_n = \sum_{j=1}^q \lambda_j Y_{n,j}^2 \quad \text{with} \quad Y_{n,j} = n^{-1/2} \sum_{l=1}^n r_{j,l} x_l \hat{e}_l = n^{-1/2} \sum_{l=1}^n \tilde{r}_{j,l} x_l e_l$$

- Assumptions
 - 1. $\{s_l\}_{l=1}^n \subset S \subset \mathbb{R}^d$ with empirical c.d.f. $G_n \to G$ with bounded density g on S
 - 2. For uniformly converging $h_n : S \mapsto \mathbb{R}$, $n^{-1/2} \sum_{l=1}^n h_n(s_l) x_l u_l \Rightarrow \mathcal{N}\left(0, \int h(s)^2 \Omega_{xu}(s) dG(s)\right)$ and $n^{-1} \sum_{l=1}^n x_l^2 h(s_l) \xrightarrow{p} \int \Omega_{xx}(s) h(s) dG(s)$ for some functions $\Omega_{xu}, \Omega_{xx} : S \mapsto \mathbb{R}$

3. $\beta_l - \beta = n^{-1/2}b(s_l)$

Limit Distribution of ξ

• From above, exploiting that $e_l = u_l + x_l(\beta_l - \beta)$,

$$Y_{n,j} = n^{-1/2} \sum_{l=1}^{n} r_{j,l} x_l \hat{e}_l$$

= $n^{-1/2} \sum_{l=1}^{n} \tilde{r}_{j,l} x_l e_l$
= $n^{-1/2} \sum_{l=1}^{n} \tilde{r}_{j,l} x_l u_l + n^{-1/2} \sum_{l=1}^{n} \tilde{r}_{j,l} x_l^2 (\beta_l - \beta)$

• Using the assumption, we get

$$Y_n \Rightarrow Y \sim \mathcal{N}(B, V)$$

where B = 0 under null hypothesis, and

$$\xi \Rightarrow Y' \Lambda_q Y$$

where Λ_q collects the largest q eigenvalues of a covariance kernel of demeaned LBM on S

Feasible Inference

 $\bullet\,$ Estimate V by spatial kernel estimator HAC estimator with elements

$$\hat{V}_{i,j} = n^{-1} \sum_{l,\ell=1}^{n} \hat{v}_{l,i} \exp(-c_V ||s_l - s_\ell||) \hat{v}_{\ell,j}, \quad \hat{v}_{l,j} = \tilde{r}_{j,l} x_l \hat{e}_l$$

for large c_V ($c_V \rightarrow \infty$ induces consistency)

American Community Survey

- 62 socioeconomic variables (education, income, employment, race, health, marital status, . . .), 5 year averages 2018-2022, variables measured in percentiles across the 21k zip codes
 - \Rightarrow 1514 bivariate regressions
- GLS difference transform applied to all variables
- n = 21, 194 zip codes in 48 states + DC

Monte Carlo Simulations

- Same locations $\{s_l\}_{l=1}^n$ as ACS data
- Let $\eta \sim \mathcal{G}_c$ be mean-zero Gaussian $n \times 1$ vector with $\mathbb{E}[\eta_l \eta_\ell] = \exp[-c||s_l s_\ell||]$. DGPs:

1. x_l and u_l are generated by independent \mathcal{G}_c processes

- 2. x_l is randomly selected from the 62 variables and u_l follows a \mathcal{G}_c process
- 3. $\{y_l^o, x_l^o\}$ are a pair of series from 1,514 bivariate regressions, $x_l = x_l^o \eta_{x,l}$ and $u_l = y_l^o \eta_{u,l}$ where $\eta_x, \eta_u \sim iid\mathcal{G}_c$
- Results:
 - Generally good size control even under heteroskedasticity
 - Familiar relationship between HAC bandwidth c_V and degree of robustness against spatial correlation, and a corresponding trade-off in power

Empirical Results in 1514 Bivariate Regression

	Quantile (across 1514 regressions)				
	0.05	0.25	0.50	0.75	0.95
	OLS estimates with HAC SE				
$ t_{\hat{\beta}} $	0.63	3.75	8.28	14.6	29.4
$ \hat{eta} $	0.01	0.05	0.11	0.22	0.45
	Spatial Variation in eta				
ξ_{15} p-value	0.00	0.02	0.07	0.20	0.52
$\sigma_{oldsymbol{\Delta}^{1000 extsf{km}}}(\hat{\kappa}^{MU})$	0.03	0.03	0.05	0.09	0.18

Notes:

- $\hat{\kappa}^{MU}$ is median unbiased estimate of κ in $\beta_l \beta \sim \kappa L(s_l)$ based on ξ_{15}
- $\sigma_{\Lambda^{1000 \text{km}}}(\hat{\kappa}^{MU})$ is implied standard deviation over 1000 km

Motivating Example Revisited

Estimate of Spatial Variation

 \Rightarrow Right panel exploits (approximately) jointly normal distribution of q weighted averages Y_n and LBM variation $\beta_l - \beta = \kappa L(s_l)$ with $\kappa = \hat{\kappa}^{MU}$

Conclusion

- Generalize standard time series tool of generic regression stability testing to spatial case
- Allow for spatially correlated errors and heterogeneity in second moments
- Empirical finding of widespread instability in bivariate regressions using ACS data
- Interpretability under instability?
 - Coefficient no longer BLP given location (could use smoothed estimates)
 - Extrapolationt to other regions highly questionable

Thank you!