
Abstract

In this paper we present a processor microarchitecture that can
simultaneously execute multiple threads and has a clustered design
for scalability purposes. A main feature of the proposed
microarchitecture is its capability to spawn speculative threads
from a single-thread application at run-time. These speculative
threads use otherwise idle resources of the machine.

Spawning a speculative thread involves predicting its control
flow as well as its dependences with other threads and the values
that flow through them. In this way, threads that are not
independent can be executed in parallel. Control-flow, data value
and data dependence predictors particularly designed for this type
of microarchitecture are presented.

Results show the potential of the microarchitecture to exploit
speculative parallelism in programs that are hard to parallelize at
compile-time, such as the SpecInt95. For a 4-thread unit
configuration, some programs such as ijpeg and li can exploit an
average degree of parallelism of more than 2 threads per cycle.
The average degree of parallelism for the whole SpecInt95 suite is
1.6 threads per cycle. This speculative parallelism results in
significant speedups for all the SpecInt95 programs when
compared with a single-thread execution.

Keywords: Data value speculation, data dependence specula-
tion, control-flow speculation, clustered processors, dynamically
scheduled processors, simultaneous multithreaded processors.

1.  Introduction
Technology evolution projections anticipate that in about 15 years
around 1 billion transistors will be available in a single chip
microprocessor. Computer architects have to cope with the
challenge of making an effective use of such huge amount of logic.
Scaling up current superscalar organizations may provide some
benefits but will soon reach a point of diminishing returns,
especially for non-numeric applications. Data dependences1,
instruction window size and wire delays are probably the most
important hurdles that limit the performance of superscalar
processors.

1 In this paper, data dependences refer to RAW dependences

Data dependences cause just by themselves a severe limitation
to performance. For instance, the SPECint95 benchmarks
compiled with the DEC Alpha compiler with full optimization
have a maximum instruction-level parallelism of 37 instructions
per cycle (IPC), assuming an ideal machine with infinite resources
and perfect branch prediction. For 2 out of the 8 benchmarks, the
IPC is even lower than 20 [9]. If the effect of a limited instruction
window is then considered, the maximum IPC significantly drops,
approaching values that are not far from the peak IPC that may be
exploited by current superscalar processors. On the other hand, as
future designs employ smaller feature sizes, wire delays will not
scale down to the same pace and will become the most critical
component of the execution time [22].

Penalties due to data dependences may be relieved by data
value speculation. This technique is based on predicting the input/
output operands of instructions, which avoids the ordering
imposed by data dependences otherwise. Recent studies have
shown that the performance impact of data value speculation for
superscalar processors is moderate [8], and its potential
improvement approaches a linear function of the prediction
accuracy. This suggests that one cannot expect much benefit by
just improving the value predictor. However, its potential impact
on a multithreaded architecture is much higher [9].

The effective instruction window size is mainly limited by the
branch predictor accuracy. The amount of control-flow speculative
instructions from the correct path that can be in the instruction
window depends on the number of consecutive branches that can
be correctly predicted, due to the sequential nature of the fetching
mechanism of superscalar processors. As an approximation, if we
assume that the probability of predicting correctly any branch is p,
and that it does not depend on the success/failure in previous
branches, we have that the average number of consecutive
branches that are correctly predicted is , and if B is the
average number of instructions between branches, the number of
correctly speculated instructions in the instruction window will be
on average . For instance, if p=0.95 and B=5, the
average number of correctly (control-flow) speculated instructions
will be on average 9.5, which is a rather limited window size in
spite of a such an accurate branch predictor.

Finally, the problem of wire delays may be handled by
exploiting communication locality. The idea is to partition a full
design into several blocks, including in the same block those
components that frequently communicate and placing in different
blocks those components that rarely exchange data. Sometimes
this organization has been referred to as clustered or decentralized
microarchitecture. Examples of such microarchitectures are the
Alpha 21264[10], and those proposed in [5][6][13][22][23][27]
[33].

The processor microarchitecture that we propose in this paper
attacks these three problems in the following way. First, it is a
clustered microarchitecture in order to exploit communication
locality. Second, the instruction window is not built by a sequential
process. Instead, it consists of a collection of non-adjacent smaller
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windows. Each small window is composed of a subsequence of the
dynamic instruction stream, and it is build by sequentially
speculating on branches. Each window is initially started by
speculating on highly predictable branches. In particular, we have
considered those branches that close loops. However, other
alternatives may be considered, like subroutine calls. Each
instruction window is managed as a thread of control (thread for
short), and it is not necessarily independent of other threads. Third,
dependences among threads are predicted, as well as the values
that flow through them. This allows each thread to execute at its
own pace, without synchronizing with other threads, provided that
dependent values are correctly predicted. As shown in [9], the
potential of data value speculation for a multithreaded processor is
higher than for a single-thread processor. Furthermore, we show in
this paper that the approach taken to dynamically partition a
program into threads favors the accuracy of value predictors. Inter-
thread dependent values are more predictable than the average.
Finally, a side-effect of the proposed thread partitioning is that
concurrently active threads usually share the same code (different
iterations of the same loop), which can be used to significantly
reduce the fetch bandwidth requirements.

The rest of this paper is organized as follows. Section 2
describes the microarchitecture of the clustered speculative
multithreaded processors, with especial emphasis on the control-
flow, data value and data dependence speculation mechanisms.
Performance figures are discussed in section 3 and the related
work is reviewed in section 4. Finally, the main conclusions are
summarized in section 5.

2.  Clustered Speculative Multithreaded
Microarchitecture
The clustered speculative multithreaded processor has roots on the
Multiscalar [27], with some notable differences: a) thread
partitioning and data dependence enforcement are performed by
run-time mechanisms, without any compiler support; and b) data
speculation techniques are used to avoid the serialization imposed
by data dependences.

The clustered speculative multithreaded microarchitecture was
initially proposed in [20]. That preliminary proposal showed a
high performance for FP codes but the performance for integer
codes was rather low. The main reason for this poor performance
was that parallel threads, each one corresponding to a different
innermost iteration1 of the same loop, were constrained to follow
the same control flow. Figure 1 shows the average number of
consecutive innermost iterations that follow the same control flow
for the SpecInt95 programs, which can be considered as an upper
bound on the degree of thread-level parallelism that could be
exploited by such microarchitecture. In fact the actual upper-
bound is still lower, since for each change in the control flow, the
processor requires two iterations to correctly predict the next
threads. If we substract 2 to the numbers of Figure 1, we can
conclude that the potential parallelism for many programs is
extremely low. This figure points out that constraining all the
threads to follow the same control flow causes severe limitations
on the performance of integer codes.

All the statistics presented in this section, except for Figure 5,
have been obtained by processing the trace corresponding to the
whole execution of the SpecInt95 benchmark suite with the train

1 We define an innermost iteration as an iteration that does not contain any
loop. Note that a given loop may consist of some innermost iterations and
some others that are not innermost, if the enclosed loop is conditionally
executed.

inputs listed in section 3. More details about the experimental
framework can also be found in that section.

This paper extends the clustered speculative multithreaded
microarchitecture to support parallel threads that follow different
control flows. This implies significant changes in the instruction
fetch and control speculation engines, as well as in the value
prediction mechanism. This extension will significantly boost the
performance of integer codes. We will show that this
microarchitecture can exploit an important degree of thread level
parallelism for programs that are known to be hard to parallelize at
compile-time (1.6 threads per cycle on average for 4-thread units).
We describe below the main features of the clustered speculative
multithreaded microarchitecture.

The clustered speculative multithreaded microarchitecture is
shown in Figure 2. It consists of several thread units, each of them
being quite similar to a superscalar core, except for a set of live-in
registers that are used to pass register values among neighbor
thread units. Every thread unit has its own register file (local
registers), register map table, instruction queue, functional units,
local memory and reorder buffer. Thus, it is a multithreaded
architecture in which most of the hardware resources are local to
each thread unit. This approach is more scalable than sharing the
resources.

A main feature of this processor is its capability to
dynamically extract multiple threads from a sequential program
and execute them in parallel without any support from the
compiler and without requiring any extension to the ISA. Note that
this processor can also exploit thread/task-level parallelism
provided by the user/compiler/run-time system. However, when
there are idle thread units due to the inability of software

Figure 1.  Average number of consecutive innermost itera-
tions with the same control flow.
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Figure 2.  A clustered speculative multithreaded processor
with three thread units.
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techniques to extract parallelism (e.g., when executing a single
non-parallelizable application), the processor can generate
multiple speculative threads that are executed in the idle thread
units and can speedup the execution of a single software thread. In
this paper we focus on this latter capability, since executing
multiple software threads in a multithreaded architecture has been
extensively researched in previous works (see [31] for instance).

The speculative threads correspond to different consecutive
innermost iterations that do not have to be independent. When the
processor reaches the beginning of an iteration, idle thread units
are allocated to speculatively execute following iterations. The
register file of a speculative thread is initialized with the predicted
output values of the previous thread and thus, the value predictor is
one of the critical parts of the microarchitecture. Predicting the
control flow correctly is useless if the input values (i.e. the values
of registers that are live at the beginning of a thread) are
mispredicted.

Memory values are handled by means of a special first-level
cache organization, the multi-value cache, which manages multiple
versions of each memory location. Each version corresponds to the
state of a memory location in a given point in time of the
execution, that is, the state of that memory location as it is viewed
by each different thread.

Data dependences among instructions in different threads
(inter-thread dependences for short) are also predicted. Data
dependence prediction may significantly reduce the number of
data dependence misspeculations for large instruction windows
(see [21] among others). Dependences through registers are
predicted by predicting the number of writes to each logical
register that each thread will perform. Once this number of writes
are performed, the register contents are forwarded to the following
thread, either to check if the predicted value of that register was
correct or to pass the value when it was not predicted. Memory
dependences are predicted in a similar way, that is, by predicting
the memory locations that each thread will write. An address
predictor is used for this purpose. The multi-value cache is
initialized with this information and memory values are passed
among threads by enforcing the dependences implied by the
predicted writes.

Threads are allocated to thread units in sequential order
following a ring topology. The first thread is called the non-
speculative thread whereas the other ones are speculative threads.
When the non-speculative thread reaches the point where the first
speculative thread started, it terminates and the first speculative
thread becomes non-speculative. Precise exceptions are supported
by means of the local reorder buffers, which allow the processor to
retire the instructions of each thread in order. Values produced by
speculative threads are held either in their local register files/local
memories or in the multi-value cache and are not allowed to
propagate to lower levels of the memory hierarchy.

Values and dependences are predicted by means of a history
table (the loop iteration table) that holds information regarding
some of the last executed loops. Details about the mechanisms to
predict values and dependences, as well as the management of
threads are provided in [20][30].

Another important feature of the clustered speculative
multithreaded processor is its low instruction fetch bandwidth
requirements. In the original proposal, since all simultaneously
active threads followed the same control flow, a simple fetch
engine could feed the processor by fetching each instruction just
once and replicating it for all active threads. This results in an
average IPC for the SpecFP95 of 5.2 with a fetch unit with a peak
bandwidth of 4 instructions per cycle. The new microarchitecture
proposed in this paper can execute multiple threads that follow

different control flows, which will significantly speedup integer
codes. However, this will also reduce the benefit of saving
instruction fetches by replicating instructions for those threads that
follow the same control flow. Nevertheless, the benefits will still
be important since we have measured that the number of different
control flows is very low, in spite of the fact that the control flow
changes frequently. For instance, Figure 3 shows the average
number of different control flows for every 8 consecutive
innermost iterations. On average, in every 8 consecutive innermost
iterations there are only 2.3 different control flows. This implies
that if these iterations were executed in parallel, the fetch
bandwidth requirements could be reduced in a factor of 3.5.

2.1  Support for Multiple Control Flows
As discussed above, threads that follow different control flows
should be allowed to be executed simultaneously in order to obtain
significant speedups for integer codes. For this purpose, each entry
of the loop iteration table is associated to a particular control flow
followed by some iterations of a particular loop. We will refer to
the sequence of instructions of a particular control flow of a given
loop as a loop trace. For instance, if a loop has just a conditional
branch (in addition to the loop closing branch), the iterations of
this loop may follow up to two different control flows and
therefore, up to two different loop traces may be found during the
execution of that loop

A loop trace is a particular type of traces [24] that comprises a
whole loop iteration (including subroutine activations) and can
also include multiple indirect branches. It is identified by the PC of
its first instruction and a sequence that defines a particular control
flow. This sequence consists of all branches/jumps, indicating for
each conditional branch whether it is taken or not, and the target
addresses of indirect jumps.

The loop iteration table provides support for data and data
dependence speculation, that is, it is used to predict dependences
and the values that flow through such dependences. Dependence
and value prediction is not based on a stride-predictor of live-in1

values as proposed in [20] since different loop traces may have
different live-ins, and thus, it is unlikely that live-ins follow a
stride pattern. We present new value and dependence predictors in
the next section. Very few entries are enough to achieve a
significant hit ratio in the loop iteration table, as shown in Figure 4
for an 8-entry table.

The ability of simultaneously execute threads that follow
different control flows has an impact on the design of the fetch

1 We refer to a register/memory location that is live at the beginning of a
loop trace as a live-in or an input.

Figure 3.  Average number of different control flows for
every 8 consecutive innermost iterations.
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engine. The fetch engine manages multiple PCs, one for each
different control flow. Each cycle, a single fetch from a PC is
performed and the obtained instructions are forwarded to all
threads that follow this control flow. The particular PC used in
each cycle is selected among those in which the instruction queues
of the associated threads are not full, following a round-robin
policy.

To confirm the potential performance of a clustered
speculative multithreaded processor with support for different
control flows to speedup non-numerical codes, we initially
evaluated a 4-context processor with a perfect loop trace predictor.
That is, the processor was assumed to be able to always predict
correctly the control flow that the next iteration will follow, its
input values and its dependences. The remaining processor parts
were realistically modelled. Details about the experimental
framework can be found in section 3. Figure 5 shows the degree of
thread level parallelism that would be exploited by such a
processor as well as the speedup over a single-threaded execution.
It can be seen that all the benchmarks show significant speedups.
On average, the processor may have 2.1 active threads which
results in a 70% increase in performance over a single thread.

2.2  Loop Trace Prediction
The process of spawning speculative threads comprises two
important elements: a) deciding when speculative threads are
spawned; and b) predicting the loop trace associated to those
threads.

Speculative threads are tried to be spawned when the non-
speculative is in an innermost loop and there are idle thread units.
The processor knows when the non-speculative thread enters an
innermost loop by searching the loop iteration table for an entry
with a PC that matches the current PC. If such an entry is found,

Figure 4.  Hit ratio of an 8-entry loop iteration table
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Figure 5.  Average number of threads per cycle (TPC) of a
4-context clustered speculative multithreaded processor

and speedup over a single-threaded execution for a perfect
loop trace predictor
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then the speculation engine spawns as many threads as idle thread
units provided that it can predict their associated loop trace. Every
time that the non-speculative thread finishes (and the first
speculative thread becomes the non-speculative one), its thread
unit becomes idle and it is allocated to a new speculative thread.

To spawn a thread, the speculation engine must predict its
associated loop trace, which involves two different tasks: a)
predicting its control flow; and b) predicting its input values and
inter-thread dependences. These tasks may be carried out by the
same predictor or by different ones, as described below.

2.2.1  Value and Dependence Prediction
Predicting the input values of a loop trace when it is spawned is a
key component of the proposed microarchitecture since it allows a
thread to be executed without waiting for previous threads to
produce such values. Note that previously proposed value
predictors may not be adequate since they try to exploit features of
individual instructions (e.g., constant, stride or repeated
sequences). What we require here is a predictor whose predictions
are associated to traces instead of individual instructions. It must
predict the input values of a loop trace before having fetched all
the instructions of previous traces. Note that the inputs of a trace
can also be predicted by predicting the outputs of previous traces.

We could try to adapt previously proposed predictors to predict
the input/output values of a trace by regarding a loop trace as a
single unit. However, they will unlikely work well. For instance, it
is unlikely that the input or output registers of a loop trace follow a
stride sequence, since several other traces that modify these
registers may have been executed in between two consecutive
executions of the same loop trace.

We propose a predictor that is based on the observation that the
value of each output register of a loop trace that is live for a
following loop trace usually is equal to its value at the beginning
of the trace plus a constant increment that is the same as the last
time the same loop trace was executed. The proposed predictor
consists of a table that is indexed by the loop trace identifier and it
stores for each output register the difference between its value at
the beginning and its value at the end of the trace for the last time
the loop trace was executed. Next time the same trace is
encountered, the output registers are predicted to be updated in the
same way as they were last time. We will refer to this predictor as
an increment predictor.

Every time a new thread is started, its output values are
immediately predicted and they will speculatively be used as input
values by the next thread when it is spawned. When a thread
finishes, its output predictions are verified and mispredictions are
handled by selective re-execution.

We have evaluated the potential of this predictor by measuring
the percentage of correctly predicted inputs that would be obtained
by predicting the outputs of a loop trace as their value at the
beginning of the trace plus the same increment as the last
execution of the same loop trace. Results, which are shown in
Figure 6, show that this approach may predict 92% of all input
registers on average. The hit ratio is quite high (higher than 88%)
for all the programs. The actual hit ratio when the mechanism is
included in a timing simulator is slightly lower since it is
negatively affected by loop trace mispredictions and by predicting
the outputs using predicted inputs instead of actual values. Note
however that these figures are much higher than those reported
when predicting all instructions, even if infinite tables are
considered [26]. This suggests that a proper selection of the values
to be predicted may have an important impact on the performance
of data value speculation techniques.

Regarding memory dependences, as previously anticipated,
they are predicted by predicting all memory locations that will be



written by a given loop trace. The effective addresses of store
instructions are predicted based on the prediction made for
registers. For each store in a loop trace, the loop iteration table
holds the logical register used to compute its effective address and
the offset relative to the value the register had at the beginning of
the loop trace in its last execution. When a new thread is spawned,
the effective address of each store instruction is predicted as the
value predicted for its associated logical register plus the offset
obtained from loop iteration table.

2.2.2  A Combined Control Flow and Value/
Dependence Predictor
Since a loop trace is a particular type of trace, the control flow of
speculative loop traces could be predicted by means of predictors
previously proposed for traces, like the path-based next trace
predictor [12]. We have considered the hybrid scheme proposed in
that paper modified to include a different history register per each
loop, instead of a single one, since it has a higher performance.

When a new speculative thread is spawned, the trace predictor
is first used to predict its control flow, which identifies a particular
loop trace. Then, the value predictor is used to predict its outputs,
so that the next thread, if any, can immediately start since all its
input values are available. The value predictor is implemented in
the loop iteration table by including in each entry the last observed
increment for each output register.

2.2.3  Decoupling Control Flow Prediction from
Value/Dependence Prediction
In order to execute a thread, predicting the whole control flow that
it will follow is not necessary. This may be convenient if the
processor has a trace cache that stores the instructions of loop
traces since it would allow the processor to fetch the whole trace
immediately. However, if we consider a conventional instruction
cache, the only requirement to start a thread is to know its initial
PC. Each thread can execute at its own pace by fetching
instructions starting at that PC and predicting branches just when
they are fetched, through a local branch predictor.

Each local predictor is updated with the branches that it
processes. When there is a single active thread, the local predictors
of idle thread units are also updated for each branch, so that, when
threads are spawned, they reflect the branches processed up to this
point.

Using local branch predictors is simpler than having just a
shared predictor because the number of ports of the tables is
significantly reduced, and it is a more scalable design. Moreover, a
shared predictor would be negatively affected by the fact that
branches are predicted and processed out of order, due to the
parallel execution of multiple threads.

A loop trace predictor is still required by the value predictor,
since output values are predicted by adding an increment to each

Figure 6.  Potential accuracy of the value predictor.
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output register and this increment is associated to a particular loop
trace. Thus, the main difference between this approach and the one
presented in section 2.2.2 relies on the way the control flow of loop
traces is predicted. In the combined predictor of section 2.2.2, it is
predicted by a path-based next trace predictor, whereas in the
decoupled approach it is predicted by local conventional branch
predictors.

To choose between the two schemes, we have compared the
control-flow prediction accuracy of both schemes. We have
assumed the hybrid scheme of the path-based next trace predictor
proposed in [12] with infinite tables and history depth of 3. On the
other hand, we have evaluated the trace hit ratio of 4 local gshare
predictors [18], each one belonging to a different thread unit. Each
of these predictors has a 14-bit history register and a 214-entry
pattern history table. We consider that the gshare correctly predicts
a loop trace when it hits in the prediction of all the branches in the
trace.

Figure 7.a compares the loop trace misprediction rate of the
path-based scheme and the local gshare predictors. We can observe
that the local gshare approach significantly outperforms the path-
based predictor, reducing the average loop trace misprediction rate
from 24.8% to 14.0%.

Finally, we have evaluated the prediction degradation caused
by having local predictors instead of a global one. Figure 7.b
compares the branch misprediction rate (for individual branches)
of a global gshare with 216 entries against the misprediction rate of
the 4 local gshare predictors with 214 entries. For the global
predictor, we have assumed that branches are processed in their
sequential order (this is an optimistic assumption that would not be
realizable). The results show that the degradation due to using
local predictors is negligible. The average misprediction rate just
grows from 7% to 7.5%.

3.  Performance evaluation
In this section, we present performance figures of the clustered
speculative multithreaded processor. The objective is to
demonstrate its potential to speedup applications that are hard to
parallelize at compile-time, such as the SpecInt95, by exploiting
speculative thread-level parallelism.

3.1  Experimental framework
The clustered speculative multithreaded processor has been
evaluated through trace-driven simulation of the SpecInt95
benchmark suite. The programs have been compiled with the DEC
compiler for an AlphaStation 600 5/266 with full optimization
(-O4) and instrumented by means of the Atom tool. For statistics
that do not require a cycle-level simulator of the whole processor
we run the programs with the train inputs until completion. To
obtain accurate timing results, such as execution time, a cycle-by-

Figure 7.  Control flow prediction accuracy of different ap-
proaches.
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cycle simulation is performed. Because of the detail at which
simulation is carried out the simulator is slow, so we have
simulated 50 million of instructions for each benchmark after
skipping the initial part that corresponds to initialization of data
structures. In this type of experiments we have used the ref inputs,
since they may reflect a more realistic workload, in particular for
some parameters such as number of iterations per loop. Table 1
lists the input set for each experiment.

We have evaluated a clustered speculative multithreaded
processor with 2 and 4 thread units. The fetch bandwidth of the
architecture is up to 4 instructions per cycle or up to the first taken
branch, whichever is shorter, and the fetch policy for threads with
different control flow is round-robin. The MultiValue cache has
128 entries (4KB capacity) and a latency of 1 cycle. A 32KB non-
blocking, 2-way set-associative L1 cache with an 8-byte block size
and up to 4 outstanding misses is considered. The L1 latencies are
2 cycles for a hit and 6 cycles for a miss. An ideal L2 cache
memory is considered. An 8-entry Loop Iteration Table has been
assumed. The Path-Based predictor is implemented by means of a
1K-entry secondary table and an 8K-entry correlating table. Each
thread unit has the following parameters:

• Issue bandwidth: 4 instructions per cycle.

• Physical Registers: 64.

• Local Memory: 64 entries (512 bytes).

• Functional Units (latency in brackets): 2 simple integer (1), 1
integer multiplication (2), 2 simple FP (3), 1 FP multiplication
(6) and 1 FP division (17).

• Reorder buffer: 64 entries.

• Branch predictor: 214-entry gshare.

Benchmark Train input Ref input

go 9 9 50 21

m88ksim /train/input/ /ref/input/

gcc genrecog.i 1amptjp.i

compress 40000 e 2231 14000000 e 2231

li train.lsp /ref/input/*.lsp

ijpeg vigo.ppm penguin.ppm

perl train/input/ /ref/input

vortex train/input /ref/input

Table 1: Benchmark summary

Figure 8.  a) IPC for 1, 2 and 4 thread units; b) speedup
over a single-thread execution.
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We have considered two different policies to spawn
speculative threads. In both cases, threads are spawned only if
their associated information to predict values and dependences is
found in the loop iteration table. For the conservative policy, the
confidence bits of the path-based loop trace predictor, which is
used only for the value and dependence predictor, are considered.
If the prediction is not confident, the thread is not spawned. For the
aggressive policy, the confidence bits of the loop trace predictor
are irrelevant. The aggressive policy may probably exploit more
thread-level parallelism but incurs in a much higher number of
mispredictions.

3.2  Performance figures
We first evaluate the clustered speculative multithreaded processor
with an aggressive spawning policy. Figure 8.a shows the
instructions committed per cycle (IPC) for each program when it is
executed on a single, two and 4-thread units whereas Figure 8.b
shows the speedup over a single-thread execution. We can see that
a speculative multithreaded execution provides significant
speedups over a single-thread execution for all the programs. For
4-thread units, the highest speedups are exhibited by ijpeg and
m88ksim, which achieve 94% and 45% respectively, and the
lowest speedups are 9% and 10%, which correspond to perl and
vortex respectively. On average, the speedup is 17% and 28% for 2
and 4 thread units respectively. It is remarkable the high IPC of
some programs, which approximate the bound due to the fetch
bandwidth. In particular, ijpeg achieves an IPC of 4.03 with 4-
thread units, which is slightly higher than the fetch bandwidth,
which confirms the benefits of the fetch sharing approach.

Figure 9 shows the degree of thread-level parallelism exploited
by the clustered speculative multithreaded architecture. It can be
observed that speculative multithreading is an important source of
parallelism for all SpecInt95 programs, which are known to be
hard to parallelize at compile-time. For 4-thread units, the average
number of threads per cycles (TPC) is higher than 1.2 for all
programs. On average, the TPC is 1.3 and 1.6 for 2 and 4-thread
units respectively. Ijpeg and compress show a remarkable degree
of speculative parallelism, with a TPC of 2.6 and 2.0 respectively.
Note that the speedups are correlated with the TPC figures, being
the latter always lower than the former, mainly due to
misspeculations. Figure 9 also shows the TPC for the initial
microarchitecture proposed in [20], which was able to exploit
speculative parallelism only when threads followed the same
control flow. It can be seen that the benefit of supporting multiple
control-flows is very significant.

Finally, we compare the performance of the conservative and

Figure 9.  Average number of active threads per cycle (TPC)
for 2 and 4 thread units. For comparison purposes, it is also
shown the TPC achieved by the SM architecture [20] with 4

thread units.
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aggressive spawning policies. Figure 10.a shows the percentage of
dynamic instructions that are parallelized. The first bar shows the
percentage of instructions in innermost iterations. It can be seen
that the part of the code that is candidate to be parallelized is quite
high for all the programs. The other two bars show the percentage
of dynamic instructions that are actually parallelized by the
conservative and aggressive policies. As one may expect, the
aggressive policy provides more speculative parallelism (about
40% of the code is parallelized). However, it incurs in a higher
number of re-executions due to value/dependence misspeculation,
as shown in Figure 10.b. The combination of these two opposite
effects is that the aggressive approach achieves a slightly higher
performance in terms of IPC for 4 programs (compress, gcc, go
and ijpeg), whereas for other 3 programs (m88ksim, perl and
vortex) the performance is very similar, and finally, for li the best
performance is obtained by the conservative policy (see figure 11).

4.  Related work
This work is inspired in previous proposals for dynamically
scheduled processors with support for multiple speculative
threads, such as the Expandable Split Window paradigm [6];
Multiscalar processors [27]; the SPSM architecture [4]; the
Superthreaded architecture [29]; the Multithreaded Decoupled
architecture [3]; Trace processors [23] [33]; the Dependence
Speculative Multithreaded Architecture [19]; and Dynamic
Multithreaded processors [1]. The Clustered Speculative
Multithreaded architecture differs from previous proposals in the
way that the speculation mechanisms are implemented. The
control-flow, data value and data dependence speculation
mechanisms are new contributions of this microarchitecture. Other
important differences are:

• Multiscalar, SPSM, Superthreaded, Multithreaded Decoupled

Figure 10.  a) Percentage of dynamic instructions that are
parallelized; and b) percentage of threads with re-execu-

tions due to value/dependence mispredictions.
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Figure 11.  IPC of the conservative and aggressive
spawning policies for 4 thread units.
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and Dependence Speculative Multithreaded architectures do
not use data value speculation.

• Trace processors speculate on arbitrary traces. Loop traces
have more predictable inputs/outputs and control flows since
they are associated to a part of the program that corresponds to
a high-level construct. Moreover, trace processors have a
global register file, which limits its scalability.

• The Dynamic Multithreaded Processor does not predict
dependences and the value prediction scheme is very simple:
the register file of the parent thread is copied into the child
register file. Moreover, it spawns a speculative thread to
execute the continuation of a loop whereas the non-speculative
one proceeds with the whole loop. It also spawns a speculative
thread at subroutine invocations.

Support for multiple speculative threads has recently been
proposed as a way to reduce branch misprediction penalty by
spawning speculative threads that execute both paths of
conditional branches that are difficult to predict ([15][32][34]
among others).

Multiple speculative threads can be also effective for a
multiprocessor platform, as researched in [11][14][16][28]. In
these works, an “always-independent” dependence prediction
scheme is used and they do not include value prediction
mechanisms.

Finally, predicting data values (see [17][26][35] among others)
and data dependences (see [2][7][21] among others) is currently an
active research.

5.  Conclusions
We have presented a processor microarchitecture that supports the
simultaneous execution of multiple threads. A clustered
microarchitecture, in which most of the resources are local to each
thread unit, allows the scalability of the system.

A main feature of the proposed microarchitecture is its
capability to exploit speculative thread parallelism from a single-
thread program. These speculative threads use otherwise idle
resources of the processor, when enough threads are not provided
by the compiler/run-time system.

Parallel threads are speculative in the sense that its control
flow is predicted as well as their dependences with previous
threads and the values that flow through them. We show that data
speculation can significantly increase the performance of a
multithreaded architecture. Control-flow, data value and data
dependence predictors especially oriented to a speculative
multithreaded architecture are proposed.

Experimental results show that the proposed microarchitecture
can significantly improve the performance of programs that are
hard to parallelize, such as the SpecInt95. On average, about 1.6
threads can be executed in parallel for the whole benchmark suite,
and for particular programs such as ijpeg, this number grows up to
2.6, in a 4-thread unit machine.

The proposed microarchitecture relieves the fetch bandwidth
requirements, which is one of the critical issues of multithreaded
processors, by fetching the instructions that belong to threads with
the same control flow just once and dispatching them to all the
involved threads. Several SpecInt95 programs achieved an IPC
close to 4 (for one of them was even higher than 4) with a simple
fetch engine that can fetch just up to 4 consecutive instructions per
cycle.
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