Performance Impact of Data Compression on
Virtual Private Network Transactions

John P. McGregor and Ruby B. Lee
Department of Electrical Engineering
Princeton University
{mcgregor, rblee}@ee.princeton.edu

Abstract

Virtual private networks (VPNs) allow two or more
parties to communicate securely over a public network.
Using cryptographic algorithms and protocols, VPNs
provide security services such as confidentiality, host
authentication and data integrity. The computation
required to provide adequate security, however, can
significantly degrade performance. In this paper, we
characterize the extent to which data compression can
alleviate this performance problem in a VPN implemented
with the IP Security Protocol (IPsec).

We use a system model for IPsec transactions to derive
an inequality that specifies the conditions required for
data compression to improve performance. We generate
performance results for many combinations of network
types, data types, packet sizes, and encryption,
authentication and compression algorithms. We find that
compression usually improves performance when using
10 Mbps or slower networks, but compression only
improves performance in systems with 100 Mbps or 1
Gbps networks when using computationally intensive
encryption algorithms.

1. Introduction

As Internet usage grows exponentially, network
security issues become increasingly important. Using a
virtual private network (VPN), multiple hosts can
communicate securely over a public network. The details
of VPN protocols vary, but most consist of two major
steps: the handshake and bulk data encryption and
authentication. The VPN is established during the
handshake step. This step involves protocol and
algorithm negotiation, authentication of hosts, and secret
key exchanges between the hosts. The hosts can then
communicate privately by encrypting and authenticating
all of the data that travels over the public network.

The IP Security Protocol (IPsec) can be used to
implement encryption and message authentication in

0-7695-0912-6/00 $10.00 © 2000 [EEE

virtual private networks in a vendor-independent,
application-invisible manner [11]. The encryption and
message authentication services provided by IPsec,
however, require significant computation time.
Consequently, IPsec can degrade performance when
compared to unsecured transmissions.

In other work, researchers' have improved the
performance of secure network transactions using a
variety of techniques. By adding new instructions to
conventional instruction set architectures, the number of
instructions in software implementations of cryptographic
algorithms can be significantly reduced [22]. In addition,
the computation associated with many cryptographic
protocols is highly parallelizable. When performing
encryption or message authentication, a multiprocessor
system can achieve nearly linear speedup by assigning
individual packets or connections to single processing
elements [15], [16].

In this paper, we investigate the performance benefit of
compressing IP packet payloads when using IPsec to
implement a virtual private network. We restrict our
investigation to the performance impact of compression
on bulk data encryption and message authentication. Data
compression does not improve the performance of the
algorithms and protocols involved in the handshake step.

The IP Payload Compression Protocol (IPComp)
employs data compression algorithms to reduce the size of
packet payloads at the IP layer [21]. This size reduction
decreases the time required to transmit IP packets by
reducing the amount of information that is physically
transferred over the network. In addition, IPComp can
decrease the execution times of the encryption and
authentication algorithms by reducing the amount of
information to be encrypted and authenticated. IPComp
does not always improve performance, however. The data
compression algorithms used by IPComp consume a
significant number of clock cycles. As a result,
compressing the IP packet payload may increase the total
time needed to complete a particular transaction, and
therefore IPComp can degrade performance.

Measuring the actual performance of VPN transactions
is complicated and time-consuming and does not reveal

how individual components of the transactions -affect
performance. To show the dependence of performance on
different algorithm and system parameters, we model a
virtual private network between two parties. This model
allows us to easily change parameters such as the
encryption algorithm and network speed and observe the
effects. Using speedup equations that describe the
performance impact of compression, we derive an
inequality that specifies the conditions required for
compression to improve performance in the model. This
inequality depends on several parameters such as network
bandwidth, packet payload sizes, algorithm throughputs,
and compression ratio. By measuring the values of these
parameters, we can predict whether compression will
improve performance in a given system. We obtain
empirical performance results by executing the security
and compression algorithms on a single machine that
contains one 367 MHz HP PA-8500 processor.

The paper is organized as follows. In Section 2, we
discuss our system model. Section 3 discusses the details
of IPsec, and Section 4 explores the performance cost of
using IPsec. In Section 5, we describe IPComp and
investigate the compressibility and throughput achieved
by different compression algorithms. In Section 6, we
present speedup equations for calculating performance
and derive inequalities that predict when compression will
improve performance. In Section 7, we present and
analyze experimental performance results of combining
IPComp and IPsec. We summarize and discuss directions
for future work in Section 8.

2. System Model

When combining IPComp with IPsec, the performance
depends on the characteristics of the system. For
example, the time needed for an individual to retrieve
banking account information over the Internet consists of
three major components. These components include the
computational time required by the bank’s servers to
prepare the IP packets, the time needed to physically
transmit the IP packets, and the computational time
required by the individual’s computer to interpret the
packets. The prepare packet operation consists of the
procedures such as encryption and hash computation
required to prepare the packet for secure transmission.
The interpret packet operation consists of the procedures
such as decryption and hash verification required to
extract the contents of the packet upon receipt. As we
will explain in Section 3, hash computation and
verification are used to perform message authentication.
We describe encryption and decryption in Section 3, and
we describe compression and decompression in Section 5.

The system model includes a sender, a network, and a
receiver, as shown in Figure 1. Such a system can consist

501

of multiple processors on both the receiver and sender
ends, and the packets may pass through several gateways
and network types before reaching their final destination.
One approach to modeling such a system would be to treat
the computation and transmission segments as a pipeline.
In a pipelined model, the performance would depend on
the most time-consuming segment. In this paper,
however, we measure the performance in terms of total
latency. More specifically, we are concerned with the
total amount of time required by all computation and
network resources to prepare, transmit, and interpret
packets. We investigate the extent to which IPComp
increases or decreases the total amount of time required to
complete these tasks. The performance measure,
therefore, is based upon the time needed to serially
compress, encrypt, hash compute, transmit, hash verify,
decrypt, and decompress.

3. IP Security Protocol

The IP Security Protocol (IPsec) provides a variety of
security services at the IP layer [11]. IPsec confidentiality
and message authentication services are implemented
using the Encapsulating Security Payload and the
Authentication Header. = The Encapsulating Security
Payload (ESP) provides for confidentiality of the IP
packet payload wusing symmetric key encryption
algorithms [10]. Both the Authentication Header (AH)
and ESP insure the authenticity as well as the integrity of
the IP packet payload using symmetric key encryption
algorithms or secret-keyed one-way hash functions [9],
[10]. In addition, AH provides protection against IP
address spoofing. IPsec allows ESP and AH to be applied
to IP packets either alone or in combination with each
other [11].

Requests for Comments (RFCs) describing the IPsec
protocols include instructions for integration in both IPv4
and IPv6. Only minor differences exist between the IPsec
integration procedures for the two IP versions, and we
discuss the algorithms, protocols, and procedures as
specified for IPv6 in this paper.

Sender Receiver
1. Compress . 5. Verify Hash
2_ Encrypt 4. Transmlt Packet 6 Decrypt

over Public Network

3. Compute Hash 7. Decompress

Figure 1. System model

3.1. IP Encapsulating Security Payload

ESP is used to provide confidentiality, data origin
authentication, connectionless integrity, and anti-replay
service (a form of partial sequence integrity) [10]. ESP
employs symmetric-key encryption algorithms such as
RCS5 and 3DES to provide confidentiality. ESP uses
keyed hash algorithms such as SHA-1 and MDS to
provide message authentication and anti-replay service.

Original Packet Modified Packet
IP Header IP Header
Extension Headers ESP Extension Headers

) > (minus Destination
Upper Layer Header '.\“""'-. Options Header)
ESP Header
ULP Payload
ESP Payload
Data
encrypted
authenticated
ESP Trailer
ESP Authentication
Data

Figure 2. ESP in IPv6

ESP transforms IPv6 packets as illustrated in Figure 2
[10]. The original IPv6 packet depicted in Figure 2
consists of 4 components [4]. The IP header is the
essential first component of every IPv6 packet. Following
the IP header, the packet contains a variable number of
Extension headers. These headers include (but are not
limited to) the Routing header, the Fragmentation header,
and the ESP header. The Upper Layer header
immediately follows the Extension headers and is used by
the protocol immediately above IPv6 (e.g., TCP, UDP,
and ICMP). Last, the ULP (Upper Layer Protocol)
Payload consists of the data to be sent and received by the
ULP. The ESP header is inserted directly preceding the
Destination Options header, if it exists. If a Destination
Options header does not exist, the ESP header is inserted
immediately preceding the ULP header and payload.

The first field in the ESP header consists of the
Security Parameters Index (SPI), which, in conjunction
with the IP destination and the security protocol, specifies
the Security Association for the packet. The Security
Association (SA) indicates which algorithms and modes
of operation are being used to perform the encryption and
authentication (see Section 3.3). The second field in the
ESP header consists of the Sequence Number, which is a

502

monotonically increasing counter value that prevents
replay attacks (if authentication is employed).

The encrypted data block directly follows the ESP
header. This block consists of at most three components:
the initialization vector (IV), the ESP payload data, and
the ESP trailer. The ESP Authentication Data field
follows the ESP Trailer. This field contains a variable-
length Integrity Check Value (ICV) that is computed over
the ESP header, the ESP payload data and the ESP trailer.
The ICV is calculated using either a secret-keyed hash
algorithm or a symmetric key encryption algorithm.

Original Packet Modified Packet
IP Header f IP Header
Extension Headers AH Extension Headers

> i

Upper Layer Header
PP Y Authentication
Header (AH)
ULP Payload Extension Headers
n
Upper Layer Header
authenticated <

ULP Payload

Figure 3. AH in IPv6

3.2. IP Authentication Header

The IP Authentication Header (AH) provides
authentication, protection against replay attacks, and
connectionless integrity for IP packets [9]. AH transforms
IPv6 packets as illustrated in Figure 3 [9]. The original
packet is constructed exactly as described in Section 3.1.
As shown in Figure 3, the AH should be inserted
immediately following Extension Headers 1 and
immediately preceding Extension Headers II. Extension
Headers I includes the Hop-by-Hop Options header, the
Routing header, and the Fragment header. Extension
Headers II includes the ESP header and the Destination
Options header. In IPv6, the Authentication Header is
also classified as an Extension header. IP packets are not
required to contain any Extension headers [4].

The Sequence Number in the AH consists of a
monotonically increasing counter value that is used to
prevent replay attacks. Furthermore, the Authentication
Data field contains the Integrity Check Value (ICV) for
the packet. The ICV is the output of the chosen

authentication algorithm computed over the entire IP
packet.

3.3. Encryption Algorithms

Several symmetric key encryption algorithms are
defined for use in ESP [18]. In this study, we use two
ciphers in CBC mode: RC5-CBC and 3DES-EDE-CBC.
CBC, which stands for Cipher Block Chaining, is a mode
of operation that provides more security than the ECB
(Electronic Code Book) mode of operation, which is
easier to implement [20].

DES, which is an acronym for Data Encryption
Standard, is a symmetric-key block cipher that uses a 56-
bit key to encrypt 64-bit blocks [20]. Triple DES
(referred to as 3DES) provides more security than DES by
encrypting a single block three times (with DES) using
two or three different 56-bit keys [20]. We implement
3DES in EDE (encrypt-decrypt-encrypt) mode, as
prescribed in [18]. To encrypt a block of data, we encrypt
with the first key, then decrypt with the second key, and
then encrypt with the third key. To decrypt a block of
data, we decrypt with the third key, encrypt with the
second key, and then decrypt with the first key. We apply
CBC mode using the outer chaining technique as
described in [20]. 3DES is cryptographically twice as
strong as DES, but 3DES takes nearly three times as much
computational time as DES to encrypt or decrypt blocks.

RCS5 is a symmetric key block cipher that is patented
by RSA Data Security, Inc. [20]. RC5 can operate over
different block sizes and key lengths; in this study we use
a block size of 64 bits and a key length of 128 bits. We
implement RC5 in CBC mode as described in {2]. RCS5 is
considered to be one of the fastest secure symmetric-key
block ciphers, whereas 3DES is one of the slowest.

3.4. Authentication Algorithms

Two authentication algorithms that are defined for use
with AH and ESP are HMAC-MDS5 and HMAC-SHA-1
[91, [10]. In this study, we shall evaluate the performance
of both of these algorithms. HMAC is a mechanism that
provides message authentication in which an iterative
cryptographic hash function is used with a secret key [12].

MD5 is a cryptographic hash function that accepts
plaintext blocks of size 64 bytes and outputs a 16-byte
authentication value [13]. SHA-1, a government standard,
is a cryptographic hash function that accepts 64-byte
plaintext blocks and outputs a 20-byte authentication
value [14]. SHA-1 is considered to be a cryptographically
superior hash function, but MDS is faster {12].

503

3.5. Implementing ESP and AH

When combining ESP and AH, the AH header directly
precedes the ESP header in the modified IP packet. Since
AH authenticates more data in an IP packet than the
authentication services in ESP, we always use AH to
perform authentication in this study; we only use ESP to
perform encryption. In addition, hash computation and
hash verification are equivalent operations: the sender and
the receiver execute the same hash algorithm over
identical keys and identical packets.

It is possible for ESP and AH to specify NULL for the
encryption or authentication algorithms. When using the
NULL algorithm, we treat the packet as if the protocol
were not being employed at all. This policy reduces
computation time by eliminating useless protocol
processing.

4. Performance Impact of IPsec

In this section, we explore the performance costs of
employing IPsec procedures. We obtain data concerning
the throughput of IPsec procedures by implementing and
executing the cryptographic algorithms on a HP Visualize
C360 workstation. This workstation consists of a 64-bit
367 MHz HP PA-8500 processor with 1.5 MB of on-chip
L1 cache and 128 MB of RAM. We implemented all four
of the authentication and encryption algorithms in C. We
use the HPUX C compiler (cc) to build the modules, and
we employ full compiler and linker optimizations (i.e.,
+04). We obtain the timing results for all of the
authentication and encryption procedures using the UNIX
clock() function. In order to avoid imprecision
resulting from the relatively high granularity of the
clock() output, we execute the IPsec procedures
thousands of times. We obtain the final timing result by
dividing the total time needed to complete the thousands
of iterations by the total number of iterations executed.

4.1. Network Types and Payload Sizes

We consider the following network types: 56 kbps
(phone line modem), 1.54 Mbps (T1, wireless), 10 Mbps
(Ethernet), 100 Mbps (Ethernet), and 1 Gbps (Ethernet).
Under ideal conditions, Ethernet networks can achieve a
channel efficiency of over 90% [23]. As the number of
network users increases, however, the channel efficiency
drops to roughly 82% [23]. In this study, we assume all
the network connections sustain 80% of their maximum
throughput.

We evaluate the performance of the IPsec procedures
using 3 ULP payload sizes: 1 kilobyte, 4 kilobytes, and 63
kilobytes. TCP, which stands for Transmission Control

Protocol, is a connection-based protocol that employs a
20-byte payload header [19]. We assume that all ULP
payloads are TCP payloads. The maximum size of an
IPv6 packet minus the IP header is 64 KB, so the 63 KB
payload size represents the largest possible payload size
but leaves room for ESP, AH, IPComp, and TCP headers.
We set the network maximum transmission unit (MTU) to
be 1280 bytes, the minimum MTU allowed in IPv6, and
we fragment packets accordingly [4]. We assume that all
the original IP packets solely consist of a 40-byte IPv6
header, an 8-byte fragmentation header (if necessary), a
20-byte TCP header, and a variable length TCP payload.
The use of additional headers or a transport protocol other
than TCP should not significantly affect the performance
results.

Table 1. Performance of encryption and
authentication algorithms (Mbps)

Algorithm Payload Sizes
Name 1K 4K 63K Average
MD5 229 299 332 287
SHA-1 214 274 302 263
RC5 96 97 96 96
3DES 28 28 28 28

4.2. Performance Results and Analysis

The execution time of the encryption and
authentication algorithms is a function of the input size
and is independent of the statistical characteristics of the
input data. Hence, for a given processing platform, the
throughputs of the encryption and authentication
algorithms are constant. Since hash computation and hash
verification are equivalent operations, they will consume
the same amount of time. Furthermore, DES is a Feistel
cipher, so the encryption speed of 3DES is equivalent to
the decryption speed of 3DES. Although RCS is not a
Feistel cipher, the speed of the encryption procedure is
roughly the same as the speed of the decryption
procedure.

We summarize the throughput of the encryption and
authentication algorithms for the three packet sizes in

Table 1. The algorithms are executed in the modes of
operation described in Section 3. From Table 1, we see
that the throughput of the authentication algorithms is
much higher than that of the encryption algorithms.
Furthermore, MD5 runs slightly faster than SHA-1 and
RCS runs three times as fast as 3DES.

We now calculate the performance degradation caused
by different combinations of these algorithms. As
described in Section 2, the system model consists of the
computation required to serially compress, encrypt,
compute the hash, verify the hash, decrypt, and
decompress the IP packet. We quantitatively determine
the level of performance degradation by calculating the
speedup S as follows.

_ Tyer
Tp +Tye + Tgener + Ty + T

In this equation, T; NET» T SECNET TE, T; HC» THV, and T, D
represent the original packet transmission time, the
encrypted/authenticated packet transmission time, the
encryption time, the hash computation time, the hash
verification time, and the decryption time, respectively.
Tner may not equal Tsgoner because of the headers that are
added to the encrypted/authenticated packet. Values of S
close or equal to 1.00 indicate minor performance
degradation, whereas values closer to 0.0 indicate
enormous performance degradation. We calculate the
speedup results using a TCP payload size of 4 KB in our
network model (see Section 4). The speedup results for
the five network bandwidths and eight combinations of
security algorithms are listed in Table 2.

From Table 2, we see that encryption and
authentication never degrade performance more than 10%
when using 56 kbps or 1.54 Mbps network connections.
As bandwidth increases, however, the performance impact
of authentication and encryption becomes more
pronounced. Both encryption and authentication decimate
performance when using a 1 Gbps link. The results also
show that the encryption algorithms have a greater effect
on the performance than the authentication algorithms, for
the encryption routines require much more computation.

Table 2. Speedups (Slowdowns) resulting from authentication and encryption

Network Algorithm Combination

Type MDS SHA-1 RCS RC5S RC5 3DES 3DES 3DES
MD5 | SHA-1 MDS | SHA-1

56 kbps 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98

1.54 Mbps 0.99 0.98 0.97 0.96 0.96 0.92 0.90 0.90

10 Mbps 0.94 0.94 0.86 0.82 0.82 0.64 0.62 0.62

100 Mbps 0.65 0.63 0.39 0.32 0.32 0.15 0.14 0.14

1 Gbps 0.16 0.15 0.06 0.04 0.04 | 0.02 0.02 0.02

504

This performance differential between encryption and
authentication becomes more pronounced as bandwidth
increases. We now investigate the degree to which data
compression can alleviate this performance problem.

S. IP Payload Compression

The IP Payload Compression protocol (IPComp)
employs data compression algorithms to reduce the size
of IP packets [21]. This size reduction decreases the time
required to transmit IP packets by decreasing the amount
of information that is physically transferred over the
network. Furthermore, IPComp decreases the execution
time of encryption and authentication algorithms by
reducing the amount of information to be encrypted and
authenticated. In this section, we describe IPComp and
analyze the compressibility and throughputs achieved by
the LZS and DEFLATE compression algorithms.

5.1. Protocol Description

IPComp reduces the size of IP packets in IPv4 and in
IPv6 using data compression algorithms [21]. The
protocol specification includes several restrictions and
guidelines concerning these compression algorithms. To
preserve the consistency of the packet payload, the
compression algorithm must be lossless. Furthermore, the
compression of a packet payload must be completed
before any IP security processing is performed: a
cryptographically secure encryption algorithm outputs
ciphertext that cannot be compressed. It follows that the
decompression and reassembly of IP packets must also
occur after decryption. In addition, each IP packet must
be compressed and decompressed independently of other
packets, since IP packets may arrive out of order or may
never arrive at all. Lastly, the total size in bytes of the
compressed payload and the IPComp header must be
smaller than the size of the original payload. Otherwise,
the original payload is sent without any IPComp header.
This non-expansion policy saves clock cycles at the
receiver end and guarantees that network traffic will not
increase when using IPComp.

IPComp transforms an IPv6 packet as shown in Figure
4 [21). The 4-byte IPComp header is inserted
immediately preceding the Destination Options header in
the IP packet. If the Destination Options header does not
exist, the IPComp header is inserted immediately
preceding the upper-layer header (e.g., the TCP header) in
the IP packet. The compression algorithm used by
IPComp compresses all the data that follows the IPComp
header in the IP packet. The Destination Options header,
the upper layer header, and the ULP payload are all
compressed.

505

Original Packet Modified Packet

IP Header IP Header

Extension Headers Extension Headers

., (minus Destination
Upper Layer Header] ™., Options Header)
., .
IPComp Header
ULP Payload
Compressed
Data

.....
e,
.,
o,
.....

Figure 4. IPComp in IPv6
5.2. Data Compression Algorithms

We evaluate the performance of IPComp using two
lossless compression algorithms: DEFLATE and LZS.
DEFLATE compresses data using a combination of the
LZ77 algorithm and Huffman coding [17]. In this study,
we use zlib version 1.1.3, a freely distributed
implementation of DEFLATE, with default compression
settings [5], [6].

LZS is a lossless compression algorithm based on
LZ77 that employs a sliding window of maximum size 2
kilobytes [1], [7]. LZS is an ANSI standard and is
patented by Hi/fn, Inc. Our C implementation of LZS
stores the compression dictionary as a quickly accessible
and infrequently updated order-3 hash table. We also
optimized our implementation by employing 64-bit
features and by carefully reducing the compression
capabilities of the algorithm. By not using the full
compression power of LZS, we can obtain huge gains in
throughput but pay only a small penalty in compression
ratio. Our implementation requires approximately 50 KB
of RAM and outperforms DEFLATE in throughput by an
order of magnitude.

Unlike encryption and authentication algorithms, the
performance of the compression algorithms depends on
the statistical properties of the input data as well as its
size. In other words, the throughput of the compression
algorithms depends on the compressibility of the input
data. Hence, we analyze the performance of the
compression algorithms using an eclectic group of data
benchmarks.

5.3. Data Benchmarks

In a real-world networking environment, a user may
transmit a rich variety of data types and sizes. For
example, a user may send or receive a compressed 100
KB text file, a 1.3 MB binary executable, or a 12 KB

bitmap almost entirely composed of white pixels. We
chose 8 data benchmarks to obtain the performance
results; their names and descriptions are listed in Table 3.

The first six are members of the Calgary corpus [3].
Researchers use the Calgary corpus to evaluate the
practical performance of text compression algorithms.
The remaining two benchmarks, gif and random, represent
a GIF compressed image file and a randomly generated
binary data file, respectively. We expect, therefore, that
the gif and random benchmarks will be relatively
incompressible. The 6 Calgary corpus benchmarks will
exhibit different levels of compressibility, and therefore
the performance will vary when using IPComp in
conjunction with ESP and AH.

Table 3: Benchmark descriptions

Name Description
obj2 Compiled code for Apple Macintosh:
Knowledge support system
progl Lisp source code for system software
paper2 A technical paper entitled “Computer
(in)security” by Witten
trans Transcript of a session on a terminal
bookl A book entitled Far from the Madding
Crowd by Hardy
pic Picture number 5 from the CCITT
Facsimile test files (text + drawings)
gif Compressed GIF file that contains a
campus map
random | Randomly generated data

Table 4. Compression ratios

DEFLATE LZS
1IK | 4K | 63K | 1K | 4K | 63K
obj2 1.76 | 2.08 | 236 | 1.52 [1.67 | 1.77
progl 231 (316 | 423]1.76] 2.16 | 2.33
paper2 1.74 [208 | 2.70 { 1.28 | 1.50 ; 1.61
trans 193 1255 502115218 201
book1 168 1 194 | 2341122140 | 146
pic 26.1 [675 | 2141 10.0 | 12.7 | 8.01
gif 0.99 { 1.00 | 1.00 ;089] 0.89] 0.89
random 099] 1.00 | 1.00] 0.89 [0.89 | 0.89

5.4. Compressibility Results

We compute the compressibility results for both
DEFLATE and LZS using the 8 benchmarks and the 3
payload sizes defined in Section 4.1. In order to avoid any
compression anomalies associated with compressing the
first few kilobytes of the benchmarks, we compress
several different portions of the benchmarks when using
the 1-KB and 4-KB payload sizes. For the 1-KB

506

payloads, we compress the first 40 1-KB blocks of the
benchmark, and the compressibility resuits are based upon
the average compressibility of those 40 blocks. Similarly,
for the 4-KB payload sizes, we compress the first 10 4-KB
blocks of the benchmark. When using the 63-KB payload
size, however, we only compress the first 63-KB block of
the benchmark. In addition, to avoid timing imprecision
resulting from the relatively high granularity of the result
of the clock () function, we repeat the compression and
decompression of the blocks thousands of times.

The eight benchmarks exhibit many different levels of
compressibility. Table 4 summarizes the compression
ratios achieved by DEFLATE and LZS. The size of the
compressed data block includes the 4-byte IPComp
header. The zlib implementation of DEFLATE achieves a
higher compression ratio than LZS for each packet size
and benchmark combination. DEFLATE usually
outperforms LZS in compression ratio by a factor of 1.0 to
2.0, but the ratio of the compression ratios can exceed 5.0
for highly compressible data.

Table 5. DEFLATE performance (Mbps)

Benchmark Compression Decompression

Name 1K 4K 63K | 1K 4K | 63K
obj2 14 21 23 66 | 121 | 365
progl 18 31 31 77 | 146 | 492
paper2 17 25 23 67 | 123 | 365
trans 17 29 43 70 { 143] 492
book1 17 23 20 68 | 112] 340

pic 34 72 76 166 | 299 | 703

gif 14 28 31 0 0 0
random 14 29 31 0 0 0

Table 6. LZS performance (Mbps)

Benchmark Compression Decompression
Name 1K 4K 63K 1K 4K 63K
obj2 217 210 | 201 | 254 | 252 | 245
progl 234 245 | 252 | 253 | 263 | 263
paper2 178 179 | 182 | 224 | 214 | 211
trans 216 222 | 232 | 259 | 255 | 259
book1 172 169 | 169 | 220 { 207 [203
pic 983 | 1047 | 735 | 498 | 537 | 476
gif 186 160 | 150 0 0 0
random 186 161 | 151 0 0 0

5.5. Throughput Results

The performance of the compression algorithms
depends on both the size and compressibility of the
benchmark. Tables 5 and 6 list the compression and
decompression rates for DEFLATE and LZS,
respectively. The zero values for gif and random in the

——l—N,,+ ! Np+ ! N,,+—1—N,,+—1—N,,
S = RE HC RSECNEI‘ RHV RD
1 NP +_l-(&)+_l_(&)+;(&)+_l_(&]+L(&_)+ 1 NP
RCOMP RE X RHC X RSECNET X RH'V X RD X RDECOMP

Figure 5. Speedup due to data compression

decompression columns are a consequence of IPComp’s
non-expansion policy (described earlier).

Tables 5 and 6 show that LZS always greatly
outperforms DEFLATE in compression rate. LZS
compresses data nearly as fast as SHA-1 authenticates
data, and DEFLATE compresses data almost as slowly as
3DES encrypts data. In addition, LZS significantly
outperforms DEFLATE in decompression rate for 1 KB
and 4 KB payloads. DEFLATE, however, always
achieves a higher decompression rate than LZS for 63 KB
" payloads. We observe that DEFLATE always achieves a
higher compression ratio than LZS, but LZS usually
compresses and decompresses data faster than DEFLATE.
Which algoritbm should we wuse to maximize
performance? We address this issue in Section 7.

6. Calculating the Performance Impact of
IPComp on IPsec Transactions

In this section, we present equations that describe the
performance impact of combining ESP and AH with
IPComp. First, we introduce the equation we use to
calculate the speedup. Second, we use this speedup
equation to derive an inequality that describes the
conditions required for compression to improve
performance.

6.1. Speedup Calculation

We calculate the speedup using a single equation. TF,
Tp, Thes Tuy, and Tsgenger represent the encryption time,
decryption time, hash computation time, hash verification
time, and transmission time, respectively. The variables
CE, CD, CHC, CHV: and CSECNET represent the time needed
to encrypt, decrypt, compute the hash, verify the hash, and
transmit a compressed packet, respectively. If encryption
were not being used, for example, then Tz and Cg would
both equal 0. Furthermore, the variables Tcppp and
Tpecomp tepresent the time required to perform the
payload compression and decompression, respectively.
We calculate the speedup S for the system model as
follows:

—- TE+THC+TSECNET+THV+TD

Teorr +Cr +Crye + Copengr + Cry +Cp + Tppcomp

507

A speedup greater than or equal to 1 indicates that
IPComp reduces the total amount of time required by a
secure transaction. Hence, a speedup greater than or
equal to 1 means compression improves performance. A
speedup less than 1 indicates that compression increases
the total time needed; therefore compression degrades
performance.

6.2. Predicting the Performance Impact of Data
Compression

We now derive an inequality that describes the
conditions required for data compression to improve
system performance. We rewrite the speedup equation as
shown in Figure 5. Rg, Rp, Ruc, Ruv, Rcomp, Rpecome, and
Np represent the encryption rate, the decryption rate, the
hash computation rate, the hash verification rate, the
compression rate, the decompression rate, and the size of
the original (uncompressed) ULP payload, respectively.
Rsgener is the transmission rate of the network (i.e.,
effective network bandwidth). X is the compression ratio,
which equals the size of the uncompressed payload
divided by the size of the compressed payload. In order to
make the relationships clear, we choose to neglect the
overhead resulting from packet headers. For example, the
amount of data to be hashed is not Np as the previous
equation indicates. The hash is calculated over the entire
packet, so the amount of data to be hashed is at least Np
plus the size of the IP and AH headers. The total size of
all the packet headers is usually less than 100 bytes, so if
the payload size is relatively large, e.g., multiple
kilobytes, the omission of the header overheads will not
significantly affect the results.

Compression improves performance if the speedup is
greater than or equal to 1. Hence, by setting the right side
of the previous equation to be greater than or equal to 1,
we obtain a relationship between the compression ratio
and the algorithm throughputs such that compression will
improve performance. Np cancels out since we are not
considering overhead from packet headers, and we now
have the following equation:

}

RCOMI‘

1

1

RE RD RHC

1 1

+—t
RH’V RSECNET

1 1

+
RDECOMI’

If the encryption rate, decryption rate, hash computation
rate, hash verification rate, and network transmission rate
are constant, we obtain the following expression:

K (1 -—‘-) S .
X) Reowp Rprcour
1 1 1 1 1

=—t— + +
RE RD RHC RHV RSECNET

, Where

This inequality describes a relationship between
compression rate, decompression rate, and compression
ratio such that the resulting speedup will be greater than or
equal to 1.

Using this inequality, one can determine whether
compression will improve the performance of secure
packet transactions without conducting extensive
simulations. Secure network transactions in some systems
involve other time-consuming steps such as bus transfer
time, disk access time and protocol processing time. The
speedup equations presented here could be modified to
model a particular system more accurately by adding
relevant latency terms.

Table 7: System parameters

Parameter Values
Encryption algorithm 3DES, RC5, NULL
Authentication algorithm MDS5, SHA-1, NULL
Compression algorithm DEFLATE, LZS, NULL
ULP payload size 1KB, 4 KB, 63 KB
Data benchmark obj2, progl, paper2, trans,
book1, pic, gif, random
Network bandwidth 56 kbps, 1.54 Mbps, 10
Mbps, 100 Mbps, 1 Gbps

7. Experimental Results and Analysis

In this section, we evaluate the experimental
performance results for all the combinations of parameter
values listed in Table 7. We execute the security and
compression algorithms on the HP Visualize C360
workstation described in Section 4. The simulations
produced an enormous amount of performance
information due to the large number (3240) of parameter
value combinations; we only present the most valuable
results here.

We describe results for 4 of the 8 benchmarks and for 2
of the 3 packet sizes. Using the compressibility results
discussed in Section 5, we divide the data benchmarks
into 4 groups according to level of compressibility. We
select 1 benchmark from each of these 4 groups: pic, gif,
bookl, and trans. The benchmarks pic and gif represent
highly compressible and incompressible payloads,

508

respectively, and bookl and trans fall in between. In
addition, we only present results for the 1 KB and 63 KB
payload sizes. Most of the results for the 4 KB payload
size closely resemble those for the 1 KB payload size.

The choice of compression algorithm depends on the
network speed. We discover that compression ratio is
more important than compression throughput when using
slow network links, whereas the compression and
decompression rates are more important than the
compression ratio for fast retwork links. We find that
DEFLATE usually yields a higher speedup than LZS for
56 kbps and 1.544 Mbps connections, and LZS usually
yields a higher speedup than DEFLATE for 10 Mbps, 100
Mbps, and 1 Gbps links. It is important to note that these
conclusions concerning compression algorithms and
network types are highly implementation dependent. For
example, if our LZS implementation were significantly
slower, it would be advisable to use DEFLATE rather
than LZS for 10 Mbps links. In general, fast compression
algorithms should be used with fast network connections,
and algorithms that achieve high compression ratios
should be used with slow network connections.

Upon inspecting the speedup results, we discover that
certain different algorithm combinations produce similar
results. For example, consider the case where message
authentication is used but encryption is not used. In
almost every case, the speedups for MDS and SHA-I1
(when using compression) are both greater than 1 or are
both less than 1. In other words, the decision to compress
when using AH but not ESP is independent of the
authentication algorithm being used. We expected this
result, for the throughputs of the MD5 and SHA-1
authentication algorithms differ by only 7.5% when using
63 KB payloads.

We propose 4 algorithm combination classes:
combinations that include 3DES (slow encryption),
combinations that include RCS (fast encryption),
combinations that include authentication only, and the
case where neither authentication nor encryption are
employed (referred to as NULL). The results of the
NULL case can be used to determine whether
compression improves the performance of ordinary
communications. We present performance results for one
algorithm combination from each class. The algorithm
combinations are NULL, SHA-1, RC5/SHA-1, and
3DES/SHA-1; we use SHA-1 since it is computationally
more intensive than MD5. For each of these algorithm
combinations, we use our earlier recommendations for the
compression algorithm that yields the highest performance
for a given network type.

Figures 6 through 9 illustrate the speedups obtained for
the four algorithm combinations. In all four cases,
compression improves performance for network
bandwidths less than or equal to 10 Mbps. Figure 6

100 100
.. —e—gif (1 KB) ——-gif (1 KB)
" ceee.. Gif (B3 KB) .--e-- oif (63 KB)
a —a—book1 (1 KB) a ~—&—book1 (1 KB)
.§ ---A-- book1 (63 KB) .§ -+ -4 -- book1 (63 KB)
- —x—trans (1 KB) 2 ——trans (1 KB)
U] ; «eex-- trans (63 KB) i <+ % trans (63 KB)
—a— pic (1 KB) -—a#—pic (1 KB)
--.m-. pic (63 KB) «..®.. pic (63 KB)
0.1 T v r 0.1 y T v
0.0547 154 10 100 1024 0.0547 154 10 100 1024
Maximum Network Bandwidth (Mbps) Maximum Network Bandwidth (Mbps)
Figure 6. Speedups when using Figure 7. Speedups when using SHA-1
compression only
100 100
—eo—gif (1 KB) ... —e—gif (1 KB)
<0 gif (3 KB) o R <. - gif (63 KB)
o —a——book1 (1 KB) a ——a——book1 (1 KB)
.§ ---& . boOK1 (63 KB) g «--&-- book? (63 KB)
5 —¢trans (1 KB) 13 ———trans (1 KB)
---%-- trans (63 KB) @] < +.% .- trans (63 KB)
—a— pic {1 KB) —a——pic (1 KB)
--.m-. pic (63 KB) --.®-- pic (63KB)
0.1 — . T r 0.1 . -
0.0547 1.54 10 100 1024 0.0547 1.54 10 100 1024
" Maximum Network Bandwidth (Mbps) Maxi N rk Bandwidth (Mbps)

Figure 8. Speedups when using RC5/SHA-1

depicts the speedups achieved when using compression
without encryption or authentication. Compression almost
always degrades performance when using 100 Mbps and 1
Gbps networks. Figure 7 illustrates the speedups obtained
when using SHA-1. Compression used with message
authentication only can improve performance for 100
Mbps and 1 Gbps networks if the packet payloads are
expected to be highly compressible (i.e., compressible by
a factor of 10). Figures 8 and 9 show the speedup results
when using RC5/SHA-1 and 3DES/SHA-1, respectively.
For slow encryption (3DES/SHA-1), compression almost
always improves performance when using 100 Mbps or 1
Gbps network connections. For fast encryption
(RC5/SHA-1), compression improves performance for
100 Mbps and 1 Gbps links if the data is reasonably
compressible (i.e., compressible by a factor of 1.5).

If the security and compression algorithms are all
executed on workstations similar to the one we used,
compression will improve performance for network

509

Figure 9. Speedups when using 3DES/SHA-1

bandwidths less than or equal to 10 Mbps. In addition,
compression improves performance when using network
bandwidths as high as 1 Gbps if the payload data is
reasonably compressible and encryption is used. We
define reasonably compressible data to mean a
compression algorithm can reduce the size of packet
payload by at least a factor of 1.5.

If processing power increases relative to network
speed, the speedups generated by compression will also
increase. If processing power decreases relative to
network speed, compression will be more likely to cause
performance degradation. Similarly, if compression speed
and ratio increase relative to encryption and authentication
speed, performance speedups due to compression will
increase. If compression speed and ratio decrease relative
to encryption and authentication speed, compression will
be less beneficial in improving system performance.

8. Conclusions

In this paper, we investigated the performance impact
of combining data compression with encryption and
message authentication to provide for fast, secure network
transactions. We defined a system model that allows us to
quickly estimate the performance of many combinations
of packet, network and algortihm types. First, we
demonstrate the extent to which IPsec can degrade
performance. Encryption with 3DES can reduce system
performance by 36% for 10 Mbps networks and 85% for
100 Mbps networks, i.e., an encrypted transaction can be
1.5 times slower than normal transactions over a 10 Mbps
network and 6.6 times slower over a 100 Mbps network.

We derived an inequality that predicts whether data
compression will improve performance for a given
system. This inequality depends on the throughputs of the
encryption, authentication and compression algorithms
used, on the bandwidth of the network, and on the
compressibility of the packets. We analyzed performance
results for 3240 combinations of system parameter values
and categorized them into four classes: compression with
no authentication or encryption, compression with
authentication (and no encryption), compression with fast
encryption, and compression with slow encryption. In
each class, compression usually improves performance for
10 Mbps or slower networks. For 100 and 1000 Mbps
networks, compression only improves performance when
encryption (fast or slow) is employed: compression does
not improve performance for these faster networks when
message authentication is used without encryption.

Future work includes exploring the impact of data
compression on secure information processing using more
complex models that include communications pipelines,
multiple clients and servers, and multiprocessor systems.

9. Acknowledgements

We wish to thank Hewlett Packard Company for
funding this research and providing equipment. We also
thank Zhijie Shi for writing the encryption and message
authentication routines used in this study.

References

[1] American National Standards Institute, Inc., “Data
Compression Method — Adaptive Coding with Sliding
Window for Information Interchange”, ANSI X3.241-
1994, August 1994.

[2] Baldwin, R., and R. Rivest, “The RC5, RC5-CBC,
RC5-CBC-Pad, and RC5-CTS Algorithms”, RFC 2040,
October 1996.

510

[3] Bell, T.C,, et al.,, Text Compression, Prentice Hall,
Englewood Cliffs, NJ, 1990.

[4] Deering, S., and R. Hinden, “Internet Protocol,
Version 6 (IPv6) Specification”, RFC 2460, December
1998.

[5] Deutsch, P., “DEFLATE Compressed Data Format
Specification version 1.3”, RFC 1951, May 1996.

[6] Deutsch, P, “ZLIB Compressed Data Format
Specification version 3.3”, RFC 1950, May 1996.

[71 Friend, R, and R. Monsour, “IP Payload
Compression Using LZS”, RFC 2395, December 1998.

[8] Glenn, R, and S. Kent, “The NULL Encryption
Algorithm and Its Use With IPsec”, RFC 2410, November
1998.

[91 Kent, S., and R. Atkinson, “IP Authentication
Header”, RFC 2402, November 1998. :

[10] Kent, S., and R. Atkinson, “IP Encapsulating
Security Payload”, RFC 2406, November 1998.

[11] Kent, S., and R. Atkinson, “Security Architecture
for the Internet Protocol”, RFC 2401, November 1998.
[12] Krawczyk, H., et al., “HMAC: Keyed-Hashing for
Message Authentication”, RFC 2104, February 1997.

[13] Madson, C., and R. Glenn, “The Use of HMAC-
MD5-96 within ESP and AH”, RFC 2403, November
1998.

[14] Madson, C., and R. Glenn, “The Use of HMAC-
SHA-1-96 within ESP and AH”, RFC 2404, November
1998.

[15] Nahum, E., et al., “Parallelized Network Security
Protocols”, Proceedings of the Internet Society
Symposium on Network and Distributed System Security
(SNDSS 96), February 1996.

[16] Nahum, E., et al., “Towards High Performance
Cryptographic Software”, Proceedings of the Third IEEE
Workshop on the Architecture and Implementation of
High Performance Communications Subsystems (HPCS
’95), August 1995.

[17] Pereira, R., “IP Payload Compression Using
DEFLATE”, RFC 2394, December 1998.

[18] Pereira, R., and R. Adams, “The ESP CBC-Mode
Cipher Algorithms”, RFC 2451, November 1998.

[19] Postel, J., “Transmission Control Protocol”, RFC
793, September 1981.

[20] Schneier, B., Applied Cryptography Second
Edition, John Wiley & Sons, New York, NY, 1996.

[21] Shacham, A., et al, “IP Payload Compression
Protocol”, RFC 2393, December 1998.

[22] Shi, Z., and R. Lee, “Bit Permutation Instructions
for Accelerating Software Cryptography”, Proceedings of
the IEEE International Conference on Application-
specific Systems, Architectures and Processors, July
2000.

[23] Tanenbaum, A., Computer Networks Third Edition,
Prentice-Hall, Upper Saddle River, NJ, 1996.

