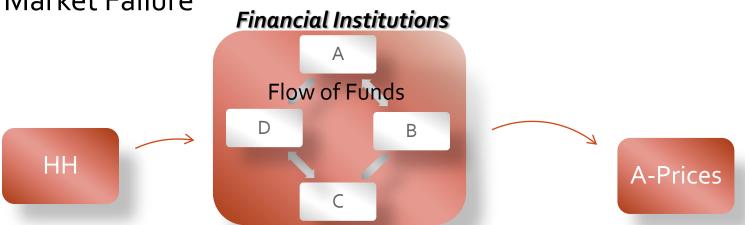

### INSTITUTIONAL FINANCE,.... PRINCETON: DEPARTMENT-WIDE SEMINAR

Markus K. Brunnermeier

# Represent. Agent "Euler Equation Finance"

- No (funding) friction
  - Starting with Lucas ...
  - Perfect aggregation

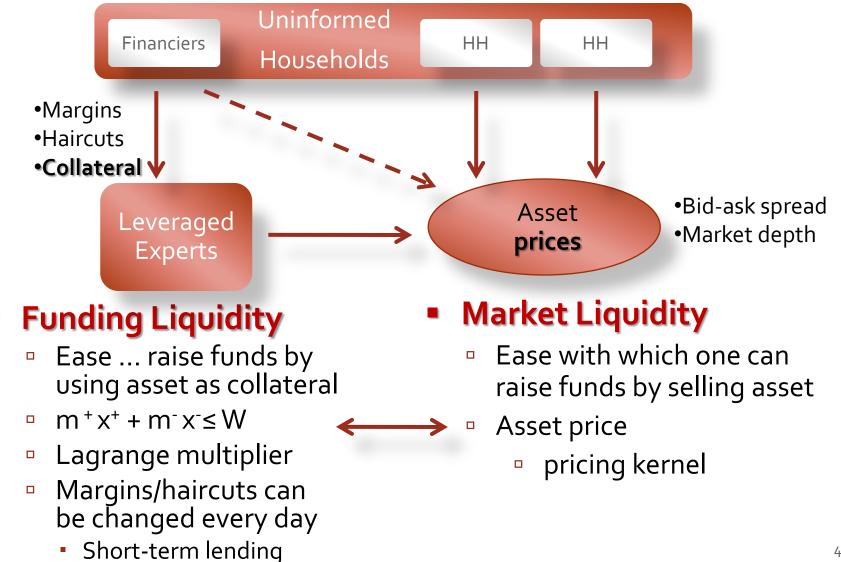



Financial sector is a veil

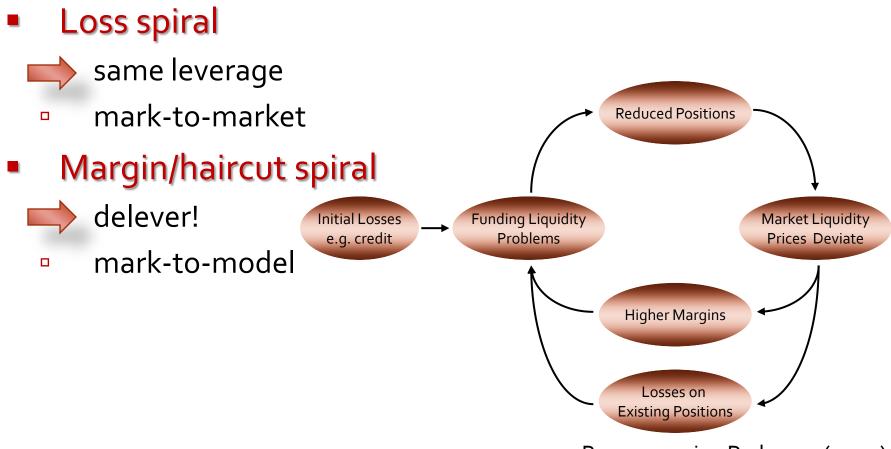
#### Pricing kernel = MRS of representative household

- Modeling: exotic preferences/utility functions + beliefs
- Data source: Consumption

### "Institutional Finance"


- Funding frictions are at the center investors with expertise rely on funding w/o expertise
  - No aggregation
  - Market Failure




Pricing Kernel = Shadow cost of funding (liquidity)

- Modeling: institutional frictions
- Data source: Flow of funds

# **Funding and Market Liquidity** (with Lasse Pedersen)



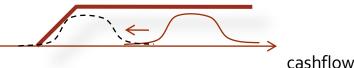
# Liquidity spirals



Brunnermeier-Pedersen (2009)

# Margin/haircut spiral - Procyclicality

- Margins/haircut increase in times of crisis margin = f(risk measure)
- Two Reasons
  - 1. Backward-looking estimation of risk measure
    - Use forward looking measures
    - Use long enough data series
  - 2. Adverse selection
    - Debt becomes more information sensitive (not so much out of the money anymore)

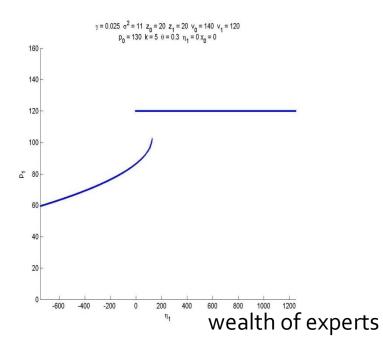



- Credit bubbles
  - whose bursting undermines financial system



# Margin/haircut spiral - Procyclicality

- Margins/haircut increase in times of crisis margin = f(risk measure)
- Two Reasons
  - 1. Backward-looking estimation of risk measure
    - Use forward looking measures
    - Use long enough data series
  - 2. Adverse selection
    - Debt becomes more information sensitive (not so much out of the money anymore)




- Credit bubbles
  - whose bursting undermines financial system



# Fire-sale externality

- Liquidity Spiral
  - Amplification
  - Fragility
  - Multiple Equilibria
    Systemic risk is endogenous



- Precuniary externality + incomplete markets
  - Take on too much leverage/maturity mismatch
  - take fire-sale price as given
  - also in Stiglitz (1982), Geanakoplos-Polemarchakis (1986)

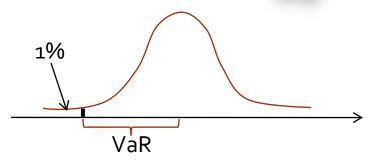


Fire-sales depress price also for others

# **Other Externalities/Financing Frictions**

#### 1. Hoarding

- Micro-prudent
  - SIV might draw on credit line
  - At the same time interbank market is closed
- Macro-prudent?
- 2. Runs dynamic co-opetition
- 3. Network Externality
  - Hiding own's commitment in uncertainty for counterparties


See JEP article

## Overview

- Institutional Finance
  - Liquidity Spiral: Amplification, Fragility, Multiplicity – with Lasse Pedersen
  - Procyclicality
  - Fire-sale Externality
- Implications for Financial Regulation
  - CoVaR with Tobias Adrian
- Implications for Monetary Economics
  - with Arvind Krishnamurthy
  - Role of financial institutions
  - Maturity Rat Race with Martin Oehmke

# Current bank regulation

1. Risk of each bank in isolation 🔿 Value at Risk



- 2. Focus on asset side of the balance sheet matter
  - Asset side
    - Asset by asset risk weighted biversify in off-balance SPV
    - Value at Risk (VaR)
  - Liability side maturity mismatch gets little attention

# Two challenges ....

#### 1. Focus on externalities – systemic risk contribution

- What are the externalities?
- How to measure contribution to systemic risk?
  - CoVaR influences
    - Who should be regulated? (AIG, ...)
    - What is the optimal
      - capital charge (cap),
      - Pigouvian tax
      - Private insurance scheme?
- 2. Countercyclical regulation
  - How to avoid procyclicality?

+ incorporate liquidity risk – asset-liability interaction

# Macro-prudential regulation

#### 1. Externality:

Measure contribution of institution to systemic risk: CoVaR

- Response to current regulation "hang on to others and take positions that drag others down when you are in trouble" (maximize bailout probability)
  - become big
  - become interconnected

#### 2. Procyclicality:

- Lean against "credit bubbles" laddered response
  - Bubble + maturity mismatch impair financial system (vs. NASDAQ bubble)
- Impose Capital requirements/Pigouvian tax/Private insurance scheme
  - not directly on ΔCoVaR, but on
  - frequently observed factors, like maturity mismatch, leverage, B/M, crowdedness of trades/credit, ...

### Overview

- Institutional Finance
- Implications for Financial Regulation
  - contribution vs. exposure CoVaR
  - Quantile Regressions
  - Addressing Procyclicality
  - Market variables
- Implications for Monetary Economics
  - Maturity Rat Race with Martin Oehmke

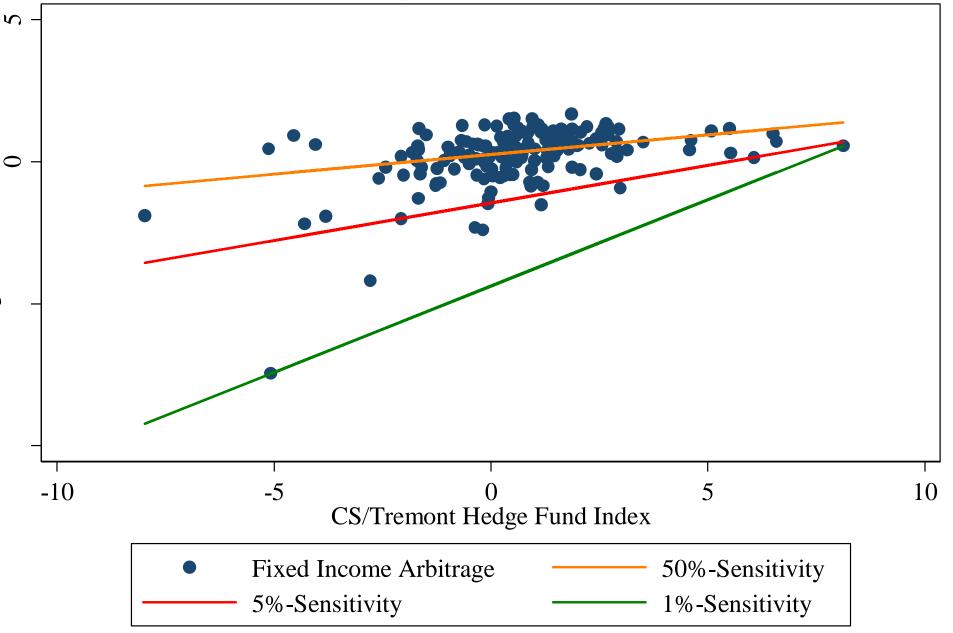
# CoVaR

- CoVaR = VaR conditional on institute *i* (index) is in distress (at it's VaR level)
- Exposure CoVaR
  - **Q1**: Which institutions are most exposed if there is a systemic crisis?
  - VaR<sup>i</sup> | system in distress
- Contribution CoVaR
  - **Q2:** Which institutions contribute (in a non-causal sense)
    - VaR<sup>system</sup> institution *i* in distress

| Cover both types       | Institutions                 |
|------------------------|------------------------------|
| Risk spillovers        | "individually systemic"      |
| Tail risk correlations | "systemic as part of a herd" |

Non-causal, can be driven by common factor

#### **Quantile Regressions: A Refresher**


OLS Regression: min sum of squared residuals

$$\beta^{OLS} = \arg\min_{\beta} \Sigma_t \quad y_t - \alpha - \beta x_t^{2}$$

Quantile Regression: min weighted absolute values

$$\beta^{q} = \arg\min_{\beta} \Sigma_{t} \begin{cases} q |y_{t} - \alpha - \beta x_{t}| & \text{if } y_{t} - \alpha - \beta x_{t} \ge 0\\ 1 - q |y_{t} - \alpha - \beta x_{t}| & \text{if } y_{t} - \alpha - \beta x_{t} < 0 \end{cases}$$

#### q-Sensitivities



#### Quantiles = - Value-at-Risk

- Quantile regression:
  - Quantile q of y as a linear function of x

$$\hat{y}_q | x = F_y^{-1} q | x = \alpha_q + \beta_q x$$

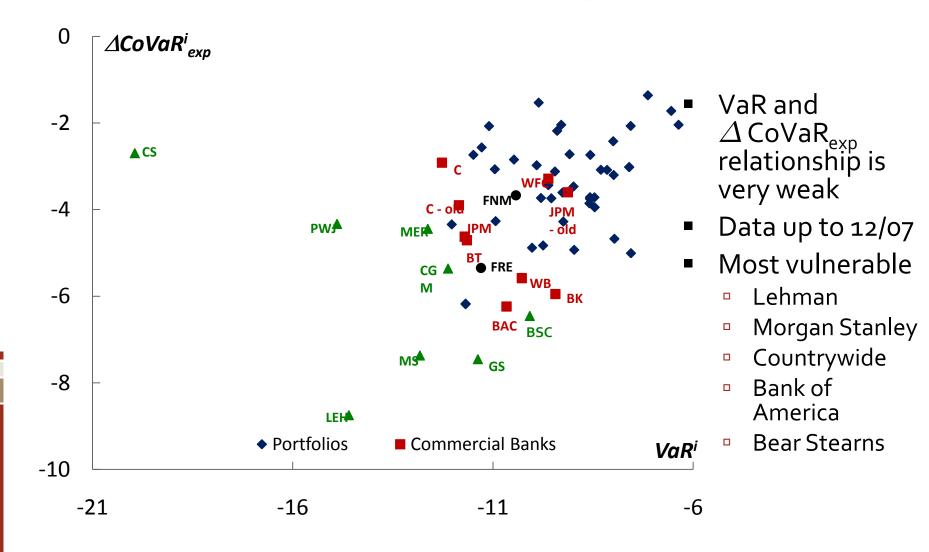
where  $F^{-1}(q|x)$  is the inverse CDF conditional on x

- Hence,  $F^{-1}(q|x) = q\%$  Value-at-Risk conditional on x.
  - Note out (non-traditional) sign convention!

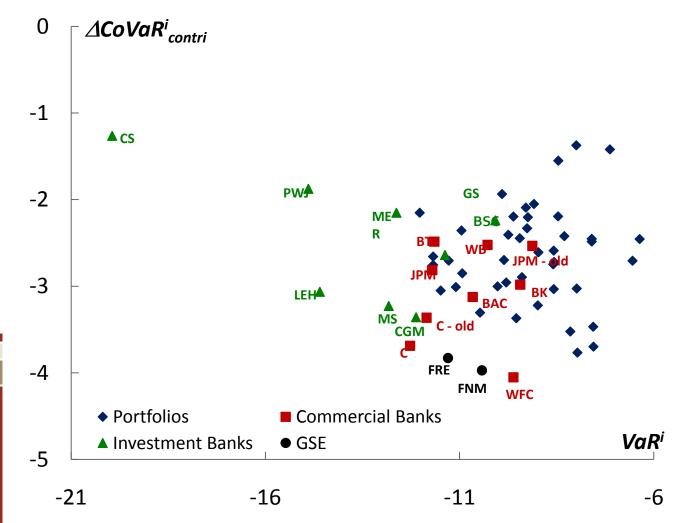
# CoVaR - using quantile regressions

$$CoVaR_q^{ij} = VaR_q^i | VaR_q^j = \alpha_q^{ij} + \beta_q^{ij}VaR_q^j$$
$$\Delta CoVaR_q^{ij} = CoVaR_q^{ij} - VaR_q^i$$

- Illustration:
  - Same individual VaR, but A's CoVaR > B's CoVaR
  - Analogy to Covariance in CAPM
- Various conditionings?
  - 1. Exposure CoVaR: Individual institution on financial index
    - Who is vulnerable/exposed to?
  - 2. Contribution CoVaR: Financial index on individual institution
    - Who contributes?
  - 3. Risk Spillover: Institution/strategy i on institution/strategy j


#### Data

- (Commercial bank and security broker dealer industry portfolios from Ken French 1926/07-2008/12)
- NYFed primary dealer (US) + GSE: CRSP returns 1986/01-2008/12 (weekly) [equity returns to also capture asset and liability]
  - Commercial banks
  - Investment banks
  - Portfolios sorted in quintiles based on
    - Maturity mismatch, liquidity, size, B/M, cash/asset, equity vol.
  - CDS and option data of top 10 US banks, daily 2004-2008
  - CSFB/Tremont hedge fund strategies 1994/1-2008/12 (monthly)
    - Long/Short Equity, Global Macro, Event Driven, Fixed Income Arbitrage, Multi-Strategy, Emerging Markets, Equity Market Neutral, Convertible Arbitrage, Managed Futures, Dedicated Short Bias


## Overview

- Institutional Finance
- Implications for Financial Regulation
  - CoVaR contribution vs. exposure
  - Quantile Regressions
  - CoVaR versus VaR
  - Addressing Procyclicality
  - Market variables
- Implications for Monetary Economics
  - Maturity Rat Race with Martin Oehmke

# Q1: Who is in distress during systemic crisis?



# Q2: Who "contributes" to systemic risk?



- VaR does not capture systemic risk contribution <u>A</u> CoVaR<sub>contri</sub>
- Data up to 2007/12

## Overview

- Institutional Finance
- Implications for Financial Regulation
  - contribution vs. exposure CoVaR
  - Quantile Regressions
  - Addressing Procyclicality
    - Time-varying CoVaRs
    - Link to characteristics
  - Market variables
- Implications for Monetary Economics
  - Maturity Rat Race with Martin Oehmke

# Time-varying CoVaR

#### Relate to macro factors

- VIX Level
- 3 month yield
- Repo 3 month Treasury
- Moody's BAA 10 year Treasury
- IoYear 3 month Treasury
- (House prices)
- (Aggregate Credit growth/spread)
- (Haircut/margins (LTC ratios))
  ... let's figure out what matters!

Obtain Panel data of CoVaR

Next step: Relate to institution specific (panel) data

interpretation "Volatility"

"Flight to Liquidity" "Credit indicator" "Business Cycle"

## Average factor exposure

INSTITUTIONS

PORTFOLIOS

|               | VaR <sup>index</sup> | VaR <sup>i</sup> | CoVaR <sup>i</sup> contr | CoVaR <sup>i</sup> <sub>exp</sub> | VaR <sup>i</sup> | CoVaR <sup>i</sup> contr | CoVaR <sup>i</sup> <sub>exp</sub> |
|---------------|----------------------|------------------|--------------------------|-----------------------------------|------------------|--------------------------|-----------------------------------|
| VIX           | -0.20                | -0.28            | -0.11                    | -0.15                             | -0.18            | -0.14                    | -0.13                             |
|               | (-2.04)              | (-4.93)          | (-3.56)                  | (-3.43)                           | (-1.33)          | (-2.82)                  | (-2.52)                           |
| 3 Month Yield | 0.31                 | -0.24            | -0.20                    | -0.74                             | -0.09            | 0.05                     | -0.24                             |
|               | (1.41)               | (-0.97)          | (-3.93)                  | (-2.36)                           | (-0.53)          | (0.32)                   | (-1.06)                           |
| Repo spread   | -4.56                | -3.30            | -2.61                    | 0.08                              | -4.65            | -1.39                    | 0.91                              |
|               | (-1.80)              | (0.31)           | (-6.60)                  | (-0.03)                           | (-1.45)          | (-1.14)                  | (0.46)                            |
| Credit spread | -0.86                | -1.09            | -0.86                    | -2.63                             | -2.89            | -0.83                    | -1.38                             |
|               | (-0.65)              | (0.90)           | (-3.61)                  | (-4.23)                           | (-1.91)          | (-1.55)                  | (-2.12)                           |
| Term spread   | 0.15                 | -0.11            | -0.21                    | -0.69                             | 0.33             | 0.12                     | 0.17                              |
|               | (0.40)               | (0.21)           | (-2.80)                  | (-2.07)                           | (0.33)           | (0.56)                   | (0.44)                            |
|               |                      |                  |                          |                                   |                  |                          |                                   |

Average t-stats in parenthesis

# Avoid Procyclicality

- Regulatory charges on ΔCoVaR<sub>contri</sub> may introduce procyclicality
  - Like VaR does in Basel II framework
- Way out: Link + predict ΔCoVaR<sub>contri</sub> to frequently observed characteristics (use Panel data structure)
  - Maturity mismatch
  - Leverage
  - .... special data only bank supervisors have (e.g. crowdedness)
- Extra:
  - Show that these variable carry information beyond VaR

## Predictive

(1 year lag)

#### PANEL A: INSTITUTIONS

#### PANEL B: PORTFOLIOS

|                | Co√      | /aR <sup>i</sup> contri | Co       | VaR <sup>i</sup> exp | CoV      | ′aRi <sub>contri</sub> | Со     | VaR <sup>i</sup> exp |
|----------------|----------|-------------------------|----------|----------------------|----------|------------------------|--------|----------------------|
|                | (1)      | (2)                     | (3)      | (4)                  | (1)      | (2)                    | (3)    | (4)                  |
|                | FE, TE   | FE                      | FE, TE   | FE                   | FE, TE   | FE                     | FE, TE | FE                   |
|                |          |                         |          |                      |          |                        |        |                      |
| VaR (lag)      | 0.02**   | 0.05***                 | -0.06**  | 0.03*                | 0.20***  | 0.14***                |        | -0.26***             |
| Mat-Mism(lag   | ;) -0.30 | -0.30                   | -1.84**  | -1.79**              | 1.20***  | 0.25                   |        | 0.04                 |
| Leverage (lag) | -0.02*** | -0.02***                | -0.01    | -0.02                | -0.01*** | -0.04***               |        | -0.01*               |
| B/M (lag)      | -0.27**  | -0.19**                 | -0.08    | 0.71***              | -0.14    | 0.57***                |        | -0.53***             |
| Size (lag)     | 9.94     | 10.61                   | 27.43*   | -15.68               | -0.52    | -1.34                  |        | 2.52                 |
|                |          |                         |          |                      |          |                        |        |                      |
| Constant       | -0.35    | -0.65**                 | -5.04*** | -3.84***             | -0.55**  | -0.63***               |        | -6.13***             |
|                |          |                         |          |                      |          |                        |        |                      |
| Observations   | 1657     | 1657                    | 1657     | 1657                 | 2486     | 2486                   |        | 2486                 |
| R-squared      | 0.66     | 0.40                    | 0.62     | 0.48                 | 0.72     | 0.38                   |        | 0.71                 |
|                |          |                         |          |                      |          |                        |        |                      |

# Predicting with Market Variables

|                           | ∆CoVaR_contrib     |                    |                    | ∆CoVaR_exp         |                    |                    |                    |                   |
|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
| COEFFICIENT               | 1 Quarter          | 1 Year             | 1 Quarter          | 1 Year             | 1 Quarter          | 1 Year             | 1 Quarter          | 1 Year            |
| CDS beta (lag)            | -0.25***<br>(0.05) | -0.58**<br>(0.23)  |                    |                    | -1.24***<br>(0.39) | -2.54***<br>(0.85) |                    |                   |
| ΔCDS (lag)                | 0.05<br>(0.17)     | 0.06<br>(0.68)     |                    |                    | 1.39<br>(1.10)     | -1.28<br>(2.20)    |                    |                   |
| IV_beta (lag)             |                    |                    | -0.34***<br>(0.11) | -0.67***<br>(0.18) |                    |                    | -1.75***<br>(0.30) | -3.33**<br>(1.39) |
| DIV (lag)                 |                    |                    | -0.05<br>(0.28)    | -0.77***<br>(0.19) |                    |                    | 0.63<br>(0.59)     | -0.56<br>(1.04)   |
|                           |                    |                    |                    |                    |                    |                    |                    | _                 |
| Constant                  | -1.17***<br>(0.04) | -1.28***<br>(0.07) | -1.13***<br>(0.07) | -1.15***<br>(0.08) | -4.65***<br>(0.15) | -4.82***<br>(0.24) | -4.33***<br>(0.17) | 4.20***<br>(0.52) |
| Observations<br>R-squared | 178<br>0.59        | 148<br>0.54        | 178<br>0.55        | 148<br>0.55        | 178<br>0.71        | 148<br>0.68        | 178<br>0.72        | 148<br>0.65       |

beta w.r.t. first principal component on changes in CDS spreads within quarter
 panel regression with FE – (no findings with FE+TE)

37

#### Shock Amplifier vs. Absorber

#### INSTITUTIONS

|                            | VaR_index |           | VaR_     | index      |
|----------------------------|-----------|-----------|----------|------------|
| COEFFICIENT                | 1 Year    | 1.5 Years | 1 Year   | 1.5 Years  |
|                            |           |           |          |            |
| Fitted CoVaR_contrib (lag) | 4.46**    | 6.43***   |          |            |
|                            | (1.91)    | (1.95)    |          |            |
| Resid CoVaR_contrib (lag)  | 0.50      | 0.52      |          |            |
|                            | (0.40)    | (0.41)    |          |            |
| Fitted CoVaR_exp (lag)     |           |           | 0.75     | 0.51       |
|                            |           |           | (1.42)   | (1.34)     |
| Resid CoVaR_exp (lag)      |           |           | 2.94***  | 3.95***    |
|                            |           |           | (0.57)   | (0.54)     |
| VaR_index (lag)            | 0.30**    | 0.13      | -1.25*** | · -1.96*** |
|                            | (0.12)    | (0.12)    | (0.33)   | (0.32)     |

## Overview

- Institutional Finance
- Implications for Financial Regulation CoVaR
  - Macro-prudential regulation
    - Focus on externalities
    - Measure for systemic risk is needed, e.g. CoVaR
    - Maturity mismatch (+ Leverage) encourage long-term funding
  - Countercyclical regulation
    - Find variables that predict average future CoVaR
    - Forward-looking measures, spreads, …
- Implications for Monetary Economics
  - Role of financial institutions
  - Maturity Rat Race

# Implications for Monetary Economics

| Objectives          | Instruments                |           |
|---------------------|----------------------------|-----------|
| Price stability     | Target rate (money supply) | Tinbergen |
| Financial stability | Liquidity policy           | 5         |

- Monetary Transmission
  - Target rate (short-term)
  - Effective rate (short-term)
  - Corporate lending rate
- Liquidity policy
  - Narrow: Hold short-term rate close to target
    - Reduce term risk premium
  - Broad: financial stability to ensure transmission
    - Reduce term and credit risk premium



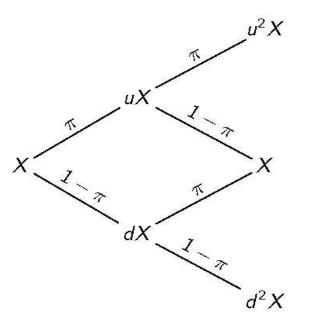
Need to understand the role of financial institutions first

# **Role of Financial Institutions**

- Project/asset selection
  - Informational advantage (Sharpe, Rajan)
- Create info-insensitive securities (Gorton-Pennachi)
  - Pool and tranch in order to reduces lemon's problem
- Maturity transformation Why short-term (debt) funding?
  - Liquidity shock insurance (Diamond-Dybvig)
    - maturity tranformation is good, but bank run caveat
  - Incentivize management (Calomiris-Kahn)
    - Maturity mismatch is good
  - Maturity rat race (with MartinOehmke)
    - Maturity mismatch is bad



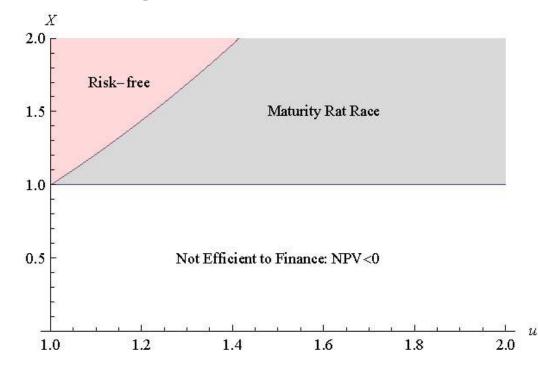
## The Maturity Rat Race


- Leads to a unraveling to short-term debt
- Friction with multiple creditors with differing maturities
- Mechanism:
  - Creditors with shorter maturity can adjust face value (reduce interest rate) since they can pull out in bad states
  - Part of cost in low state is borne not by borrower but by remaining long-term creditors (long-term debt holders are diluted)

# Setup

- Financing can be
  - Long-term: two periods
  - Short-term: one period + rollover at t=1
- Borrower has to borrow from multiple lenders
  - Continuum of competitive lenders
  - Each has limited capital
- Priority in default
  - Proportional to face value of debt at time of default

# Project Payoffs


- Long-term project costs 1 at t=0, pays out at t=2
- Expected payoff moves along binominal tree, u=1/d



 Project can be liquidated prematurely at discount: fraction (1-δ) is lost

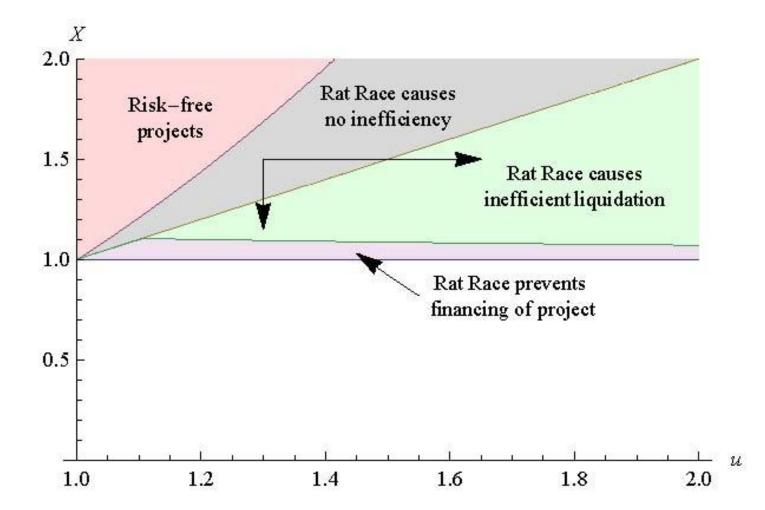
#### The Maturity Rat Race

 Hold everybody else's financing fixed, can borrower and one lender profitably deviate by moving to rollover financing?



#### When is the Rat Race Inefficient?

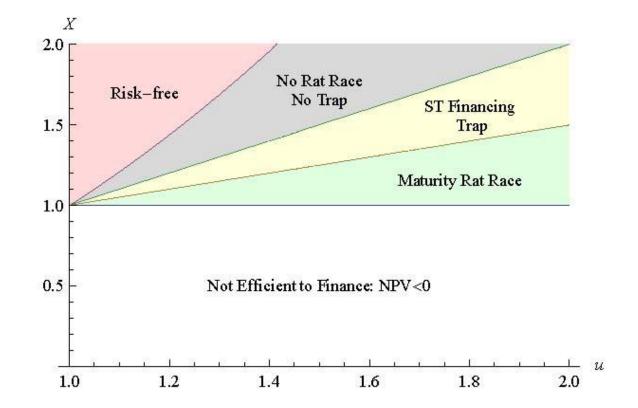
1. Inefficient (early) unwinding in down state


 $dX < 1 \Leftrightarrow X < u$ 

2. Project does not get off the ground (since longterm financing is not viable)

$$\pi u X + (1 - \pi) \delta dX < 1$$

When economy turns sour/risky
 problem becomes more severe


#### Inefficiencies



# **Covenants limit Rat Race**

- Since
  - E.g. covenant restrict raising face value of new short-term debt at time t=1
  - Short-term debt holders always pull out in down state
- Short-term financing trap (multiplicity)
  - If all lenders go short-term + pull out in down state at t=1, then borrower does not want to switch to "expensive" long-term financing

#### Covenants – Short-term Financing Trap



# Conclusion

- Institutional Finance
  - Financial institutions are not a veil
  - Moving away from representative agent models
- Financial Regulation
  - Macro-prudential has to focus on measuring contribution to systemic risk
  - Countercyclicality (to overcome margin/haircut spiral)
- Monetary/Liquidity Policy
  - Role of financial institutions why short-term funding?
  - Avoid "credit bubbles" since they impair financial system