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Abstract

We present a model in which an asset bubble can persist despite the presence
of rational arbitrageurs. The resilience of the bubble stems from the inability of
arbitrageurs to temporarily coordinate their selling strategies. This synchroniza-
tion problem together with the individual incentive to time the market results in
the persistence of bubbles over a substantial period of time. Since the derived
trading equilibrium is unique, our model rationalizes the existence of bubbles in
a strong sense. The model also provides a natural setting in which public events,
by enabling synchronization, can have a disproportionate impact relative to their
intrinsic informational content.
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1 Introduction

Share prices of internet stocks and telecommunication stocks reached extremely high
values in March 2000. In the subsequent months, the CBOE Internet Index lost more
than 75 % of its value. Dramatic price increases followed by sharp price drops are not
a new phenomena. Famous bubbles include the Dutch Tulip Mania of the 1630’s, the
Mississippi Bubble and the South Sea Bubble of the 1720’s.

These episodes are hard to reconcile with the predictions of standard neoclassical
economic theory wherein all market participants are assumed to be fully rational.
This theory predicts that rational traders will typically eliminate a bubble before it
has a chance to develop. Bubbles are ruled out by a classic backwards induction
argument in finite horizon models and by the transversality condition in infinite horizon
models. This counterfactual prediction of rational models has led some scholars like
Kindleberger (1978) to emphasize the role of irrational behavior, and indeed even
adopt the opposite viewpoint that all market participants behave irrationally during
such episodes.

Proponents of the efficient market hypothesis, such as Fama (1965) are quite willing
to admit that behavioral /boundedly rational traders are active in the market place.
However, they argue that the existence of sufficiently many well-informed and well-
financed arbitrageurs guarantees that any potential mispricing induced by behavioral
traders will be corrected. Hence, the efficient market theory also rules out the persis-
tence of bubbles.

Our objective is to examine the validity of the efficient market perspective. In
particular, we investigate whether asset bubbles can survive in the presence of rational
arbitrageurs. Our conclusions suggest that arbitrage ‘ultimately’ works, though it
might be ineffectual over substantial periods. In our setting, a bubble persists even
though rational agents know that the bubble must burst with probability one in finite
time.

Imagine a world in which there are some ‘behavioral’ agents variously subject to
animal spirits, fads and fashions, overconfidence and related psychological biases which
might lead to momentum trading, trend chasing and the like. There is by now a large
literature which documents and models such behavior.! We do not investigate why
behavioral biases needing rational corrections arise in the first place; for this we rely
on the body of work very partially documented in footnote 1. We study the impact of
rational arbitrage in this setting.

Suppose that the bubble asset price grows at a faster rate than the risk free interest
rate, until the bubble bursts. Rational arbitrageurs know that eventually the market
will collapse but meanwhile would like to ride the bubble as it continues to grow. Ideally,
they would like to exit the market just prior to the crash. However, market timing

L Cognitive biases are illustrated in books and articles, such as Daniel, Hirshleifer, and Subrah-
manyam (1998), Hirshleifer (2001), Odean (1998), Thaler (1991), Shiller (2000), and Shleifer (2000).



is a difficult task. Our investors understand that they will, for a variety of reasons,
come up with different solutions to this optimal timing problem. This dispersion of
exit strategies and the consequent lack of synchronization are precisely what permit
the bubble to thrive and grow. This is despite the fact that the bubble bursts as soon
as a sufficient mass of traders sells out.

We present a model which formalizes the above synchronization problem and yields
a new perspective on the existence, persistence, and collapse of bubbles. Our approach
emphasizes two elements; dispersion of opinion among rational arbitrageurs and the
need for coordination.

We assume that the price surpasses the fundamental value at a random point in
time ty. Thereafter, arbitrageurs become sequentially aware of the fact that the price
surpassed the fundamental value. Arbitrageurs do not know whether they have learnt
this information early or late relative to other rational arbitrageurs. Since they become
sequentially aware of the mispricing, their trading strategies are initialized at different
random times. In addition to its literal interpretation the assumption of sequential
awareness can be viewed as a metaphor for a variety of factors such as dispersion of
opinion and information which, in particular, find expression in the factor we seek to
explore and emphasize, that is, temporal miscoordination. Arbitrageurs have common
priors about the underlying structure of the model.

Second, in our model selling pressure only bursts the bubble when a sufficient mass
of arbitrageurs have sold out. Arbitrageurs face financial constraints which limit their
stock holding as well as their maximum short-position. This limits the price impact
of each arbitrageur. Large price movements can only occur if the accumulated selling
pressure exceeds some threshold . In other words, a permanent shift in price levels
requires a coordinated attack. In this respect, our model shares some features with
the static second generation models of currency attacks in the international finance
literature (Obstfeld 1996). However, these currency attack models focus exclusively on
the question of whether to attack or not but ignore the important temporal aspect of
coordination. Coordinating on a given action is complicated by the need to coordinate
both the action and the time at which it is taken. Thus, speculators need to decide
both whether or not to attack - the problem that is traditionally emphasized in the
currency attack literature - and also ‘when’ to attack. It would be futile to simply
coordinate on the ‘whether’ if it were not possible to also coordinate on the ‘when’.
This temporal element exacerbates the underlying coordination problem.

Our model has both elements of cooperation and of competition. On the one hand,
at least a fraction k of arbitrageurs need to sell out in order for the bubble to burst;
this is the coordination aspect. On the other hand, arbitrageurs are competitive since
at most a fraction x < 1 of them can leave the market prior to the crash.?

In the equilibrium of our model, arbitrageurs stay in the market until the subjective

2Potential further applications of the dynamic coordination game developed in this paper include
currency attacks, bank-runs and investments games.



probability that the bubble will burst in the next trading round is sufficiently high.
Arbitrageurs who get out of the market just prior to the crash make the highest profit.
Arbitrageurs who leave the market very early make some profit, but forgo much of the
higher rate of appreciation of the bubble. Arbitrageurs who stay in the market too
long lose all capital gains which result from the bubble’s appreciation.

The result on market timing seems to fit well with popular accounts of the behavior
of hedge fund managers during the recent internet bubble.® For example, when Stanley
Druckenmiller, who managed George Soros’ $8.2 billion Quantum Fund, was asked why
he didn’t get out of internet stocks earlier even though he knew that technology stocks
were overvalued, he replied that he thought the party wasn’t going to end so quickly.
In his words “We thought it was the eighth inning, and it was the ninth.”* Faced with
mounting losses, Druckenmiller resigned as Quantum’s fund manager in April 2000.

However, fund managers can also not afford to simply stay away from a rapidly
growing bubble. Julian Roberts, manager of the legendary Tiger Hedge Fund, refused
to invest in technology stocks since he thought they were overvalued. The Tiger Fund
was dissolved in 1999 because its returns could not keep up with the returns generated
by dotcom stocks. A Wall Street analyst who has dealt with both hedge fund managers
vividly summarized the situation: “Julian said, ‘This is irrational and I won’t play,’
and they carried him out feet first. Druckenmiller said, ‘“This is irrational and I will
play,” and they carried him out feet first.”

Rational arbitrageurs ride the bubble even though they know that the bubble will
burst for exogenous reasons by some time ¢, + 7 if it has not succumbed to endogenous
selling pressure prior to that time. Here ?; is the unknown time at which the price path
surpasses the fundamental value and arbitrageurs start getting aware of the mispricing.
Our analysis shows that if arbitrageurs’ opinion is sufficiently dispersed, there exists
an equilibrium in which the bubble never bursts prior to ty + 7. Even long after the
bubble begins and after all agents are aware of the bubble, it is nevertheless the case
that endogenous selling pressure is never high enough to burst the bubble. Moreover,
this equilibrium is unique.” Thus, there is a striking failure of the backwards induction
argument which would yield immediate collapse in a standard model. The persistence
of the bubble in our model relies on dispersion in traders’ viewpoints about when the
bubble emerged. Presumably, this dispersion is specially high at times of significant

$Kindleberger (1978) notes that even Isaac Newton tried to ride the South Sea Bubble in 1720. He
got out of the market at £7,000 after making a £3,500 profit, but he decided to re-enter it thereby
losing £20,000 at the end. Frustrated with his experience, he concluded: “I can calculate the motions
of the heavenly bodies, but not the madness of people.”

4New York Times, April 29, 2000, “Another Technology Victim; Soros Fund Manager Says He
‘Overplayed” Hand”.

®We restrict attention to perfect Bayesian equilibria in which when an agent sells out, all agents
who become aware of the bubble prior to the agent in question, are also out of the market. We view
this “monotonicity” restriction as both natural and innocuous in the context of the issues we seek to
investigate.



technological changes, such as the invention of the steam boat, telegraph, internet,
etc. Structural breaks such as large scale financial liberalization programs can be
another breeding ground for bubbles, as illustrated by the economic developments in
the Scandinavian countries during the late eighties.

Second, we show that while arbitrageurs never burst a bubble if their opinions are
sufficiently dispersed or if the absorption capacity by the behavioral momentum traders
k is very large, for smaller dispersion of opinion or for smaller s, endogenous selling
pressure advances the date at which the bubble eventually collapses. Nevertheless, the
bubble grows for a substantial period of time. Again, we also show that the symmetric
equilibrium where each arbitrageur sells out after waiting for a certain number of
periods after he becomes aware of the mispricing is unique.

The model also provides a natural setting in which news events can have a dispro-
portionate impact relative to their intrinsic informational content. This is because news
events make it possible for agents to synchronize their exit strategies. Of course, large
price drops are themselves significant public events, and we investigate how an initial
price drop may lead to a full-fledged collapse. Thus the model yields a rudimentary
theory of ‘overreaction’ and price ‘cascades’ and suggests a rationale for psychological
benchmarks such as ‘resistance lines’. In addition, our model provides a framework for
understanding fads in information such as the (over-)emphasis on trade figures in the
eighties and on interest rates in the nineties. Finally, our model supports arguments in
favor of centralized news dissemination since news which is received sequentially over
a long interval is much less likely to be reflected in the price.

Overall, the idea that the bursting of a bubble requires synchronized action by
rational arbitrageurs, who might lack both the incentive and the ability to act in
a coordinated way, has important implications. It provides theoretical support for
empirical observations on the existence and the pervasiveness of bubbles. It undermines
the central presumption of the efficient market perspective that not all agents need to
be rational for prices to be efficient. Finally, our model provides further support for
behavioral finance models which do not explicitly model rational arbitrageurs.

The remainder of the paper is organized as follows. Section 2 illustrates how the
analysis relates to the literature. In Section 3 we introduce the primitives of the
model and define the equilibrium. Section 4 shows that all arbitrageurs employ trigger
strategies in any trading equilibrium. Section 5 demonstrates that if the dispersion
of opinion among arbitrageurs is sufficiently large, they never burst the finite horizon
bubble and it only crashes for exogenous reasons at its maximum size. For smaller
dispersion of opinion the bubble also persists but arbitrageurs burst it before it reaches
its maximum size. This section clarifies why a lack of common knowledge leads to a
failure of backwards induction. Section 6 highlights the special role of public events
and discusses the fragility of bubbles with respect to different forms of public events.
Section 7 focuses on price cascades and market rebounds. Section 8 concludes.



2 Related Literature

Since finite horizon bubbles can be easily ruled out by backwards induction in a sym-
metric information setting with rational traders, most bubble models consider an in-
finite horizon setup.® Blanchard and Watson (1982) present a particularly tractable
formulation, in which the bubble bursts with a constant probability in each trading
period for exogenous reasons. Like the value of any non-dividend paying asset, the
bubble ought to grow in expectations in perpetuity. However, Santos and Woodford
(1997) demonstrated that growing bubbles can be ruled out because they violate the
transversality condition that results from the agents’ optimization problem. They
conclude that bubbles cannot arise in a setting with symmetric information with the
exception of a few stylized cases.

Tirole (1982) shows that bubbles can also be ruled out in a rational expectations
model where risk-neutral traders hold different pieces of information. Risk-neutrality
guarantees that any allocation is interim Pareto efficient. This makes trading a zero-
sum game and hence buying an overvalued ‘bubble’ asset is a negative-sum game.
Allen, Morris, and Postlewaite (1993) highlight three necessary conditions for bubbles
in addition to the interim Pareto inefficiency requirement. They call a mispricing a
bubble if all traders know that the price is too high. However, mutual knowledge of
the bubble does not imply that all traders know that all traders know that the price
exceeds its fundamental value. They provide illustrative examples which satisfy their
conditions and which support bubbles. In Allen and Gorton (1993) fund managers
“churn bubbles.” They take on an overvalued asset even though they know that they
might be last in line and hence unable to unload the asset. While they share in positive
profits they do not in losses, leading to a positive sum game for managers at the expense
of client investors.

All the papers described above assume that all agents are fully rational. In con-
trast, our model falls into the class of models wherein rational arbitrageurs interact with
boundedly rational behavioral traders in the market place.” In DeLong, Shleifer, Sum-
mers, and Waldmann (1990b) rational arbitrageurs push up the price after some initial
good news in order to induce behavioral feedback traders to aggressively buy stocks
in the next period. This delayed reaction by feedback traders allows the arbitrageurs
to unload their position at a profit. In DeLong, Shleifer, Summers, and Waldmann
(1990a) arbitrageurs’ risk aversion and short horizons limit their ability to correct the
mispricing. In contrast, in our model arbitrageurs initially do not even attempt to lean

A more extensive review of the literature on bubbles can be found in Brunnermeier (2001).

"There is also a growing literature that tries to explicitly model the trading patterns of behavioral
traders. This goes beyond the scope of the current paper since our focus is on the inability of rational
arbitrageurs to correct any mispricing caused by behavioral traders. The interested reader is referred
to Barberis and Thaler (forthcoming) and Hirshleifer (2001) for an overview of this literature as well
as to books by Thaler (1991), Shiller (2000), and Shleifer (2000) among others.



against the mispricing even though they are risk-neutral and infinitely lived. In Shleifer
and Vishny (1997), professional fund managers forgo profitable long-run arbitrage op-
portunities because the price might depart even further from the fundamental value in
the intermediate term. In that case, the fund manager would have to report interme-
diate losses causing client investors to withdraw part of their money which forces him
to liquidate at a loss. Knowing this might happen in advance, the fund manager only
partially exploits the arbitrage opportunity.

All these papers build on the insight that rational arbitrageurs do not have the
collective ability to correct a mispricing either because of their risk aversion or because
of other exogenously assumed capital constraints. In contrast in our paper, the aggre-
gate resources of all arbitrageurs is sufficient to bring the price back to its fundamental
value. Thus, the weakness of arbitrage in our model is particularly striking because
arbitrageurs can jointly correct the mispricing, but it nevertheless persists.

Our assumption that a critical mass of speculators is needed to burst a bubble has
its roots in the currency attack literature. Obstfeld (1996) highlights the necessity of
coordination among speculators to break a currency peg and points out the resulting
multiplicity of equilibria in a setting with symmetric information. Morris and Shin
(1998) introduce asymmetric information and derive a unique equilibrium by apply-
ing the global games approach of Carlsson and van Damme (1993). Both currency
attack models are static in the sense that speculators only decide whether to attack
now or never.® Our model is, of course dynamic. The dispersion of opinion among
arbitrageurs, which we model as sequential awareness, can be related to the notion
of “asynchronous clocks.” Asynchronous clocks were first introduced in the computer
science literature by Halpern and Moses (1990). Morris (1995) applies the concept to
a dynamic coordination problem in labor economics. There are several differences be-
tween our papers. His model satisfies strategies complementarity and the global games
approach applies. Our model has elements of both coordination and competition. The
latter leads to a pre-emption motive which plays a central role in our analysis. It is
important for his result that players can only condition on the individual clocks and
not on calendar time or on their payoffs, whereas in our model they can. In particular,

8There are also other dynamic coordination failure games without the preemption motive. They
focus on the elimination of multiple equilibria. Chamley (1999) is able to derive a unique equilibrium in
a dynamic setting with asymmetric information by allowing agents to condition on past outcomes. In
contrast to our model, agents live only for one period in Chamley (1999) and hence do not face a timing
decision problem. A key feature of Burdzy, Frankel, and Pauzner (2001) and Frankel and Pauzner
(2000) - the latter within the specific framework of Matsuyama’s (1991) dynamic two sector model - is
that agents are subject to frictions; in particular they can only change their actions at random times.
This inertia, together with other assumptions regarding permanent payoff shocks generate unique
equilibrium behavior often by iterative dominance arguments. Asymmetric information typically does
not play a role in the latter papers. Our own work relies on asymmetric information; however,
the asymmetric information primarily concerns the temporal structure of the model and leads to a
synchronization problem.



traders learn from the existence of the bubble in our setting. In the richer strategy set
of our model strategic complementarity is not satisfied. See footnote 18 for a discussion
of this point.

Finally we note that some of the key elements of our model echo themes from
Keynes (1936). The connections are elaborated upon in the discussion following the
presentation of the model setup.

3 Model

3.1 Model Setup

Historically bubbles have often emerged in periods of productivity enhancing struc-
tural change. Examples include the railway boom, the electricity boom, and the recent
internet and telecommunication boom. In the latter case, and in many of the historical
examples, sophisticated market participants gradually understood that the immediate
economic impact of these structural changes was limited and that their full implemen-
tation would take a long time. They also realized that only a few of the companies
engaged in the new technology would survive in the long run. On the other hand,
less sophisticated traders over-optimistically believed that a ‘paradigm shift’ or a ‘new
economy’ would lead to permanently higher growth rates.
We assume the price process depicted in Figure 1.
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Figure 1: Illustration of price paths

This price process reflects the scenario outlined above, and may be interpreted as
follows. Prior to t = 0 the stock price index coincides with its fundamental value



which grows at the risk-free interest rate r and rational arbitrageurs are fully invested
in the stock market. Without loss of generality, we normalize the starting point to
t = 0 and the stock market price at t = 0 to pp = 1. From ¢ = 0 onwards the stock
price p; grows at a rate of ¢ > r, that is p; = 9. This higher growth rate may
be viewed as emerging from a series of unusual positive shocks which gradually make
investors more and more optimistic about future prospects. Until some random time
to, the higher price increase is justified by the fundamental development. We assume
that ¢ is exponentially distributed on [0, c0) with the cumulative distribution function
P (tg) = 1 — e M0 1% Nevertheless, the price continues to increase at the faster rate
g even after ¢y. Hence, from t, onwards, only the fraction (1 — 5(-)) of the price is
justified by the fundamentals, while the fraction (3 () reflects the “bubble component.”
We assume that () : [0,7] — [0,/] is a strictly increasing and continuous function
of t — tg, the time elapsed since the price departed from fundamentals. For the special
case where the fundamental value e9%+7(t=%) always grows at a rate r from ¢, onwards,
B(t—tg) =1— e l97mlt=to),

The price p; = €9 is kept above its fundamental value by irrationally exuberant
behavioral traders. They believe in a “new economy paradigm” and think that the
price will grow at a rate of ¢ in perpetuity.!’ As soon as the rational arbitrageur’s
selling pressure exceeds k, the absorption capacity of momentum traders, the price
drops by a fraction (3 () to its post-crash price. From this point onwards, the price
grows at a rate of r. In other words, the bubble bursts as soon as a fraction x of
arbitrageurs sell out their stock holdings.'?> Even if the selling pressure never exceeds
k we assume that the bubble bursts for exogenous reasons as soon as it reaches its
maximum size 3. This translates to a final date, since 3 (-) is strictly increasing. Let
us denote this date by ¢y + 7. Note that this assumption of a final date is arguably the
least conducive to the persistence of bubbles. In a classical model it would lead to an
immediate collapse for the usual backwards programming reasons.

Another important element of our analysis is that rational arbitrageurs become
sequentially informed that the fundamental value has not kept up with the growth of
the stock price index. More specifically, a new cohort of rational arbitrageurs of mass

9We will illustrate later that the analysis can easily be extended to a setting with a stochastic price
process.

10Kindleberger (1978) refers to the phase of fundamentally good news as ‘displacement.” We focus
on the consecutive subgame.

' The price process we assume is a modeling simplification which facilitates a clean and simple
analysis. An explicit derivation would take us too far afield. One, admittedly simplistic, setting
which rationalizes this process is a world with behavioral traders who are risk-neutral, but wealth
constrained and who require a rate of return of g in order to invest in the stock market. Their wealth
constraint limits their aggregate absorption capacity to k.

12We refer to fundamental value as the price which will emerge after the bubble bursts. Notice that
for 5(0) = 0, there is no drop in fundamentals at tg. Nevertheless, the trader who becomes aware of
the bubble at tg, thinks that the current price is too high, since he does not know that she is the first
one, who hears of the mispricing.



% becomes ‘aware’ of the mispricing in each instant ¢ from ¢y until ¢ty + n. That is,
[to, to + n] forms the ‘awareness window.” Since tj is random, an individual arbitrageur
does not know how many other arbitrageurs have received the signal before or after
her. An agent who becomes aware of the bubble at t; has a posterior distribution for %
with support [t; — n,t;]. Each agent views the market from the relative perspective of
her own t¢;. Viewed more abstractly, arbitrageurs’ types are determined by ¢; € [0, o0),
the date when they become aware of the bubble. We denote by #; the arbitrageur
who learns of the mispricing at time ¢;. Figure 2 depicts the distributions of ¢y for
arbitrageurs ¢; , fj and .

O(tlt) .

T e 2

|1 T T .
t-n t-n [f t t, t

Figure 2: Sequential Awareness

Nature’s choice of to determines the ‘active’ types {{;|t; € [to,to + 1]} in the econ-
omy. As noted earlier, we view this specification as a modeling device which captures
temporal miscoordination arising from differences of opinion and information. The
date t; at which agent t; becomes ‘aware’ of the mispricing may be more generally
thought of as the date at which a player’s strategy is ‘initialized’. We assume that A is
sufficiently small such that, 176’1 o < 69(;;). This guarantees that arbitrageurs do not
wish to sell out before they become aware of the mispricing. When A is very high the
model is uninteresting, since arbitrageurs will sell out right away.

The price p; = €9 exceeds its post-crash (fundamental) value from ¢, onwards.
However, only a few arbitrageurs are aware of the mispricing at this point. From ty+nx
onwards, the mispricing is mutual known to a large enough mass of arbitrageurs who
collectively are able to correct it. We label any persistent mispricing beyond ty + nx
as a bubble.

Given such an environment, we want to identify the best strategy of a rational
player ;. Each arbitrageur can sell all or part of her stock holding or even go short
till she reaches a certain limit where her financial constraint is binding. Each trader
can also buy back shares. A trader may exit from and return to the market multiple
times. However, each arbitrageur is limited in the number of shares each arbitrageur
can go short or long. Without loss of generality, we can normalize the action space
to be the continuum between [0, 1], where 0 indicates the maximum long position and
1 the maximum short position each arbitrageur can take on. Given the focus of our
analysis on selling pressure, this sign convention is convenient.

Let o (t, fi) denote the selling pressure of arbitrageur ¢; at ¢ and the function o :
[0,00) x [0,00) — [0, 1] a strategy profile. The strategy of a trader who became aware

10



of the bubble at time ¢; is given by the mapping o (-, fi) :[0,t; + 7] — [0, 1]. Note that
[1 —0 (t, fz)} is trader #;’s stock holding at time ¢. For arbitrary o, the function o (¢, -)
need not be measurable in ¢;. We confine attention to strategy profiles which guarantee
a measurable function o (¢, -). Notice that no individual deviation from such a profile
has any impact on the measurability property. In equilibrium, it will turn out that
the o (t, ) functions have an extremely simple structure. By the definition of a trading
equilibrium, the set of agents with strictly positive sales is an interval. Furthermore, it
will turn out that when agents sell shares they sell out completely. The aggregate selling
pressure of all arbitrageurs at time t > ¢, is given by s (¢,y) = tr;m{t’toﬂ} o (t, fi) dt;.
Let T* (tp) = inf {t|s (¢t,t9) > K or t =ty + 7} denote the bursting time of the bubble
for a given realization of to. Recall ® (-|t;) denotes arbitrageur ¢;’s beliefs of to given
that ¢y € [t; — n,t;]. Hence, his beliefs about the bursting date are given by

I (t]i)) = /T 1 (1)

Given the structure of the game, the actions of the other traders affect trader #,’s
payoff only if these actions cause the bubble to burst. Each arbitrageur’s payoff depends
on the prices at which he sells and buys his shares minus the transactions costs for
executing the order. The execution prices of arbitrageurs’ orders are either the pre-
crash price p (t) or the post-crash price (1 — (¢t — o)) p (t). In the special case where
an arbitrageur submits his sell order exactly at the instant when the bubble bursts, his
order is executed at the pre-crash price p (t) = e as long as the accumulated selling
pressure is smaller than or equal to k. If the accumulated selling pressure exceeds k,
then only the first randomly chosen orders will be executed at the pre-crash price while
the remaining orders are only executed at the post-crash price. In other words, the
expected execution price

(I—a)p(t)+a(l-F(t—1))p(t)

is a convex combination of both prices, where o > 0 if the selling pressure is strictly
larger than , and a = 0 if the selling pressure is exactly « at the time of the bursting
of the bubble.

We assume that arbitrageurs incur transactions costs whenever they alter their po-
sitions. This implies that each arbitrageur will only change her stock holdings at most a
finite number of times; strategies entailing an infinite number of changes will be strictly
dominated. Consequently, we confine attention to strategies which involve at most an
(arbitrary) finite number of changes of position. Indeed, this is the primary role that
transactions costs play in the model. We rule out prohibitively high transactions costs
which preclude arbitrageurs from ever selling out despite the fear of a bursting bubble.
It is algebraically convenient to assume that the present value of transactions cost is a
constant c. That is, transactions cost at t equals ce™. This formulation together with

11



the former assumption guarantees that equilibrium behavior is independent of ¢, the
size of the transactions costs.

Before fully specifying the payoffs, let us define B (t) the set of ¢y which lead to a
bursting of the bubble strictly prior to ¢. That is, B (t) = {to|T™ (to) < t}, B°(t) is its
complement and b (t) = {to|T™* (tp) = t} contains all ¢, which lead to a bursting exactly
at ¢.

The value at time ¢! of a position consisting of z! (#!) stocks which is maintained
unchanged until the bubble bursts is (from the viewpoint of arbitrageur ;):

VE((2 89 |t) = ! / eI W=) (1 — B(T* (k) — to)] p (T* (to)) d® (tolts, BC (1)),

B(t;+7)
where ® (-|t;, B (tl)) = % is arbitrageur t;’s distribution over to, conditional
upon the time t; when arbitrageur #; became aware of the mispricing, and conditional
upon the existence of the bubble at ¢!.13
Proceeding iteratively from the final change of the position, the value at ¢ < t! of
x? stocks of which (22 — 1) are sold at ¢! is given by

V2 (22 2), (21, 8 |t;)
- /B(tl)\B(tQ) e (=) [1— B(T™ (to) — to)] p (T" (t0)) d (tolt:, B° ()

F[1 =@ (B () [, B (12))] {—ec +
e V() 1) + (2 ) () — A (2 B ()]}

The adjustment term A (¢!|t;, B (t?)) takes care for the special case where the
bubble bursts exactly at ¢! and the order of (2 — ') shares is not executed at the
price p (') but at [1 — oy (to) 3 (t — to)] p (t). More precisely, A (t!|t;, B¢ (t?)) is given
by the expectations (2 — @) p (t') [,y o (to) B (t — to) d® (tolts, BE (%)).

Replacing superscript 2 by k& + 1 and superscript 1 with superscript £ gives us a
general recursive definition of the payoff function. Arbitrageur ¢;’s expected payoff
from a strategy involving K — 1 changes in her portfolio is then given by the function

VE((2",¢5) .., (a1, 1)),

where (2 = 1,15 = t;) denotes her initial position.

13Section 4 shows that each arbitrageur’s trading strategy involves only one change in asset position
in any trading equilibrium. This dramatically simplifies the payoff specification. However, before we
derive this ‘trigger-property’, we need to specify the payoffs for strategies involving many changes in
asset positions.
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3.2 Discussion of the Model

We now discuss and put into perspective some key elements of our model. The question
we address - do professional arbitrageurs correct mispricing? - is a very old one and
goes back to at least Keynes’ “General Theory of Employment, Interest and Money”
(1936) in which he wrote:

It might have been supposed that competition between expert profes-
sionals, possessing judgment and knowledge beyond that of the average
private investor, would correct the vagaries of the ignorant individual left

to himself. (italics added)

Our model setup relies crucially on two elements, which can also be traced back
to Keynes (1936). First, professional arbitrageurs want to ride the bubble as long as
possible given that the bubble grows at a rate g which is larger than the riskfree rate
r. Professional traders do not want to forego the capital gains as long as the bubble
grows, but, of course, seek to exit before (ideally just before) the crash. Referring back
to Keynes:

The actual, private object of the most skilled investment to-day is “to
beat the gun”, as the Americans so well express it, to outwit the crowd, and

to pass the bad, or depreciating, half-crown to the other fellow. (italics
added)

The second element is that large price changes require a certain degree of coordi-
nation. In our model the bubble only bursts if more than x traders attack the bubble
at the same time. Therefore, each professional arbitrageur only attacks at times when
she believes that the other arbitrageurs attack as well. Hence, it is more important to
focus on other arbitrageurs’ trading than on the fundamentals of an asset. This is in
the same spirit as “Keynes’ Beauty Contest”:*

... professional investment may be likened to those newspaper competi-
tions in which the competitors have to pick out the six prettiest faces from
a hundred photographs, the prize being awarded to the competitor whose
choice most nearly corresponds to the average preferences of the competi-
tors as a whole; so that each competitor has to pick, not those faces which
he himself finds prettiest, but those which he thinks likeliest to catch the

1 0Other authors have also found inspiration in this famous quote in Keynes (1936). Froot, Scharf-
stein, and Stein (1992) focus on the endogenous information acquisition decision of traders. Their
analysis relies on the fact that traders are short-lived and might be forced to unwind their position
before the collected information is reflected in the price. Consequently, traders have an incentive to
collect information which other traders will also collect. In contrast, we focus on the persistence of
bubbles in the presence of rational arbitrageurs without restricting their horizons.
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fancy of the other competitors, all of whom are looking at the problem from
the same point of view. (italics added)

Indeed, in our relativistic framework, each trader looks at the problem from the
same point of view, however, relative to the date, when she became aware of the bubble’s
existence. Combining these two elements with our earlier assumption that traders
become aware of the bubble in a sequential random order leads to our results.

We have assumed that the bubble only bursts when the selling pressure exceeds
k. Hence, we implicitly also assume that rational agents do not become aware of sell-
ing pressure by other rational agents until it crosses a certain threshold. These are
simplifying assumptions. We relax them somewhat in Section 6 and 7 by allowing for
intermediate price drops prior to the final crash. Nevertheless, we do not fully endo-
genize the price process. In our model, the central uncertainty is about the random
variable ty. A fuller model would entail noisy prices which would preclude the selling
pressure by rational arbitrageurs from being inferred with certainty from the current
price level. However, we believe that our principal results would be qualitatively pre-
served in such a setting, though their precise expression would be substantially more
complicated.

4 Preliminary Analysis

This section shows that we can restrict the analysis without loss of generality to trading
strategies where each arbitrageur sells her shares only once. We also derive the sell-out
condition according to which each arbitrageur sells her shares exactly at the moment
when the temptation to ‘ride the bubble’ balances the fear of its imminent collapse

(Lemma 8).'
We use the following notion of equilibrium.

Definition 1 A trading equilibrium is defined as a Perfect Bayesian Nash Equilib-
rium in which whenever a trader’s stock holding is less than the maximum, then the
trader (correctly) believes that the stock holding of all traders who became aware of the
bubble prior to her are also less than their respective maximum long positions.

This definition entails a restriction on beliefs which is a natural one in our setting.
Indeed, an immediate conjecture is that this property of beliefs is an implication of
equilibrium, but we have not been able to prove this. Note that we are not restricting
attention to trigger-strategies in which an agent who sells out at ¢ continues to attack
the bubble at all times thereafter.

15Much of the analysis in this section is used to establish that without loss of generality attention
may be restricted to symmetric trigger-strategies. Readers who wish to omit these details may after
absorbing Lemma 8 move directly to Section 5.
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Definition 2 The function T (t;) = inf {t|o (¢,t;) > 0} denotes the first instant at
which arbitrageur t; sells any of his shares.

Lemma 1 states that, in equilibrium, an arbitrageur is either fully invested in the
market, o (t,¢;) = 0, or at his maximum short-position, o (¢,%;) = 1.

Lemma 1 (No partial purchases or sell-outs) o (¢,¢;) € {0,1} V¢,¢,.

This Lemma “essentially” reduces the per period action space to 0 or 1. It simplifies
the analysis in our paper since the aggregate selling pressure is simply given by the
mass of traders who are ‘out’ of the market. It is a consequence of risk-neutrality and
the fixed component of transactions costs. However, it is not essential for the main
results of our paper to hold. Risk-averse arbitrageurs would gradually leave the market.
This would make it necessary to keep track of each arbitrageurs position to calculate
the aggregate selling pressure. All this would add complexity without a corresponding
increase in insight.

Lemma 1 together with the definition of a trading equilibrium, immediately implies
Corollary 1. It states that when arbitrageur ¢; sells out her shares, all arbitrageurs fj
where ¢; < ¢; also have already sold, or will at that moment, sell all their shares. We
refer to this feature as the ‘cut-off’ property.

Corollary 1 (Cut-off Property) o (t,t;) =1= o (t,t;) =1 Vt; <t; and
U(t,tz) =0= (T(t,tj) =0 th > t;.

Arbitrageur #; = ty 4 nx reduces her holdings for the first time at T (to + nk). Since,
by Corollary 1 all arbitrageurs who became aware of the mispricing prior to to + nk
are also completely out of the market at 7' (typ + nx) the bubble bursts when trader
toi\n/@ sells out her shares, provided that it did not already burst earlier for exogenous
reasons.

Corollary 2 The bubble bursts at T* (to) = min{T (tc + nK),to + 7}.

We will show that in any equilibrium, each arbitrageur ; can rule out certain
realizations of t; at the time when she first sells out his shares. For this purpose, we
define ;""" (t;).

Definition 3 The function t)"" (¢;) denotes the lower bound of the support of trader
t;’s posteriors beliefs about to, at T (t:).

Lemma 2 derives a lower bound for ¢j™"" (¢;) by making use of the fact that each
arbitrageur has an incentive to pre-empt any possible crash which occurs with strictly

positive probability.
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Lemma 2 (Preemption) In equilibrium, arbitrageur t; believes at time T (t;) that
at most a mass k of arbitrageurs became aware of the bubble prior to him. That is,
tg'u,pp (tz) Z tz — k.

The Preemption-Lemma allows us to derive further properties of the bursting time
T*(-). Lemmas 3 and 4 in the Appendix show that 7™ (-) is strictly increasing and
continuous. It follows that 7% (-) : [T* (0), 00) — [0, o), the inverse of T* (-) is well
defined. Lemma 5 in the Appendix establishes that 7' () is also continuous.

Lemma 6 (Zero Probability) For all t; > 0, arbitrageur t; believes that the bubble
bursts with probability zero at the instant T (t;). That is, Pr[T* 1 (T (t;)) |t;, B¢ (T (t;))] =
0 for all t; > 0.

The following proposition establishes that in any equilibrium arbitrageurs neces-
sarily use trigger-strategies. That is, each arbitrageur ¢; sells out at T (¢;) and never
re-enters the market.

Proposition 1 (Trigger-strategy) In equilibrium, arbitrageur t; maintains the maa-
imum short position for all t > T (t;), until the bubble bursts.

Proof. Suppose there exists a non-trigger strategy equilibrium where arbitrageur
t; sells out at 7T (t;) and re-enters the market later. Given transaction costs ¢ > 0
and the preceding lemma, in equilibrium arbitrageur #; must stay out of the market
for a strictly positive time interval. He will stay out of the market at least until type
t; + ¢ exits the market, for some £ > 0 (independent of #;).'° By th the cut-off property
arbitrageur ¢; cannot re-enter the market until after arbitrageur ¢; + ¢ first re-enters or
to+ 7 occurs. The same reasoning apphes for t; + & with respect to t; + T 2e. Proceeding
this way we conclude that arbitrageur ¢; stays in the market until the bubble bursts at
to + 7 or arbitrageur ti:—\nfi re-enters the market. Of course, the latest possible date
at which the bubble bursts from arbitrageur #;’s viewpoint is when tii\n/@ exits the
market. m

We have proved that T* ! (-) exists and is strictly increasing and continuous. We
confine attention to equilibria for which the latter function is absolutely continuous
such that I (t) = ® (T~ (¢)) is also absolutely continuous. Let  (¢) denote its asso-
ciated density. Recall that ® (tg) = 1 — e~ and II (tt;) is arbitrageur #;’s conditional
cumulative distribution function of the bursting date at time ¢;. Similarly, 7 (¢|¢;) de-
notes the associated conditional density.

16Exiting the market and paying the transaction cost ¢ can only be justfied if the bubble bursts with
a certain probability. Since the bubble bursts with zero probability exactly when trader #; enters, he
has to stay out of the market till at least a certain mass of (younger) traders e also exit the market.
Note ¢ is independent of ;.
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The trigger-strategy characterization greatly simplifies the analysis of equilibrium
and indeed even the specification of payoffs. The payoff to selling out at time ¢ reduces
t017

[6”%1—ﬁ@—T“%&Dp@w@mww+f%ﬂwu—me»—a

Differentiating the payoff function with respect to ¢ yields the sell-out condition
stated in Lemma 8. Note that h (t|f;) = lirg‘é”‘z) is the hazard rate that the bubble
will burst at ¢.

Lemma 8 (Sell out condition) If arbitrageur t;’s subjective hazard rate is smaller
than the ‘cost-benefit ratio’, i.e.

p'(t)

) p(t)
S T E10)

trader t; will choose to hold the maximum long position at t. Conversely, if h (t|t;) >
P

ﬁ(t%:(t)) she will trade to the maximum short position.*

- T

8

To understand the sell out condition intuitively, consider the first-order bene-
fits and costs of attack at ¢ versus t + A, respectively. The benefits are given by
Ah (t|t;) [p (t) E[B (t — to) |ti, t]], the size of the bubble times the probability that the
bubble will burst over the small interval A. In the case that the bubble does not burst,

the costs of being out of the market for a short interval A are (1 — Ah (¢|t;)) (W - 7’) A.
Note that M — r > 0 since the bubble appreciates faster than the riskfree rate.
Dividing by Ap (¢t) and letting A — 0 yields the attack condition. Note that in the

limit as A — 0, E[B(t — to) |t;,t] = B (t — T* 1 (t)). Lemma 8 also implies that trader

t; either wholeheartedly attacks or holds the maximum long position.

170One could easily extend the analysis to capture the reputational penalty, institutional investors
face for staying out of the market while the bubble grows at the expected rate g. Relative performance
evaluation of fund managers is one of the main causes of this cost. Tony Dye’s case provides a vivid
illustration. He was for many years the successful chief investment officier of Phillips and Drew,
London. Nicknamed “Dr. Doom” he refused to bow to the fashion of investing in internet stocks
fearing an imminent slump in the markets. He lost his job in March 2000 - just days before his
warnings that the tech bubble would burst came true. In the words of a market commentator “The
irony is he [Tony Dye] may well be right, but at the wrong time.”

In a setting with a ‘reputational penalty’ equal to a fraction k of the price level, the term
fttﬁT ([ e "kp (u) du] 7 (s|t;) ds needs to be added to the payoff.

P g

18With a reputational penalty the sell out condition generalizes to h (t|t;) < (>) m
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Random Price Process For simplicity we have assumed that the price process
grows at a deterministic rate of g. The analysis can be extended to a setting which
incorporates stochastic price processes with a finite number of possible price paths. In
particular, we have a setting in mind where the price grows in expectations at a rate
of g. That is, E, [p;] = p,e?*~* for all t, s with ¢ > s, and we maintain the assumption
that the bubble is always a fraction 3 (¢t — ty) of the price. In this setup the sell out

E[p'(1)lp(1)]

condition h (t[t;) = 5725 =r-

5 Persistence of Bubbles

The impossibility of bubbles emerging in standard asset pricing models is most trans-
parent and compelling for finite horizon bubbles because they are ruled out by a
straightforward backward induction argument. If the latest possible date at which
the bubble bursts is period ¢, all traders will start selling the asset in the penultimate
trading round. Consequently, the price of the asset will already drop in the previous
period, causing arbitrageurs to sell even earlier. Iterating this argument precludes the
emergence of bubbles in the first place.

To facilitate comparison with, and to sharply contrast our results to those obtained
in the literature, we also assume that the bubble ultimately bursts when the mispricing
equals a fraction 3 of the price. Given that the function 3 (t — () is strictly increasing,
there exists a corresponding 7, such that the bubble ultimately bursts at ty + 7 for
exogenous reasons. Though this assumption might not be specially realistic, it arguably
makes it harder for bubbles to sustain in equilibrium.

Let us illustrate an alternative backwards induction argument to intuitively under-
stand the main results of this section. This procedure entails the “iterative removal
of non-best-response symmetric trigger-strategies.” Even if no arbitrageur sells her
shares, the bubble ultimately bursts at ¢+ 7. Since each arbitrageur becomes aware of
the mispricing only after ¢y, she knows for sure that the bubble will never last beyond
t; + 7. But it might burst even before this time since from arbitrageur ¢;’s point of
view, the ultimate bursting date ¢y + 7 is distributed between t; + 7 —n and ¢; + 7. If
the bubble bursts at t, + 7, arbitrageurs #,’s best response is to ride the bubble before
exiting the market. Let 7 (¢;) denote the number of periods during which arbitrageur
t; optimally rides the bubble after becoming aware of the mispricing at t;.

Definition 4 The function 7 (t;) = T (t;) — t; denotes the length of time arbitrageur t;
waits after becoming aware of the mispricing, before selling her shares.

More specifically, let 7' be the best response if arbitrageur ¢; conjectures that the

bubble bursts only at ¢y + 7. In any symmetric equilibrium, all other arbitrageurs will
also sell out their shares 7! periods after they became aware of the mispricing. As in
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the case of backwards induction, we can derive the new bursting date. The new best
response of each arbitrageur is to ride the bubble for 7% periods. Similarly, we can
iteratively obtain 73, 7* and so on. In the standard model this yields lim,,_ ., 7 = 0,
which precludes the emergence of bubbles. We show in Section 5.1 that this backwards

induction procedure has no bite if Tm < g%. In particular, lim,_,., 7™ = 7! and

s > ¢ 7, we show in
Section 5.2 that lim,,_,.o 7" < 7! but lim,,_.., 7* > 0. Hence, this backwards procedure
does bite, but not as much as in the classical case. Note that this induction argument
is restricted to symmetric strategies. The formal analysis below employs a different

reasoning which also captures non-symmetric strategies.

furthermore, the bubble only bursts at to+7. Conversely, for

5.1 Exogenous Crashes

Recall that arbitrageurs become aware of the bubble sequentially in a random order
and furthermore have a non-degenerate posterior distribution over t,. All arbitrageurs
become ‘aware’ of the bubble during the interval [to, ¢y + 7], where we have interpreted
1 to be a measure of differences in opinion and other heterogeneities across players.
From ty, + nx onwards, more than x arbitrageurs are aware of the bubble and have
collectively the ability to burst it.

We show that if 7 is not too small, that is, if ; ,MN < g—gr, then in the unique
trading equilibrium the bubble only bursts for exogenous reasons when it reaches its
maximum size 3 relative to the price. In this case the endogenous selling pressure of
the rational arbitrageurs has absolutely no influence on the time at which the bubble
bursts. It is worth noting that our result holds despite the fact that it is possible within
our model for traders to coordinate selling out on particular dates, say Friday, 13th of
April 2001 by adopting (asymmetric) strategies which entail non-constant 7 (t;).

1765 e < g—;. Then there exists a unique trading equilibrium.

Proposition 2 Suppose

g—!]r:TAB) < T periods after they
became aware of the bubble and stay out of the market thereafter. Nevertheless, for
all ty, the bubble bursts for erogenous reasons precisely when it reaches its maximum

possible size 3.

In this equilibrium all traders sell out 71 = 7 — + ln (

Proof.
Step 1: Derive symmetric equilibrium 1.
Suppose the bubble bursts at to+7 for all t5. Then arbitrageur ¢;’s posterior distribution

e _eMT—T)

function over bursting dates t = ¢;+7 is IT (¢; + T|t') = “—=:—— at t;. The associated
: (ti+T7|ts —r
hazard rate is h (t; + 7|t;) = = %(t +|T|2) = —37—- Let 7! solve h (t; + 7'|t;) = =

Then 7! —T——ln(

of the market for 7 > 7

e /\5) By the Sell-out Lemma arbitrageur ¢; is optimally out

! and conversely for 7 < 7! he holds on to his shares. Under
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our assumed condition ¢ty + 7! + nk >ty + 7. Hence, the symmetric trigger 7! indeed
defines an equilibrium, which results in an exogenous crash at to + 7.

h = A/[1-e2@0]
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Figure 3: Exogenous crash

Step 2: The uniqueness argument can be found in Appendix A.2. =

In equilibrium, each arbitrageur optimally rides the bubble very long. At the time
of the crash ty + 7, fewer than x arbitrageurs will have sold out at the pre-crash price
and thus, the bubble bursts purely for exogenous reasons. This is in contrast to the
standard backwards induction reasoning where the anticipation of a crash prepones the
price drop.

We note here that the standard iterative dominance proof of global games cannot
be applied in our setting, since our game does not satisfy strategic complementarity.
This is both because the assumption that x < 1 introduces a competitive element and
the fact that traders infer information from the fact that the bubble still exists.!”

5.2 Endogenous Crashes

The previous section demonstrates that arbitrageurs never burst the bubble if the
dispersion of opinion among them 7 and the absorption capacity of behavioral traders

19This is probably best illustrated by means of an example, wherein we restrict the strategy space
to trigger strategies. Consider a trader #; who starts attacking the bubble at t'3 = t; 4+ 7;, provided
that all other traders attack immediately when they became aware of the bubble. Given this strategy
profile, trader #; can infer a lower bound for to from the fact that the bubble still exists. Compare
this with a situation where other traders do not start attacking immediately when they become aware
of the bubble but only at, say t'3. In this case trader ; cannot derive a lower bound for ¢y from the
existence of the bubble. Consequently, she has a greater incentive to attack the bubble at ¢!3. This is
exactly the opposite of what strategic complementarity would prescribe.
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k is sufficiently large. In this section we examine the opposite case when this condition
is not satisfied. We show that our proposed backward iteration procedure does bite
in this case. When no other arbitrageur ever sells out, the bubble bursts at ty + 7,
which 1nduces arbitrageurs to sell out at ¢; + 7. In this scenario, the bubble will burst
at tg + 7' + nk, which is now strictly earlier than to + T given the assumed smaller
parameter values for  and x. Given that the bubble bursts latest at o + 71 + 7k,
arbitrageurs seek to sell out even earlier; 72 < 7! periods after they became aware of
the bubble. Proceeding in this way leads to a decreasing sequence 71, 72, 72, ... which
converges to some 7* which in fact defines the unique symmetric trigger- Strategy Perfect
Bayesian Nash equilibrium. The iteration of this argument does not eliminate bubbles.
In contrast to the Efficient Market Hypothesis, the bubble in our model survives for
a substantial period of time. The reason is that the iterative procedure loses bite
gradually. As it prepones the bursting date, the size of the bubble also diminishes,
which in turn increases the incentive to ride the bubble.

Proposition 3 derives a symmetric strategy equilibrium, where each arbitrageur sells
his shares 7" periods after he became aware of the bubble. It also demonstrates that
this trading equilibrium is unique.

Proposition 3 Suppose l_e%mﬁ > %. Then there exists a unique trading equilibrium,

in which the arbitrageurs t; with t; > nk leave the market ™ = 31 (%) — K

1—e—ANK
periods after they become aware of the bubble. All arbitrageurs t; such that t; < nk sell
out at nk + 7. Hence, the bubble bursts when it is a fraction

1— 6—)\77,‘-;

Fr=—

(g—r7)
of the pre-crash price.

Proof.
Step 1: Derive symmetric equilibrium 7*.
Suppose that all arbitrageurs with ¢; > n« sell out their shares at ¢;4+7* and arbitrageurs
with t; < nx at nk+7*. Then the bubble bursts at to+nx+ 7 and when it is a fraction
B (nk + 7*) = B* of the price. Since in a symmetric equﬂibrium the hazard rate of an

arbitrageurs who sells out his shares is — —2, the FOC + _MK = gﬁff implies that
G = MK (9 — ). Hence, 7" = 37* (—gkr ) — 7K.
1—e—ANK
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Figure 4: Endogenous crash

To derive uniqueness we show in Step 2 that the bubble always bursts for endoge-

nous reasons when > 2L and in Step 3 that the minimum and maximum of

A
T—em B
7 (t;) coincide for t; > nk. Both steps are derived in Appendix A.3.

Step 4: For t; < nr, T (t;) = T (nx). Clearly, no ; should sell out prior to T' (1) and
by the cut-off property will sell out at 7" (nx).

Notice that the maximum ‘relative’ bubble size 8" increases as the dispersion of
opinions among arbitrageurs 7 increases. Taking our model literally, n describes the
time span (‘awareness window’) over which traders become sequentially aware of the
bubble. It is also essential for our argument to work that individual traders do not
know when they became aware of the bubble relative to others: individual traders
become aware of the bubble in a sequential, random order. The larger the ‘awareness
window’ 7, the more uncertain is each arbitrageur about when other traders became
aware of the bubble. Alternative model formulations show that the dispersion of timing
is crucial for the emergence of the bubble and not the difference in the estimate of the
fundamental value. The comparative statics for the absorption capacity of the momen-
tum traders x are the same as for 7. A larger x requires more coordination among
arbitrageurs and thus extends the bubble size. As one expects, §* is also increasing in
the ‘excess growth rate’ of the bubble (¢ — 7). The faster the bubble appreciates, the
more tempting it is to ride the bubble.

5.3 Discussion

This subsection discusses why the standard arguments which usually enable one to rule
out bubbles do not apply in our setting.
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Lack of Common Knowledge To gain a better understanding for why a bubble
persists even though the life span of the bubble is finite, it is useful to take a closer
look at arbitrageurs’ knowledge of the bubble as time evolves. The standard back-
wards induction argument - which usually rules out finite bubbles - requires a starting
point which is common knowledge. Proposition 4 below shows that it is never common
knowledge that at least x traders are aware of the bubble; this basic observation pro-
vides an alternative perspective on the difference between our model and the classical
literature on bubbles.

Proposition 4 [t is never common knowledge among k traders that at least k traders
are aware of the bubble.

Proof. It is sufficient to look at the first x traders. At ty+ 7k, at least k traders
know of the bubble. That is, it is mutual knowledge among x traders at ty + nk.
However traders, in particular arbitrageurs who only became aware at ty 4+ nx, are not
sure whether the other arbitrageurs are aware of the bubble too. At ¢y + 21k, the first
k traders know that a bubble exists and that at least a fraction k of the arbitrageurs
knows of the bubble. However, they do not know whether a fraction x knows that a
fraction x knows that the bubble exists, etc. This is only the case at ty + 3nx. More
generally, let n be a positive integer, then at ty+nnk, the xth trader knows that at least
k traders know that at least x know that ... and so on at most n-times. It will never
be common knowledge among « traders that there are at least a fraction « traders who
know of the bubble. =

No Zero-Sum Argument Recall that Tirole (1982) ruled out bubbles by employing
a zero-sum argument in a setting with asymmetric information. Trading is a zero-sum
game if the initial allocation is interim Pareto efficient. In particular, if all traders
are risk-neutral any allocation is ex-ante Pareto efficient and hence, any arbitrageur’s
trading profit is somebody else’s loss. In other words, traders are not willing to buy
a bubble asset since some traders have already realized their gains and have left a
negative-sum game for the other traders.

In contrast, in our model both rational arbitrageurs as well as behavioral momentum
traders operate in the market. The presence of these momentum traders makes trading
a positive sum game for the arbitrageurs. The over-optimistic momentum traders lose
in our setting. More interestingly, the ‘synchronization problem’ of the arbitrageurs
works in their favor. The longer the bubble persists, the higher is the aggregate trading
profit of the arbitrageurs. Viewed differently, the synchronization problem enables
them to coordinate their riding of the bubble since it weakens the preemption motive
for each individual arbitrageur. Hence, from the arbitrageurs’ point of view, the lack
of synchronization is not a “problem” but rather a blessing.
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6 Synchronizing Public Events

During the life-span of the bubble, information flows unrelated to t; might not only
lead to random price changes but could also trigger a bursting of the bubble. So
far we have abstracted from these additional news events. They are the focus of
this section. An important distinction emerges between unanticipated public news -
analyzed in Subsection 6.1 - and pre-scheduled news announcements, which are covered
in Subsection 6.2.

6.1 Unanticipated news events

Unanticipated public events might serve as a synchronization device for arbitrageurs to
sell, thereby triggering a crash. To analyze this question, we extend the earlier model
to allow for the arrival of public signals at a Poisson arrival rate §. We assume that
0 < g% to ensure that the possible occurrence of a public event does not by itself jus-
tify selling out. As in Subsection 5.2 (endogenous crashes) we focus on the parameter
values which satisfy =" < 1_;% < 4—=. The latter inequality guarantees that no
arbitrageur finds it optimal to sell out even before she becomes aware of the mispricing.

Since the primary emphasis of this section is to understand the role of information
in causing price changes beyond its informational content, we restrict our formal analy-
sis to sunspot public events which serve as pure coordination devices. In other words,
we will not consider signals which reveal additional information about the stock value
or to. Informative public signals would not entail qualitative changes to the analysis
presented below.

Arbitrageurs who are aware of the bubble become more and more wary as time
goes by. Therefore, they increasingly look out for signals which might cause the bubble
to burst even though these signals might be totally unrelated to the fundamentals.
We try to capture this idea by assuming that sunspots are only observed by traders
who became aware of the bubble more than 7. periods ago. Traders who are either
unaware of the bubble or only recently became aware of it do not observe sunspots.?
Alternatively, one can also envision a more general setting where traders who became
aware of the bubble less than 7, periods ago observe the sunspot but do not attribute
much importance to it. Note that 7. = 0 captures the special case where all aware
traders observe this public event.

20Note that, if the public event serves to make even ‘unaware’ arbitrageurs aware of the bubble
and this fact is common knowledge then the model become degenerate: we are back in a world of
symmetric information in which the bubble cannot possibly survive after the public event.
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Public events both allow arbitrageurs to synchronize sell-outs and also convey valu-
able information in the event that attacks are unsuccessful. The bubble might survive
a synchronized sell-out if not sufficiently many arbitrageurs have observed the public
event, that is, if ¢y is sufficiently high. Let ¢, be the date of such a public event. By
the cut-off property there exists 7. > 7. such that all arbitrageurs ¢; who observed the
sunspot at least 7, periods after becoming aware of the mispricing sell out after ob-
serving the public event at t.. If the bubble does not burst then all arbitrageurs learn
that tg > te — Te — nK. It/fgllows that all arbitrageurs t; with t; < t, — 7. will re-enter
the market until type t, — 7. first exists in equilibrium, or until the next public event
occurs. Even traders who left the market prior to the arrival of the public event buy
back their shares. Thus, unlike in the previous section, trigger-strategies do not arise
in equilibrium.

A related simplification is however available: in any trading equilibrium arbitrageurs
re-enter and leave the market at most once between two consecutive public events.
Define an interim-trigger-strategy to be one for which an agent follows a trigger strat-
egy between two successive public events. We argue that, in equilibrium, agents use

interim-trigger-strategies. Let H™ (t|t;) := (tgl), ...,tén)) where tV < & < <tV

denotes a history of past events at times tgl), - tén) strictly prior to ¢ and observed

by arbitrageur ;. Let t"™" € H (t|t;) be the time of the most recent public event
observed by arbitrageur t;. Let t, be eitherAtgn_l) or t; if arbitrageur t; has not ob-
served any public event. Denote arbitrageur ¢;’s posterior distribution over ¢; at t = ¢,
by ® (-\ti, Be(t,), H (ta]ti)). In other words, trader Z; conditions upon her awareness
date, the fact that the bubble did not burst prior to ¢, and the history of observed

past public events if ¢, = "V The event that the bubble did not burst prior to t,,
B¢ (t,), depends on the realization of t; and also on the sequence of public events. To

simplify notation we summarize {ti, Be(ty), H (ta]ti)} by Zy, (ta)-

Definition 5 (i) The function T, (t;) = inf {t|o (¢,t;) > 0, H"=" (t|t;) = 0} denotes the
first instant at which arbitrageur t; sells out any of her shares if she did not observe a
public event so far.

(i1) The function T (ty) = min {7, (to + nk),to + T} specifies the date at which the bub-

ble bursts absent the occurrence of a public event, which is observed by trader tofl-\nli.

The analysis for 7' (-) and 7™ (-) of Section 4 applies to T, (-) and T () in this
section. In particular, 77 (-) is strictly increasing and continuous. The arguments are
analogous and are not repeated here. Since each arbitrageur incurs positive transac-
tions costs ¢ when selling his shares, and the bubble bursts with zero probability at each
instant, she has to leave the market at least for an interval. Arbitrageur ¢; leaves the
market at least until arbitrageur t; + ¢ exits the market. Recall that the occurrence of
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public events alone does not justify the loss in appreciation from exiting over a certain
interval, since 63 < g —r. Hence, a generalized version of Proposition 1 applies between
public events, leading to what we have termed interim-trigger-strategies. Furthermore,
the distribution function that the bubble will burst in the absence of further public
events is given by II (t|Z; (t,)) = @ (T2~ (¢) |Z; (ta))-

Since in this section arbitrageurs re-enter the market in equilibrium, the existence
of transactions costs are potentially incurred repeatedly. Keeping track of all transac-
tions costs complicates the analysis in uninteresting ways. In what follows we exploit
the strategic restrictions obtained above (i.e. interim-trigger-strategies), while setting
transactions costs to zero.

In contrast to the previous sections, there is no hope of finding a unique equilibrium
in this generalized setting, even though we were able to restrict the possible class of
equilibrium strategies. For example, the equilibrium behavior of the previous section
would be exactly replicated if all arbitrageurs were to simply ignore all public events,
and there are potentially numerous intermediate levels of responsiveness to public sig-
nals. We focus on responsive equilibria.

Definition 6 A ‘responsive equilibrium’ is a trading equilibrium, where each arbi-
trageur believes that all other traders will synchronize (sell out) at each public event.

This raises the bar for our analysis since bubbles are harder to sustain in responsive
equilibrium. This equilibrium may be viewed as the other extreme to the equilibrium
in which all arbitrageurs ignore all public events.?!

We establish that there exists a unique responsive equilibrium. It is symmetric
in the sense that as long as an arbitrageur does not observe a public event, each
arbitrageur rides the bubble for a fixed number of 7** periods after becoming aware of
it.

Proposition 5 There exists a unique responsive equilibrium. In this equilibrium, each
arbitrageur t; always sells out at the instances of public events t, > t;+71.. Furthermore,
she leaves the market for all t > t; + 7 except in the event that the last attack failed
in which case she re-enters the market for the interval t € (t.,t. + 7 — 7.) unless a
new public event occurs in the interim.

210One problem is that there are potentially millions of sunspots which might serve as a potential
coordination device. The decision of which sunspot to synchronize on entails another coordination
problem. This leads us to the interesting theoretical discussion of what constitutes the “publicness”
of a public event.
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Absent the arrival of a public event the bubble will burst at ¢ + nk + 7**. The
arrival of public events might prepone the bursting date. After a failed sell out at the
latest public event t., even traders who started selling out prior to ., that is, traders
with t; < t. — 7**, buy back shares. Sell-outs only resume at t, + 7** — 7.. Market
sentiment “bounces back” after a failed attack. However, even in the event of failed
attacks and re-entry by arbitrageurs into the market, the bubble bursts no later than
to +nK + 7.

Before proving Proposition 5 let us derive the sell-out condition for the case with
unanticipated public events.

Lemma 9 (Generalized Sell-out Condition) Suppose arbitrageur t; has not ob-
served a failed sell out. Then she sells out at t satisfying

h(tZ) B (t=T"1 (1) + 9/ (0,10 (t = 1)) d® (to|Z1,) = g — 7

to<t—Te—MK

For a proof see Appendix A.1. Intuitively, the first term reflects the possibility that
the bubble might burst in the next instant due to endogenous selling pressure. From
W(t\Iti)
1-10(t[Z¢, )
the relative size of the bubble is 3 (t — T*~! (t)). Arbitrageur #; also has to take into
account the possibility that an unexpected public announcement might occur at ¢t with
a density of . The sunspot is followed by a crash if ¢ty < ¢t — nx — 7.. In this case
the relative size of the bubble 3 (t — ty) depends on the realization of #;. Note that
in the case of a public event, trader f; still has a chance to leave the market at the
pre-crash price with probability (1 — oy, ). Hence, one has to multiply the advantage
of attacking prior to the arrival of a public event by o, ;. Recall that (1 — a4, ) is the
fraction of orders executed at the pre-crash price over all orders submitted immediately

after a public event.

trader #;’s viewpoint this occurs at the hazard rate h (t|t;) = . In this case,

Proof of Proposition 5.

Step 1: Derive symmetric equilibrium 7**.

1.1. Recall that 7** = T, (t;) — t; Vt; denotes the number of periods an arbitrageur
waits to sell out if she does not observe any public event. Note that 7** fully charac-
terizes the symmetric responsive equilibrium outlined in Proposition 5. In any trading
equilibrium all arbitrageur who sold out after the last public event, will re-enter the
market after a failed attack and sell out again exactly when the ‘first’ trader, who did
not participate at this common sell out, exits the market. This follows directly from
the cut-off property. Hence, we can restrict our attention to the trading activity of
traders who did not observe a public event yet. By describing their trading strategy
we fully characterize any trading equilibrium.
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1.2. There exists a unique symmetric trading equilibrium.

Note that each arbitrageur’s t; posterior about ty at T, (¢;) exactly coincides with the
posterior she had at T (¢;) in a setting without public events. That is,

& (tots, B (T, (), H™ (T, (1) 1)) = @ (tolts, B (T (£)) , H" (T (t:) [t)). To see this,
observe that in any symmetric equilibrium, the support of ¢y at T, (¢;) is also [t; — 1k, t;]
(as in the previous section). Furthermore, any unobserved public event at t. < t; + 7
would not have led to a bursting of the bubble, since ¢, < ty + nx + 7. for all possible
to € [ti —nk,t;]. Hence, public events do not serve to distinguish between ¢y in the
latter interval. Since the posterior are the same, so is the hazard rate h (t|Z;,) at the
time that trader f; sells out in either setting.

1.3. Clearly, if 7. > 7**, then public events have no impact on the bursting of the
bubble, since trader ¢y 4+ 1k, does not observe a signal prior to tg + nx + 7**. Hence in
this case 7** = 7*. Suppose now that 7, < 7*.

Define ¢ (1) = h (t; + 7|Zs,) B (T + nKk)+0 fto<ti+7—re—nn (o5 (ti + T — to)) d® (to|Zy,)—
(g — 7). For equilibrium 7** it is necessary that ¢ (7**) = 0. We argue that 7** such
that ¢ (7"*) = 0 is (i) unique, (ii) exists, and finally that such a 7** indeed defines an
equilibrium. By Step 1.2 h (¢t; + 7**|Z;,) is constant across equilibrium 7**. However,
B (+) is strictly increasing, ® (t¢|Z;,) is the same, and the upper bound of the integral
is increasing in 7. Thus, ¢ (7*) is strictly increasing in equilibrium 7**. Uniqueness
follows directly.

For 7 < 7. the sell-out condition reduces to h (t; + 7|Zy,) B (T +nK) — g —r = 0.
There does not exist a 7 < 7, which solves this equation. This follows directly from the
fact that we focus on 7. < 7* and that 7* solves the preceding equation uniquely (as
established in Section 5). Hence, ¢ (1) < 0 for 7 < 7.. Moreover, lim; 7 ¢ (7) — o0,
since h (t; + 7|Z;,) — oo. Continuity of ¢ (7) and the intermediate value theorem imply
existence of 7**.

1.4. Immediately after a public event each arbitrageur who observes the public event is
assumed to sell out in a ‘responsive equilibrium.” Hence, from each arbitrageur’s point
of view, a bubble bursts with strictly positive probability at each t. in a responsive
equilibrium. Given these beliefs, and the fact that an instantaneous attack is costless
for ¢ = 0, it is indeed (strictly) optimal for an arbitrageur who observes the public
event to sell out at this time.

1.5. To fully specify all relevant strategies, it only remains to consider continuation
strategies after a failed sell-out attempt. After a failed attack, arbitrageurs learn that
fewer than x traders have observed the public event. That is, ty > t. — 7. — nk. Since
all other arbitrageurs, who did not observe the public event only sell out at t; + 7**, all
arbitrageurs who observed the public event at t. can rule out the possibility that the
bubble bursts prior to ¢, + 7* — 7. provided that no new public event occurs. Note
that the bubble will not burst for exogenous reasons prior to t. + 7** — 7., since the
endogenous bursting time ¢ty + nk + 7 occurs strictly before ty + nk + 7 < to + 7.
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The bubble might only burst prior to t. + 7** — 7. if a new public event occurs. After
t =te+ 72" — 7., the analysis coincides with a setting without a public event at t.. At
this point all arbitrageurs who had participated in the failed sell out and subsequently
re-entered the market, exit again.

The next two steps of the proof (see Appendix A.5) establish that equilibria are nec-
essarily symmetric. They are analogous to Steps 2 and 3 of the proof of Proposition 3.

[ |

This section develops the idea that it might be more important to focus on news
events that other traders consider as possible price movers than to focus on fundamen-
tals per se. As noted earlier, these themes appear prominently in Keynes (1936).

Our analysis also sheds some light on the fact that there are fads and fashions
in information. For example, trade figures drove the market during the 1980’s. In
contrast, in the late 1990’s Alan Greenspan’s statements moved stock prices, while
trade figures were ignored.

The analysis also demonstrates that an unanticipated increase in uncertainty might
itself lead to significant price swings. An unanticipated increase in #, the Poisson
density with which public signals arrive reduces 7** and consequently may trigger
arbitrageurs to attack the bubble even absent any relevant news. The outcome of the
2000 US-presidential elections may be viewed in this light. Some people have argued
that the uncertainty surrounding whether Gore or Bush won the election and when the
issue would be resolved served as a “smokescreen” for the price correction in high-tech
stocks that was anyway necessary.

6.2 Pre-scheduled News Events

While some news events are unexpected, many important public announcements are
pre-scheduled. In this subsection, we consider news whose announcement date is known
in advance but the content of the news itself is unknown. Examples of this type of
news include quarterly and monthly announcements of macroeconomic data like un-
employment figures, trade balance data, inflation numbers as well as company specific
news like regular dividend and earning announcements. This subsection highlights
that such news disclosures cannot serve as a synchronization device and hence, they do
not lead to price changes beyond the fundamental content of the news. If they did, a
crash would occur at a specific date with strictly positive probability. Each arbitrageur
would then have an incentive to pre-empt this ostensible crash, which rules it out as
an equilibrium outcome. Note that conditioning on anticipated public events is similar
to conditioning on a specific date, say “Friday 13th of April 2001.” We have argued
in the preceding Section 5 that an anticipated crash on a specific date can not oc-
cur. Therefore, it is not surprising that the introduction of pre-scheduled public events
does not alter the analysis. Note that the result also holds for announcements which
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are expected to occur with positive probability. Nevertheless, one should be wary of
interpreting this result too literally. A news announcement can also trigger some un-
expected information revelation. These unanticipated events, which occur only with
positive density, lead us back to the analysis of Subsection 6.1.

7 Price Cascades and Market Rebounds

Arguably, the most visible public events on Wall Street are large past price movements
or breaks through psychological resistance lines. In this section, we allow random tem-
porary price drops to occur, which are possibly due to mood changes by the behavioral
momentum traders. This enables us to illustrate how a large price decline might either
lead to a full blown crash or to a rebound. In the latter event the bubble is strength-
ened in the sense that all arbitrageurs are ‘in the market’ for some interval, including
those who had previously exited prior to the price shock.

In our simple and highly stylized model, we assume that exogenous price drops
occur with a Poisson density 0, at the end of a random trading round ¢. Let H,' :=

(tél), e ]E,n)) where tél) < tg)

drops at times tél), - té"). The price drop shakes momentum traders’ mood tem-

porarily and they are only willing to take on shares if the price is less than or equal to
(1 — yp) p¢. If the bubble does not burst in the “subsequent” trading round, momen-
tum traders regain their confidence and are willing to sell and buy at a price of p; until
their absorption capacity « is reached or another price drop occurs. Arbitrageurs who
exit the market immediately after a price drop receive (1 — ’yp) p¢ per share. Should
the synchronized attack after a price drop fail, arbitrageurs can only buy back their
shares at a price of p;. In other words, leaving the market even only for an instant is
very costly despite the absence of transactions costs, which we set equal to zero. Hence,
only traders who are sufficiently certain that the bubble will burst after the price drop
will leave the stock market. More specifically, Proposition 6 shows that only traders
who became aware of the mispricing more than 7, (H]?) periods earlier, will choose
to leave the market and attack the bubble after a price drop. Notice that, although
Tp (Hg) is derived endogenously for the subgame after a price drop, it serves the same
role as 7. in Subsection 6.1. Consequently, Proposition 6 has the same structure as
Proposition 5. One difference between both sections is that the history of past price
drops H, ' is known to all arbitrageurs, which simplifies the analysis. Corresponding to
the previous subsection, 7*** reports the length each arbitrageur rides the bubble after
t; if there was no price drop so far.

<. < tén) denotes a history of past temporary price

Proposition 6 There exists an equilibrium (Tp (Hg) ,T***) in which arbitrageur t;
exits the market after a price drop at tén) if té") >t + Ty (H;}) Furthermore, she is
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out of the market at all t > t; + 7** except in the event that the last attack failed in
which case she re-enters the market for the interval t € (t,(yn), té”) + 7 — 1) (HI’}))

Proposition 6 shows that a price drop which is not followed by a crash leads to
a rebound and temporarily strengthens the bubble. In this case all arbitrageurs can

rule out that the bubble will burst within (tén), 5 4 o —r, (Hg)) for endogenous

reasons. Within this time interval, the price grows at a rate of g with certainty modulo
another exogenous price drop. Consequently, all arbitrageurs re-enter the market after
a failed attack and buy back shares at a price of p;, even if they have sold them an
instant earlier for (1 — ~?) p;.

The structure of this equilibrium is similar to the unique responsive equilibrium of
the preceding section. However, the critical value 7, (H]?) is endogenous and depends
on the whole history of past price drops H,. For example, a failed attack at té”_l)
makes arbitrageurs more cautious about the prospects of mounting a successful attack

after a price drop at ¢” >t V. If ¢ is close to £ Y, arbitrageurs will not find

it optimal to exit again at tén) if a synchronized sell out at té"fl) did not succeed.
The failed attack at tén) increases 7, (H;}) The equilibrium described in Proposition
6 is also maximally responsive in that price drops are responded to ‘maximally’ in the
chronological order in which they appear. However, the bubble is more likely to burst
at t” in an equilibrium in which the earlier event at £~ ") was not responded to than
in the equilibrium where arbitrageurs sold out at té”_l) and the attack failed. We do
not have a uniformly most responsive equilibrium in this section but rather one which
is responsive in chronological order to the maximum extent possible. In short, the
above equilibrium is not necessarily the one, in which the bubble bursts earliest for
any possible sequence of price drops. Note that the same issue also arises in a setting
with unanticipated public events and strictly positive transactions costs ¢ > 0. We

abstracted from these effects in Section 6 by assuming ¢ = 0.

Note that it is important that price drops can also occur prior to time ty5. Other-
wise, immediately after a price drop it is commonly known that a bubble exists and a

backwards induction argument starting from ¢, 47 would lead to an immediate collapse
of the bubble.

8 Conclusion

This paper argues that bubbles can persist even though all rational arbitrageurs know
that the price is too high and they jointly have the ability to correct the mispricing.
Though the bubble will ultimately burst, in the intermediate term, there can be a
large and long-lasting departure from fundamental values. A central (and we believe,
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realistic) assumption of our model is that there is a dispersion of opinion among rational
arbitrageurs concerning the timing of the bubble. This assumption serves both as a
general metaphor for differences of opinion, information and belief among traders, and,
more literally, as a reduced-form modeling of the temporal expression of heterogeneities
amongst traders. While it is well understood that appropriate departures from common
knowledge will permit bubbles to persist, we believe that our particular formulation is
both natural and parsimonious. The model provides a setting in which ‘overreaction’
and self-feeding price drops, leading to full-fledged crashes, will naturally arise. It also
provides a framework which allows one to rationalize phenomena such as ‘resistance
lines” and fads in information gathering.

Finally we note here that many of the assumptions of our simple model may be
viewed as being conducive to arbitrage. In particular, we assume that all profession-
als are in agreement that assets are overvalued, while arguably there are substantial
differences in opinion even amongst professionals regarding the possibility that current
valuations indeed reflect a new era of higher productivity growth, lower wages and
inflation etc. Presumably incorporating these realistic complications would reinforce
our conclusions.

A Appendix

A.1 Details of Section 4
Lemma 1 (No partial purchases or sell-outs) o (¢,¢;) € {0,1} V¢, ¢,.

Proof. Consider an equilibrium strategy o (-,¢;) which involves a change in posi-
tion at t* from the preceding position adopted at t**! < t*. (The initial position is
represented by K.) Suppose that 2* (t*) ¢ {0,1} and o (-, ;) is optimal. The expected
payoff from t**! onwards is given by V**1 (.) plus the value of bond holdings. Notice
that V**1(.), excluding the transaction costs ce’™ ", is linear in z* and furthermore
must be strictly positive. Hence, for 2% — zFt1 >(<)0 the payoff is strictly dominated
by ¥ =1 (2* = 0). This contradicts the initial presumption that o (-,¢;) is optimal. m

Lemma 2 (Preemption) In equilibrium, arbitrageur t; believes at time T (t;) that
at most a mass k of arbitrageurs became aware of the bubble prior to him. That is,
to™" (t:i) > ti — k.

Proof. Suppose t)"" (t;) < t; — nk. Then with a strictly positive probability the
aggregate selling pressure at t = T (¢;) is sy, + > + and with strictly positive probability
traders who first sell out at 7' (¢;) will only receive the post-crash price for their sales.
This follows from Lemma 1 and Corollary 1, which states that all traders t; < ¢, will
also be fully out of the market at 7' (¢;). This leads to an immediate contradiction
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unless T'(t;) = 0. Let t;™" (;) = t; — nk — a. For arbitrageur #; to believe that a > 0,
it is necessarily the case that for all t; € [t; —a,t;), arbitrageurs fj do not sell out prior
to T (t;). However, this is not optimal for them since all of them have an incentive to
preempt (attack slightly earlier) the possible crash at T' (t;).

Lemma 3 (Bursting Time) The function T™ (-) is strictly increasing.

Proof. Recall T* (ty) = min {71 (top + nx) ,to + 7}. Since T (-) is weakly increasing
by the cut-off property, so is 7% (-). Now suppose that there exists t, > ¢, such
that T* (¢t,) = T* (ty). Clearly, t, + 7 > T*(t,). It follows that for all ¢y € (¢, %],
T (to +nk) = T* (ty) = T* (t). Let t; = to +nk. By Lemma 2 ;" (¢;) > to. However,
P (t) <ty < to=t; — k. S

Lemma 4 (Continuity of 7*) The function T* : [0,00) — [0,00) is continuous.

Proof. (i) Since T™ is increasing, we only need to rule out upward jumps. Suppose,
that there is an upward jump at ¢y. Then for small enough ¢ > 0 and s € (to — ¢, t9)
T*(s) = T(s+mnk). Let T* = limyy, T* (s) and T* = lim, », T* (s), and suppose
e < T —T. Recall that transaction costs ce™ is incurred for any change of position at
t. This precludes an arbitrageur from changing position at ¢ and ¢’ if the probability
of a crash between t and t’ is small relative to c. Hence, for small enough £ > 0, type
t; = to + K — ¢ is strictly better off selling out at T* — & > T than at T'(;) < T, a
contradiction. An almost identical argument establishes the continuity of 7' (-). m

Lemma 5 (Continuity of T') The function T : [0,00) — [0,00) is continuous.

Proof. This argument uses Corollary 3 and is almost identical in structure to the
proof of Lemma 4. m

Lemma 6 (Zero Probability) For all t; > 0, arbitrageur t; believes that the bubble
bursts with probability zero at the instant T (t;). That is, Pr[T*~' (T (t;)) |t;, B¢ (T (¢;))] =
0 for all t; > 0.

D (to)—(ty'"" (ti))
®(t:)—(8""" (1))

Proof. & [t0|tz, B¢ (T (tz))] =
c.d.f. is well behaved. =

It is obvious that this conditional

33



A.2 Uniqueness proof of Proposition 2

Step 2: Uniqueness.

Let us suppose that there is another equilibrium. Consider t; = argminy, {7 (t;)}.*
Since 7 (t;) < 7' for all ¢;, it must be the case that 7 (¢;) < 7'. Consider t5"" (t;)

(i) By the Pre-emption Lemma 5" (t;) > t; — nx.

(i) If 5™ (t;) > t; — n then arbitrageur ij does not delay selling out at t; + 7 (Z;)
only out of fear of an exogenous bursting of the bubble. By the argument of the first
part, 7 (t;) = 7'. This contradicts the initial assumption that 7 (¢;) < 7.

(iii) Finally, suppose t3 " (g ) t; — nk. In this case the hazard rate that the bubble

bursts at the time when ; sells out is at most (=25 since t; = argmin {7 (¢;)}. Since

this is in turn less than &= 5 , the sell-out condition is v101ated

A.3 Uniqueness proof of Proposition 3

A S g
e =~ “F -

Let 7! solve h (t; + T'|t;) = ﬁ = 22r. Each trader would exit the market at

Step 2: Bubble always bursts for endogenous reasons when

B
t; + 71 if they believed that the bubble would burst for exogenous reasons when it

reached its maximum possible size 3. Under our assumptions to + 71 4+ nk < to + 7.
Hence, the bubble does not always burst for endogenous reasons only if 7 (t;) > 7!
for at least some t;. Consider arbitrageur #;, where t; = argmax;, {7 (¢;)}. Such an
equilibrium can be ruled out by looking at 5" (;).

(i) By the Pre-emption Lemma 5" (¢;) > t; — k.

(i) If 5" (t;) > t; — nx then arbitrageur t;’s hazard rate at T (t;) > t; + 7! that the
bubble will burst for exogenous reasons strictly exceeds == 6 Since this is also the case
at T (t;) — e for sufficiently small € > 0, she has an incentive to sell out strictly prior
to 1" (t;).

(iii) Finally, suppose t3""(¢t;) = t; — nk. Since T(tj) > 7(t;) for all ¢;, the hazard
rate that the bubble will burst at 7' (¢;) is at least ;—25=. Since the bubble bursts at
to+nk—+T1(t;) > to+nk+T1!, the size of the bubble 3 (nx + 7 (t;)) exceeds 3 (nk + 7).
It follows that the first order conditions for arbitrageur ; are violated at T (fj).

Step 3: Minimum and maximum of 7 (¢;) coincide for ¢; > nx.
By Step 2 T (to + nr) < to+ 7 Vtg > 0. That is, the bubble only bursts for endogenous
reasons. By the Pre-emption Lemma, t3"? (tl) > t; — nk. Furthermore, t5" (¢;) >

t; — nk can be ruled out since arbltrageur t; would be strictly better off selhng out at
some € > 0 time after her ostensible equilibrium sell-out date 7' (¢;). Recall that T (¢)
is continuous (Lemma 5). Hence, given 5" (t;) = t; — nx, arbitrageur ¢;’s conditional

22Whenever arg min and arg max are not defined, the corresponding arguments can be extended in
terms of infimums and supremums respectively.
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density of tg at T' (¢;) is_gb (t; — nklt;, B¢ (T (t;))) = % which is independent of ;. Let
t, € argminT (¢;) and ¢; € argmax T (¢;) and suppose that max 7 (t;) > min7 (¢;). By
the continuity of 7' (-) shown in Lemma 5 and the definitions of ¢; and #;, it follows that

IL(T (t;) + Alt;, B (T (t,))) < (T (&) + Alt;, B (T (%;))) for all A > 0, and con-
versely for A < 0. Consequently, h (T (t,) |t;, B¢ (T () < h (T (&) [&:, B¢ (T (%:))).

However, B (nk+7(t;)) < B (77/@ +7 (;z)) Thus, the sell out condition cannot be

satisfied for both arbitrageurs #; and Zi, a contradiction.

A.4 Proof of Lemma 9 in Section 6.1

The payoff of a strategy, where arbitrageur ¢; is fully invested until either ¢ or until
she observes her first public sunspot at t, > t; + 7.. That is, she holds her shares until
min {t,t.} and follows the optimal continuation strategy thereafter. It proves useful,
to specify the payoffs of arbitrageur #; at the time ¢;. Let T (t) denote the cumulative
distribution function that the bubble bursts due to public event prior to t. Let v (¢)
be its associated density.

The payoft of this strategy at the time t; + 7. can be written as the sum of four
components:

e "'p (1) (L= TL(t]t)) (1 =T (t]t:)) +
+/t e (1=B(s=Tr"(s))p(s) (L =T (s))m (s|t;) ds +

dd (to|t;)

ds +
(s — Te — nKlt;) °

[emma-neee [ a-anst-ug
+V (1) :

First, if the bubble does not bursts prior to ¢ and the bubble does not burst due
to a public event up to ¢, then the arbitrageur sells his shares at the price p (t) = e".
Note that this only occurs with probability (1 — IT (¢|¢;)) (1 — T (¢)).

The second payoff component deals with the case where bubble does not burst after
a public event but it burst for endogenous reasons at s prior to t. In these cases, the
arbitrageur only receives (1 — 3 (s — 727! (s))) p(s) and hence the expected payoff is
fti e ™ (1—-8(s=Tr1(s)p(s) (1 =T (s))m(s|t;) ds. Note that T () is invertible,
since all arbitrageurs employ ‘interim-trigger strategies’.

The third term, considers the case where the bubble bursts after a public event. In

this case the arbitrageurs receives (1 — oy, ) p (s)+ouys (1 — G (s — tg)) p(s). Note that
the selling pressure might strictly surpass x at the instant after s and hence arbitrageur
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only receives a convex combination between the pre-crash and post-crash price. For
s < t; + T, arbitrageur t; does not observe the public event. Since he cannot react to
it, she always only receives the post-crash price (1 — (s —ty)) p(s). That is ay, s =1
Vs < t; + T.. Since the bubble only bursts for s > ty + 7. + 1k, we have to divide
d® (to|Z;) by ® (s — 7 — nk&|Z;).

Finally, the fourth component reflects the value of the option to re-enter the market
and to ride the bubble after the first observed failed sell-out at s.
V)= f:i% Oe=%v (s|t;) [L — T (s|t;)] [ — @ (s — Te — m|t;)] ds+ V5T (t;), where v (s|t;)
is the expected maximum payoff of starting from a zero position (i.e. z(s) = 0) pro-
vided that the first public event occurred at s and the bubble did not burst prior to
s. Note that this ‘option value’ only arises for the cases where the bubble still exists
when a public event occurs and the bubble survives the sell out after the public event,
that is if tg > s — 7. — nr. V*T (¢;) captures the option value for the second observed
failed attack onwards.

Differentiating with respect ¢ yields a generalized sell-out condition.

—re "p (t) (1 =TI (t[t:)) (1 =T (¢[t;)) + e’ (t) (1 = TL(¢[t;)) (1 = T (¢t:))
—e™"p (t) m (tlt;) (1 =T (tft:)) — e ™™p (t) (1 — TL(t[t:)) 7 (¢]t:)
+e (1= (=T (1)) p () (1=T(t) m (t]t;)

SO0 | [ (1)

d® (tot;)
1 —®(t—71e—nklt:) '

Dividing it by e™"*p (¢) (1 — IL (¢]t;)) (1 — T (¢]¢;)) simplifies the FOC to

pri) owt) () ™ (t|t:)
P U-n@n) 1Tk (L T1(t]6,))
+ (1) 0% (1ot
LT () {1 B / L o) } =0
(1)

Lemma 8 follows by replacing 0 with g, % with & (t|t;) and (J%Tgi)) 1—<I>(t—rle—nn\ti)
with 6.

_T+

+(1-801t-Tr"@1))

_|_

A.5 Details of Proof of Proposition 5

As noted in the text, the following steps are analogous to Step 2 and 3 of the proof of
Proposition 3.

Step 2: The bubble always bursts for endogenous reasons when H%MN > &1
Step 2 of proof of Proposition 3 shows that the standard sell-out condition is violated

for each trader who sells out only at ¢; + 7! even in the absence of public events. Since
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the additional term 6 fto <tirr 1w (0,58 (ti + T = t9)) d® (to|Zy,) in the general sell-
out condition is always positive and increasing in 7, it is also violated in the generalized
setting with public events.

Step 3: Minimum and maximum of 7 (¢;) coincide for ¢; > nx.

By Step 2, T, (to+nk) < to + 7 Vip > 0. That is, the bubble only bursts for
endogenous reasons. By the Pre-emption Lemma, ¢;"" (¢;) > ¢; — nkx. Further-
more, £ (t;) > t; — nr can be ruled out since arbitrageur #; would be strictly
better off selling out at some £ > 0 time after her ostensible equilibrium sell-out
date T, (t;). Recall that T, (t) is continuous. Hence, arbitrageur #;’s conditional
density of ty at T, (t;) is ¢ (t; — nk|t;, B¢ (T, (t;))) = eﬁizn_ﬁl which is independent of
t;. Let t; € argminT (¢;) and ¢; € argmaxr (¢;) and suppose that max7 (¢;) >
min 7 (¢;). By the continuity of T, (-) and the definitions of ¢; and ¢;, it follows that
(T, (t,) + Alt;, B (T. (t;))) < I (Te (Zz) + Alt;, B (Te (Zz))) for all A > 0, and con-
versely for A < 0. Consequently, h (T, (&) |t;, B (T. (t;))) < h (T. (&) |t;, B¢ (T. (%)))-

However, 5 (nk +7(t;)) < (77/6 +7 (E)) Furthermore,
0 ﬁoSTe(ﬁi)—Te—nH (Oéto,Te(ii)ﬁ (Te (L) - tO)) d® (tO‘Iti)
<0 fto ST (T) e (ato 7. (%) 16} (T v (ﬁ) — to)) d® (t9|Z;,). Thus, the generalized sell-out

condition cannot be satisfied for both arbitrageurs #; and a, a contradiction.

A.6 Proof of Proposition 6

Lemma 7 There exists a function T, (-) such that for alln =1,2,... and all histories
of price drops H,' all traders t; who became aware of the mispricing prior to t,—7, (H;f)
leave the market and all other arbitrageurs stay in the stock market.

Proof. Recall that 7%** denotes the time elapsed after which each arbitrageur
leaves the market in the absence of a price shock. We proceed inductively, defining
7 (HY) given 7, (H!) where | = 1,2,....k — 1. We are looking for the smallest 7,

such that t; = ték) — 7, is indifferent between exiting and staying in the market. At

t](,k), arbitrageurs with ¢; < ¢, — 7°

koK

are already out of the market provided that

t;k) > max {t](,’“‘j I Tp (H,gk_j ))} (in which case traders returned to the
j=12,...
market because of a previous failed sell-out attempt). Arbitrageur ¢; = ték) — Tp is

indifferent between staying in the market or not if

/ [_’Yp + B (tp — tO)} (1= ayy,)d® (tofti = t](;k) — Tp, bp, Hp) +
to<tp—Tp (HZ(,I“))
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+/ (—v,) d® (tolt: =t — 7, H, (¢IP))  =0.
t0>tpfrp(H§’“))

/ [5 (t - tO)] [1 - &t,to] dd (tolti = ték) — Tp, Hp (ték))) — T = 0.
to<ty—Tp (H,(,’“))

Let’s define the LHS by f,gk) (Tp‘ti = t;’“) - Tp). Note that if the bubble does
not burst, then all arbitrageurs sell their shares at the price of (1 — q/p) pe. If the

bubble does burst, only the first |:I€ - % (t,gk) —tp— T***)} orders (k orders) are exe-
cuted at (1 —1,) pe if t;(;k) > (<) max {t,(;kfj) + 71— 1, (H,gkij))} . The term
J=1,2,...

(1 — &yy,) reflects this fact. If £0 (O|ti = — Tp) > 0, then 7, (H,gk)) = 0. If

t,i=1t, — 1, < ook for min 7, such that Tolt; =ty —7,) > 0.
(0]t =t — 7,) < 0 look for min7, such that £ (r,|t; =t —r,) > 0. 1If
such a 7, does not exist set 7, = t,,.

It remains to check that all arbitrageurs with ¢; < t,(yk) —Tp (H,gk)) strictly prefer

to leave the market and all traders with ¢; > t](,’” - Tp (H,gk)) prefer to remain in

the market. By looking at trader #;’s distribution ® (tl-), it is easy to check that the

f,gk) (Tp|t2» = t](,’” — Tp) is decreasing in ;. Notice that each trader can rule out any ¢y <

t;—n. From the fact that the bubble did not burst before t](f) for endogenous reasons all
arbitrageurs can rule out ¢y < t,(yk) —7"** —nk. Finally, since the bubble survived all sell-

out attempts after previous price drops ty > max {t](,’“‘j ) Tp (H,gk_j )) } . For all
J=1,2,...

traders with ¢; — 7 < max ték) — 7" — nK, max {tékij) —Tp (Hékij))} }, the
J=1,2,...

lower bound is the same, while the upper bound is given by ¢;. Hence, for arbitrageurs
with lower ¢; the density on ¢y for which t, <t, -7, (HI(,’C)) is higher. In addition, the

(conditional) exponential distribution has the nice property that the relative likelihood
of possible states in the support across arbitrageurs is the same. The distribution & (-)
for arbitrageurs whose support is [t; — 7, ;] is totally symmetric except that it start at
different ¢;,. Hence, fzgk) (Tp\tl- = ték) — Tp) is also decreasing in ¢; in this case. m
Proof of Proposition 6.

After establishing the critical value 7, (H]’f) in Lemma 8, the remaining proof of Propo-
sition 6 is analogous to the proof of Proposition 5. There are three differences: all
arbitrageurs observe each price drop, the first orders after the price drop are only ex-
ecuted at a price of (1 —+?)p; instead of the pre-crash price p;, and all 7, (Hg) are
history dependent. Note that 7, (H}’,f) is known to all traders in equilibrium since all
arbitrageurs can observe the past price process. m
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