Input Parameters |
Duty Ratio ($D$) |
|
Number of Phases ($M$) |
|
Number of Turns per Winding ($N$) |
|
Derived Parameters |
Interleaving Boosting Inductance ($1/\delta$) |
|
Number of Overlaped Phases ($k$) |
|
Interleaving Ripple Compression ($\delta$) |
|
Method Name |
Inductance Dual Model |
Inductance Matrix Model |
Multiwinding Transformer Model |
Design Parameters |
$$ \mathcal{R}_L $$ |
|
$$ L_S $$ |
|
$$ L_l $$ |
|
$$ \mathcal{R}_C $$ |
|
$$ L_M $$ |
|
$$ L_\mu $$ |
|
$$ \beta = \frac{\mathcal{R}_C}{\mathcal{R}_L} $$ |
|
$$ \alpha = -\frac{L_M}{L_S} $$ |
|
$$ \rho = -\frac{L_\mu}{L_l} $$ |
|
Description Matrix |
$$
N^2
\begin{bmatrix}
\frac{di_1}{dt} \\
\frac{di_2}{dt} \\
\vdots \\
\frac{di_M}{dt} \\
\end{bmatrix}
=
\begin{bmatrix}
\mathcal{R}_L + \mathcal{R}_C & \mathcal{R}_C & \ldots & \mathcal{R}_C \\
\mathcal{R}_C & \mathcal{R}_L + \mathcal{R}_C & \ldots & \mathcal{R}_C \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{R}_C & \ldots & \mathcal{R}_C & \mathcal{R}_L + \mathcal{R}_C \\
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
\vdots \\
v_M \\
\end{bmatrix}
$$ |
$$
\begin{bmatrix}
v_1 \\
v_2 \\
\vdots \\
v_M \\
\end{bmatrix}
=
\begin{bmatrix}
L_S & L_M & \ldots & L_M \\
L_M & L_S & \ldots & L_M \\
\vdots & \vdots & \ddots & \vdots \\
L_M & \ldots & L_M & L_S \\
\end{bmatrix}
\begin{bmatrix}
\frac{di_1}{dt} \\
\frac{di_2}{dt} \\
\vdots \\
\frac{di_M}{dt} \\
\end{bmatrix}
$$ |
$$
\begin{bmatrix}
v_1 \\
v_2 \\
\vdots \\
v_M \\
\end{bmatrix}
=
\begin{bmatrix}
L_\mu + L_l & -\frac{1}{M-1} L_\mu & \ldots & -\frac{1}{M-1} L_\mu \\
-\frac{1}{M-1} L_\mu & L_\mu + L_l & \ldots & -\frac{1}{M-1} L_\mu \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{M-1} L_\mu & -\frac{1}{M-1} L_\mu & \ldots & L\mu + L_l \\
\end{bmatrix}
\begin{bmatrix}
\frac{di_1}{dt} \\
\frac{di_2}{dt} \\
\vdots \\
\frac{di_M}{dt} \\
\end{bmatrix}
$$ |
Lumped Circuit Model |
|
|
|
Model Parameters (Units: $\mathcal{R}$ ~ 1/Henry, $L$ ~ Henry, $\Phi$ ~ Webber) |
$$\mathcal{R}_L$$ |
|
$$\mathcal{R}_L = \frac{N^2}{L_S - L_M}$$ |
|
$$\mathcal{R}_L = \frac{N^2(M-1)}{(M-1)L_l + ML_\mu}$$ |
|
$$ \mathcal{R}_C $$ |
|
$$ \mathcal{R}_C = \frac{-N^2 L_M}{(L_S - L_M)(L_S + (M-1)L_M)} $$ |
|
$$ \mathcal{R}_C = \frac{-N^2 L_\mu}{L_l((M-1)L_l + M L_\mu)} $$ |
|
$$ L_l = \frac{N^2}{\mathcal{R}_L + M \mathcal{R}_C} $$ |
|
$$ L_l = L_S + (M-1) L_M $$ |
|
$$ L_l $$ |
|
$$ L_\mu = \frac{N^2 (M-1) \mathcal{R}_C}{\mathcal{R}_L (\mathcal{R}_L + M \mathcal{R}_C)} $$ |
|
$$ L_\mu = -(M-1) L_M $$ |
|
$$ L_\mu $$ |
|
$$ L_S = \frac{N^2(\mathcal{R}_L + (M-1) \mathcal{R}_C)}{\mathcal{R}_L (\mathcal{R}_L + M \mathcal{R}_C)} $$ |
|
$$ L_S $$ |
|
$$ L_S = L_\mu + L_l $$ |
|
$$ L_M = \frac{-N^2 \mathcal{R}_C}{\mathcal{R}_L(\mathcal{R}_L + M \mathcal{R}_C)}$$ |
|
$$ L_M $$ |
|
$$ L_M = -\frac{1}{M-1} L_\mu $$ |
|
$$ L_L = \frac{1}{\mathcal{R}_L} $$ |
|
$$ L_L = \frac{1}{\mathcal{R}_L} $$ |
|
$$ L_L = \frac{1}{\mathcal{R}_L} $$ |
|
$$ L_C = \frac{1}{\mathcal{R}_C} $$ |
|
$$ L_C = \frac{1}{\mathcal{R}_C} $$ |
|
$$ L_C = \frac{1}{\mathcal{R}_C} $$ |
|
$$ L_L^*= \frac{N^2(\mathcal{R}_L + (M-1) \mathcal{R}_C)}{\mathcal{R}_L(\mathcal{R}_L + M \mathcal{R}_C)} $$ |
|
$$ L_L^*= L_S $$ |
|
$$ L_L^*= L_\mu+L_l $$ |
|
$$ L_C^*= \frac{N^2}{\frac{\mathcal{R}_L}{M} + \mathcal{R}_C} $$ |
|
$$ L_C^*= M(L_S+(M-1)L_M) $$ |
|
$$ L_C^*= ML_l $$ |
|
$L_{oss}$ |
$$ \frac{(1-D)DMN^2}{(\mathcal{R}_L + M \mathcal{R}_C)(k + 1 - DM)(DM - k)} $$ |
|
$$ \frac{(1-D)DM(L_S + L_M(M-1))}{(DM - k)(1 + k - DM)} $$ |
|
$$ \frac{(1-D)DML_l}{(DM-k)(1 + k - DM)} $$ |
|
$L_{pss}$ |
$$ \frac{N^2(1-D)}{-\frac{k^2\mathcal{R}_C}{DM}-\frac{k\mathcal{R}_C}{DM} + 2k\mathcal{R}_C - DM\mathcal{R}_C + \mathcal{R}_C - DR_L + R_L} $$ |
|
$$ \frac{(L_S - L_M)(L_S + (M-1)L_M)}{L_S + ((M-2k-2) + \frac{k(k+1)}{MD} + \frac{MD(M-2k-1)+k(k+1)}{M(1-D)} L_M)} $$ |
|
$$ \frac{DM(1-D)((M-1)L_l + ML_\mu)L_l}{DM(1-D)(M-1)L_l + (DM(1-DM)-k^2-k+2DMk)L_\mu} $$ |
|
$L_{otr}$ |
$$ \frac{N^2}{M(\mathcal{R}_L + M \mathcal{R}_C)} $$ |
|
$$ \frac{L_S + (M-1) L_M}{M} $$ |
|
$$ \frac{L_l}{M} $$ |
|
$L_{ptr}$ |
$$ \frac{N^2}{\mathcal{R}_L + M \mathcal{R}_C} $$ |
|
$$ L_S + (M-1) L_M $$ |
|
$$ L_l $$ |
|
$L_{ptr}/L_{pss}$ |
$$ \frac{-\frac{k^2\beta}{DM} - \frac{k\beta}{DM} + 2k\beta - DM \beta + \beta - D + 1}{(1-D)(1 + M\beta)} $$ |
|
$$ \frac{1 - ((M-2k-2) + \frac{k(k+1)}{MD} + \frac{MD(M-2k-1) + k(k+1)}{M(1-D)})\alpha}{1+\alpha} $$ |
|
$$ \frac{DM(1-D)(M-1) + (DM(1-DM)-k^2-k+2DMk)\rho}{DM(1-D)(M-1+M_\rho)} $$ |
|
$\Phi_{L,DC}/I_{out}$ |
$$ \frac{N}{M(\mathcal{R}_L + M \mathcal{R}_C)} $$ |
|
$$ \frac{L_S+(M-1)L_M}{MN} $$ |
|
$$ \frac{L_l}{MN} $$ |
|
$\Phi_{C,DC}/I_{out}$ |
$$ \frac{N}{\mathcal{R}_L + M \mathcal{R}_C} $$ |
|
$$ \frac{L_S+(M-1)L_M}{N} $$ |
|
$$ \frac{L_l}{N} $$ |
|