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Abstract

This paper studies the full equilibrium dynamics of an economy with financial frictions.
Due to highly non-linear amplification effects, the economy is prone to instability and occa-
sionally enters volatile episodes. Risk is endogenous and asset price correlations are high in
down turns. In an environment of low exogenous risk experts assume higher leverage making
the system more prone to systemic volatility spikes - a volatility paradox. Securitization
and derivatives contracts leads to better sharing of exogenous risk but to higher endogenous
systemic risk. Financial experts may impose a negative externality on each other by not
maintaining adequate capital cushion.



1 Introduction

Many standard macroeconomic models are based on identical households that invest directly with-
out financial intermediaries. This representative agent approach can only yield realistic macroe-
conomic predictions if, in reality, there are no frictions in the financial sector. Yet, following the
Great Depression, economists such as Fisher (1933), Keynes (1936) and Minsky (1986) have at-
tributed the economic downturn to the failure of financial markets. The current financial crisis
has underscored once again the importance of the financial sector for the business cycles.

Central ideas to modeling financial frictions include heterogeneous agents with lending. One
class of agents - let us call them experts - have superior ability or greater willingness to manage
and invest in productive assets. Because experts have limited net worth, they end up borrowing
from other agents who are less skilled at managing or less willing to hold productive assets.

Existing literature uncovers two important properties of business cycles, persistence and am-
plification. Persistence arises when a temporary adverse shock depresses the economy for a long
time. The reason is that a decline in experts’ net worth in a given period results in depressed
economic activity, and low net worth of experts in the subsequent period. The causes of amplifica-
tion are leverage and the feedback effect of prices. Through leverage, expert net worth absorbs a
magnified effect of each shock, such as new information about the potential future earning power
of current investments. When the shock is aggregate, affecting many experts at once, it results in
decreased demand for assets and a drop in asset prices, further lowering the net worth of experts,
further feeding back into prices, and so on. Thus, each shock passes through this infinite ampli-
fication loop, and asset price volatility created through this mechanism is sometimes referred to
as endogenous risk. Bernanke and Gertler (1989), Bernanke, Gertler, and Gilchrist (1999) and
Kiyotaki and Moore (1997) build a macro model with these effects, and study linearized system
dynamics around the steady state.

We build a model to study full equilibrium dynamics, not just near the steady state. While the
system is characterized by relative stability, low volatility and reasonable growth around the steady
state, its behavior away from the steady state is very different and best resembles crises episodes as
large losses plunge the system into a regime with high volatility. These crisis episodes are highly
nonlinear, and strong amplifying adverse feedback loops during these incidents may take the
system way below the stochastic steady state, resulting in significant inefficiencies, disinvestment,
and slow recovery. Interestingly, the stationary distribution is double-humped shaped suggesting
that (without government intervention) the dynamical system spends a significant amount of time
in the crisis state once thrown there.

The reason why the amplification of shocks through prices is much milder near than below
the stochastic steady state is because experts choose their capital cushions endogenously. In the
normal regime, experts choose their capital ratios to be able to withstand reasonable losses. Excess
profits are paid out (as bonuses, dividends, etc) and mild losses are absorbed by reduced payouts
to raise capital cushions to a desired level. Thus, normally experts are fairly unconstrained and are
able to absorb moderate shocks to net worth easily, without a significant effect on their demand
for assets and market prices. Consequently, for small shocks amplification is limited. However, in
response to more significant losses, experts choose to reduce their positions, affecting asset prices
and triggering amplification loops. The stronger asset prices react to shocks to the net worth of
experts, the stronger the feedback effect that causes further drops in net worth, due to depressed
prices. Thus, it follows that below the steady state, when experts feel more constrained, the system
becomes less stable as the volatility shoots up. Asset prices exhibit fat tails due to endogenous
systemic risk rather than exogenously assumed rare events. This feature causes volatility smirk
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effects in option prices during the times of low volatility.
Our results imply that endogenous risk and excess volatility created through the amplification

loop make asset prices significantly more correlated cross-sectionally in crises than in normal times.
While cash flow shocks affect the values of individual assets held by experts, feedback effects affect
the prices of all assets held by experts.1

We argue that it is typical for the system to enter into occasional volatile episodes away from
the steady state because risk-taking is endogenous. This may seem surprising, because one may
guess that log-linearization near the steady state is a valid approximation when exogenous risk
parameters are small. In our model this guess would be incorrect, because experts choose their
leverage endogenously in response to the riskiness of the assets they hold. Thus, assets with
lower fundamental uncertainty result in greater leverage. Paradoxically, lower exogenous risk can
make the systemic more susceptible to volatility spikes – a phenomenon we refer to as “volatility
paradox”. In sum, whatever the exogenous risk, it is normal for the system to sporadically enter
volatile regimes away from the steady state. In fact, our results suggest that low exogenous risk
environment is conducive to greater buildup of systemic risk.

We find that higher volatility due to endogenous risk also increases the experts’ precautionary
hoarding motive. That is, when changes in asset prices are driven by the constraints of market
participants rather than changes in cash flow fundamentals, incentives to hold cash and wait to
pick up assets at the bottom increase. In case prices fall further, the same amount of money
can buy a larger quantity of assets, and at a lower price, increasing expected return. In our
equilibrium this phenomenon leads to price drops in anticipation of the crisis, and higher expected
return in times of increased endogenous risk. Aggregate equilibrium leverage is determined by
experts’ responses to everybody else’s leverage – higher aggregate leverage increases endogenous
risk, increases the precautionary motive and reduces individual incentives to lever up.2

We also find that due to endogenous risk-taking, derivatives hedging, securitization and other
forms of financial innovation may make the financial system less stable. That is, volatile excursion
away from the steady state may become more frequent with the use of mechanisms that allow
intermediaries to share risks more efficiently among each other. For example, securitization of
home loans into mortgage-backed securities allows institutions that originate loans to unload some
of the risks to other institutions. More generally, institutions can share risks through contracts like
credit-default swaps, through integration of commercial banks and investment banks, and through
more complex intermediation chains (e.g. see Shin (2010)). To study the effects of these risk-
sharing mechanisms on equilibrium, we add idiosyncratic shocks to our model. We find that when
expert can hedge idiosyncratic shocks among each other, they become less financially constrained
and take on more leverage, making the system less stable. Thus, while securitization is in principle
a good thing - it reduces the costs of idiosyncratic shocks and thus interest rate spreads - it ends
up amplifying systemic risks in equilibrium.

Financial frictions in our model lead not only to amplification of exogenous risk through endoge-
nous risk but also to inefficiencies. Externalities can be one source of inefficiencies as individual

1While our model does not differentiate experts by specialization (so in equilibrium experts hold fully diversified
portfolios, leading to the same endogenous correlation across all assets), our results have important implications
also for networks linked by similarity in asset holdings. Important models of network effects and contagion include
Allen and Gale (2000) and Zawadowski (2009).

2The fact that in reality risk taking by leveraged market participants is not observable to others can lead to risk
management strategies that are in aggregate mutually inconsistent. Too many of them might be planning to sell
their capital in case of an adverse shock, leading to larger than expected price drops. Brunnermeier, Gorton, and
Krishnamurthy (2010) argue that this is one contributing factor to systemic risk.
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decision makers do not fully internalize the impact of their actions on others. Pecuniary external-
ities arise since individual market participants take prices as given, while as a group they affect
them.

Literature review. Financial crises are common in history - having occurred at roughly 10-year
intervals in Western Europe over the past four centuries, according Kindleberger (1993). Crises
have become less frequent with the introduction of central banks and regulation that includes
deposit insurance and capital requirements (see Allen and Gale (2007) and Cooper (2008)). Yet,
the stability of the financial system has been brought into the spotlight again by the events of the
current crises, see Brunnermeier (2009).

Financial frictions can limit the flow of funds among heterogeneous agents. Credit and col-
lateral constraints limit the debt capacity of borrowers, while equity constraints bound the total
amount of outside equity. Both constraints together imply the solvency constraint. That is, net
worth has to be nonnegative all the time. The literature on credit constraints typically also as-
sumes that firms cannot issue any equity. In addition, in Kiyotaki and Moore (1997) credit is
limited by the expected price of the collateral in the next period. In Geanakoplos (1997, 2003)
and Brunnermeier and Pedersen (2009) borrowing capacity is limited by possible adverse price
movement in the next period. Hence, greater future price volatility leads to higher haircuts and
margins, further tightening the liquidity constraint and limiting leverage. Garleanu and Pedersen
(2010) study asset price implications for an exogenous margin process. Shleifer and Vishny (1992)
argue that when physical collateral is liquidated, its price is depressed since natural buyers, who
are typically in the same industry, are likely to be also constrained. Gromb and Vayanos (2002)
provide welfare analysis for a setting with credit constraints. Rampini and Viswanathan (2011)
show that highly productive firms go closer to their debt capacity and hence are harder hit in
a downturns. In Carlstrom and Fuerst (1997) and Bernanke, Gertler, and Gilchrist (1999) en-
trepreneurs do not face a credit constraint but debt becomes more expensive as with higher debt
level default probability increases.

In this paper experts can issue some equity but have to retain “skin in the game” and hence
can only sell off a fraction of the total risk. In Shleifer and Vishny (1997) fund managers are also
concerned about their equity constraint binding in the future. He and Krishnamurthy (2010b,a)
also assume an equity constraint.

One major role of the financial sector is to mitigate some of the financial frictions. Like
Diamond (1984) and Holmström and Tirole (1997) we assume that financial intermediaries have
a special monitoring technology to overcome some of the frictions. However, the intermediaries’
ability to reduce these frictions depends on their net worth. In Diamond and Dybvig (1983)
and Allen and Gale (2007) financial intermediaries hold long-term assets financed by short-term
liabilities and hence are subject to runs, and He and Xiong (2009) model general runs on non-
financial firms. In Shleifer and Vishny (2010) banks are unstable since they operate in a market
influenced by investor sentiment.

Many papers have studied the amplification of shocks through the financial sector near the
steady state, using log-linearization. Besides the aforementioned papers, Christiano, Eichenbaum,
and Evans (2005), Christiano, Motto, and Rostagno (2003, 2007), Curdia and Woodford (2009),
Gertler and Karadi (2009) and Gertler and Kiyotaki (2011) use the same technique to study related
questions, including the impact of monetary policy on financial frictions.

We argue that the financial system exhibits the types of instabilities that cannot be adequately
studied by steady-state analysis, and use the recursive approach to solve for full equilibrium
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dynamics. Our solution builds upon recursive macroeconomics, see Stokey and Lucas (1989) and
Ljungqvist and Sargent (2004). We adapt this approach to study the financial system, and enhance
tractability by using continuous-time methods, see Sannikov (2008) and DeMarzo and Sannikov
(2006).

A few other papers that do not log-linearize include Mendoza (2010) and He and Krishna-
murthy (2010b,a). Perhaps most closely related to our model is He and Krishnamurthy (2010b).
The latter studies an endowment economy to derive a two-factor asset pricing model for assets that
are exclusively held by financial experts. Like in our paper, financial experts issue outside equity
to households but face an equity constraint due to moral hazard problems. When experts are well
capitalized, risk premia are determined by aggregate risk aversion since the outside equity con-
straint does not bind. However, after a severe adverse shock experts, who cannot sell risky assets
to households, become constrained and risk premia rise sharply. He and Krishnamurthy (2010a)
calibrate a variant of the model and show that equity injection is a superior policy compared to
interest rate cuts or asset purchasing programs by the central bank.

Pecuniary externalities that arise in our setting lead to socially inefficient excessive borrowing,
leverage and volatility. These externalities are studied in Bhattacharya and Gale (1987) in which
externalities arise in the interbank market and in Caballero and Krishnamurthy (2004) which
study externalities an international open economy framework. On a more abstract level these
effects can be traced back to inefficiency results within an incomplete markets general equilibrium
setting, see e.g. Stiglitz (1982) and Geanakoplos and Polemarchakis (1986). In Lorenzoni (2008)
and Jeanne and Korinek (2010) funding constraints depend on prices that each individual investor
takes as given. Adrian and Brunnermeier (2010) provide a systemic risk measure and argue that
financial regulation should focus on these externalities.

We set up our baseline model in Section 2. In Section 3 we develop methodology to solve
the model, and characterize the equilibrium that is Markov in the experts’ aggregate net worth
and presents a computed example. Section 4 discusses equilibrium asset allocation and leverage,
endogenous and systemic risk and equilibrium dynamics in normal as well as crisis times. We also
extend the model to multiple assets, and show that endogenous risk makes asset prices much more
correlated in cross-section in crisis times. In Section 5 focuses on the “volatility paradox”. We show
that the financial system is always prone to instabilities and systemic risk due endogenous risk
taking. We also argue that hedging of risks within the financial sector, while reducing inefficiencies
from idiosyncratic risks, may lead to the amplification of systemic risks. Section 6 is devoted to
efficiency and externalities. Section 7 microfounds experts’ balance sheets in the form that we
took as given in the baseline model, and extend analysis to more complex intermediation chains.
Section 8 concludes.

2 The Baseline Model

In an economy without financial frictions and complete markets, the distribution of net worth
does not matter as the flow of funds to the most productive agents is unconstrained. In our model
financial frictions limit the flow of funds from less productive households to more productive
entrepreneurs. Hence, higher net worth in the hands of the entrepreneurs leads to higher overall
productivity. In addition, financial intermediaries can mitigate financial frictions and improve the
flow of funds. However, they need to have sufficient net worth on their own. In short, the two
key variables in our economy are entrepreneurs’ net worth and financial intermediaries’ net worth.
When the net worth’s of intermediaries and entrepreneurs become depressed, the allocation of
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resources (such as capital) in the economy becomes less efficient and asset prices become depressed.
In our baseline model we study equilibrium in a simpler system governed by a single state

variable, “expert” net worth. We interpret it as an aggregate of intermediary and entrepreneur
net worth’s. In Section 7 we partially characterize equilibrium in a more general setting and
provide conditions under which the more general model of intermediation reduces to our baseline
setting.

Technology. We consider an economy populated by experts and less productive households.
Both types of agents can own capital, but experts are able to manage it more productively. The
experts’ ability to hold capital and equilibrium asset prices will depend on the experts’ net worths
in our model.

We denote the aggregate account of efficiency units of capital in the economy by Kt, where
t ∈ [0,∞) is time, and capital held by an individual agent by kt. Physical capital kt held by
experts produces output at rate

yt = akt,

per unit of time, where a is a parameter. The price of output is set equal to one and serves as
numeraire. Experts can create new capital through internal investment. When held by an expert,
capital evolves according to

dkt = (Φ(ιt)− δ)kt dt+ σkt dZt

where ιtkt is the investment rate (i.e. ιt is the investment rate per unit of capital), the function
Φ(ιt) reflects (dis)investment costs and dZt are exogenous Brownian aggregate shocks. We assume
that that Φ(0) = 0, so in the absence of new investment capital depreciates at rate δ when managed
by experts, and that the function Φ(·) is increasing and concave. That is, the marginal impact
of internal investment on capital is decreasing when it is positive, and there is “technological
illiquidity,” i.e. large-scale disinvestments are less effective, when it is negative.

Households are less productive and do not have an internal investment technology. The capital
that is managed by households produces only output of

y
t

= a kt

with a ≤ a. In addition, capital held in households’ hands depreciates at a faster rate δ ≥ δ. The
law of motion of kt when managed by households is

dkt = −δ kt dt+ σkt dZt.

The Brownian shocks dZt reflect the fact that one learns over time how “effective” the capital
stock is.3 That is, the shocks dZt captures changes in expectations about the future productivity of
capital, and kt reflects the “efficiency units” of capital, measured in expected future output rather
than in simple units of physical capital (number of machines). For example, when a company
reports current earnings it not only reveals information about current but also future expected
cashs flow. In this sense our model is also linked to the literature on connects news to business
cycles, see e.g. Jaimovich and Rebelo (2009).

3Alternatively, one can also assume that the economy experiences aggregate TFP shocks at with dat = atσdZt.
Output would be yt = atκt, where capital κ is now measured in physical (instead of efficiency) units and evolves
according to dκt = (Φ(ιt/at) − δ)κtdt. To preserve the tractable scale invariance property one has to modify the
adjustment cost function to Φ(ιt/at). The fact that adjustment costs are higher for high at can be justified by the
fact that high TFP economies are more specialized.
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Preferences. Experts and less productive households are risk neutral. Households discount
future consumption at rate r, and they may consume both positive and negative amounts. This
assumption ensures that households provide fully elastic lending at the risk-free rate of r. Denote by
ct the cumulative consumption of an individual household until time t, so that dct is consumption
at time t. Then the utility of a household is given by4

E

[∫ ∞
0

e−rt dct

]
.

In contrast, experts discount future consumption at rate ρ > r, and they cannot have negative
consumption. That is, cumulative consumption of an individual expert ct must be a nondecreasing
process, i.e. dct ≥ 0. Expert utility is

E

[∫ ∞
0

e−ρt dct

]
.

Market for Capital. There is a fully liquid market for physical capital, in which experts can
trade capital among each other or with households. Denote the market price of capital (per
efficiency unit) in terms of output by qt and its law of motion by5

dqt = µqtqt dt+ σqt qt dZt

In equilibrium qt is determined endogenously through supply and demand relationships. Moreover,
qt > q ≡ a/(r + δ), since even if households had to hold the capital forever, the Gordon growth
formula tells us that they would be willing to pay q.

When an expert buys and holds kt units of capital at price qt, by Ito’s lemma the value of this
capital evolves according to6

d(ktqt) = (Φ(ιt)− δ + µqt + σσqt )(ktqt) dt+ (σ + σqt )(ktqt) dZt. (1)

Note that the total risk of holding this position in capital consists of fundamental risk due to
news about the future productivity of capital σ dZt, and endogenous risk due to the allocation of
capital between experts and less productive households, σqt dZt. Capital also generates output net
of investment of (a− ιt)kt, so the total return from one unit of wealth invested in capital is(

a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt

)
︸ ︷︷ ︸

≡Et[rkt ]

dt+ (σ + σqt ) dZt.

We denote the experts’ expected return on capital by Et[r
k
t ].

4Note that we do not denote by c(t) the flow of consumption and write E
[∫∞

0
e−ρtc(t) dt

]
, because consumption

can be lumpy and singular and hence c(t) may be not well defined.
5Note that qt follows a diffusion process because all new information in our economy is generated by the Brownian

motion Zt.
6The version of Ito’s lemma we use is the product rule d(XtYt) = YtdXt +XtdYt + σxσy dt. Note that unlike in

standard portfolio theory, kt is not a finite variation process and has volatility σkt, hence the term σσqt (ktqt).
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Experts’ problem. The evolution of expert’s net worth nt depends on how much debt and
equity he issues. Less productive households provide fully elastic debt funding at a discount rate
r < ρ to any expert with positive net worth, as long as he can guarantee to repay the loan with
probability one.7

For an expert who only finances his capital holding of qtkt through debt, without issuing any
equity, the net worth evolves according to

dnt = rnt dt+ (ktqt)[(Et[r
k
t ]− r) dt+ (σ + σqt ) dZt]− dct. (2)

In this equation, the exposure to capital kt may change over time due to trading, but trades
themselves do not affect expert net worth because we assume that individual experts are small
and have no price impact. The terms in the square brackets reflect the excess return from holding
one unit of capital.

Experts can in addition issue some (outside) equity. Equity financing leads to a modified
equation for the law of motion of expert net worth. We assume that the amount of equity that
experts can issue is limited. Specifically, they are required to hold at least a fraction of ϕ̃ of
total risk of the capital they hold, and they are able to invest in capital only when their net
worth is positive. That is, experts are bound by an equity constraint and a solvency constraint. In
Section 7 we microfound these financing constraints using an agency model, and explain its relation
to contracting and observability and also fully model the intermediary sector that monitors and
lends to more productive households.

When experts holds a fraction ϕt ≥ ϕ̃ of capital risk and unload the rest to less productive
households through equity issuance, the law of motion of expert net worth (2) has to be modified
to

dnt = rnt dt+ (ktqt)[(Et[r
k
t ]− r) dt+ ϕt(σ + σqt ) dZt]− dct. (3)

Equation (3) takes into account that, since less productive households are risk-neutral, they require
only an expected return of r on their equity investment. Figure 1 illustrates the balance sheet of
an individual expert at a fixed moment of time t.8

7In the short run, an individual expert can hold an arbitrarily large amount of capital by borrowing through
risk-free debt because prices change continuously in our model, and individual experts are small and have no price
impact.

8Equation (3) captures the essence about the evolution of experts’ balance sheets. To fully characterize the
full mechanics note first that equity is divided into inside equity with value nt, which is held by the expert and
outside equity, with value (1− ϕt)nt/ϕt, held by less productive households. At any moment of time t, an expert
holds capital with value ktqt financed by equity nt/ϕt and debt ktqt − nt/ϕt. The equity stake of less productive
households changes according to

r(1− ϕt)/ϕtnt dt+ (1− ϕt)(ktqt)(σ + σqt ) dZt − (1− ϕt)/ϕtdct,

where (1− ϕt)/ϕtdct is the share of dividend payouts that goes to outside equity holders.
Since the expected return on capital held by experts is higher than the risk-free rate, inside equity earns a higher

return than outside equity. This difference can be implemented through a fee paid by outside equity holders to the
expert for managing assets. From equation (3), the earnings of inside equity in excess of the rate of return r are

(ktqt)(Et[r
k
t ]− r).

Thus, to keep the ratio of outside equity to inside equity at (1 − ϕt)/ϕt, the expert has to raise outside equity
at rate

(1− ϕt)/ϕt(ktqt)(Et[rkt ]− r).
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Figure 1: Expert balance sheet with inside and outside equity

Formally, each expert solves

max
dct≥0,ιt,kt≥0,ϕt≥ϕ̃

E

[∫ ∞
0

e−ρtdct

]
,

subject to the solvency constraint nt ≥ 0, ∀t and the dynamic budget constraint (3).

Households’ problem. Each household may lend to experts at the risk-free rate r, buy experts’
outside equity, or buy physical capital from experts. Let ξ

t
denote the amount of risk that the

household is exposed to through its holdings of outside equity of experts and dct is the consumption
of an individual household. When a household with net worth nt buys capital kt and invests the
remaining net worth, nt − ktqt at the risk-free rate and in experts’ outside equity, then

dnt = rnt dt+ ξ
t
(σ + σqt ) dZt + (ktqt)[(Et[r

k
t ]− r) dt+ (σ + σqt ) dZt]− dct. (4)

Analogous to experts, we denote households’ expected return of capital by

Et[r
k
t ] ≡

a

qt
− δ + µqt + σσqt .

Formally, each household solves

max
dct,kt≥0,ξ

t
≥0
E

[∫ ∞
0

e−rtdct

]
,

subject to nt ≥ 0 and the evolution of nt given by (4). Note that unlike that of experts, household
consumption dct can be both positive and negative.

In sum, experts and households differ in three ways: First, experts are more productive since
a ≥ a and/or δ < δ. Second, experts are less patient than households, i.e. ρ > r. Third, experts’
consumption has to be positive while we allow for negative households consumption to ensure that
the risk free rate is always r.9

9Negative consumption could be interpreted as the disutility from an additional labor input to produce extra
output.
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Equilibrium. Informally, an equilibrium is characterized by market prices of capital {qt}, invest-
ment and consumption choices of agents such that, given prices, agents maximize their expected
utilities and markets clear. To define an equilibrium formally, we denote the set of experts to be
the interval I = [0, 1], and index individual experts by i ∈ I, and similarly denote the set of less
productive households by J = (1, 2] with index j.

Definition 1 For any initial endowments of capital {ki0, k
j
0; i ∈ I, j ∈ J} such that∫

I
ki0 di+

∫
J
kj0 dj = K0,

an equilibrium is described by a group of stochastic processes on the filtered probability space defined
by the Brownian motion {Zt, t ≥ 0}: the price process of capital {qt}, net worths {nit ≥ 0}, capital
holdings {kit ≥ 0}, investment decisions {ιit ∈ R}, fractions of equity retained {ϕit ≥ ϕ̃} and
consumption choices {dcit ≥ 0} of individual experts i ∈ I, and net worths {njt}, capital holdings
{kjt}, investments in outside equity {ξj

t
} and consumption choices {dcjt} of each less productive

household j ∈ J; such that

(i) initial net worths satisfy ni0 = q0k
i
0 and nj0 = q0k

j
0, for i ∈ I and j ∈ J,

(ii) each expert i ∈ I solve his problem given prices

(iii) each household j ∈ J solve his problem given prices

(iv) markets for consumption goods,10 equity, and capital clear∫
I
(dcit) di+

∫
J
(dcjt) dj =

(∫
I
(a− ιit)kit di+

∫
J
a kjt dj

)
dt,

∫
I
(1− ϕit)kit di =

∫
J
ξj
t
dj, and

∫
I
kit di+

∫
J
kjt dj = Kt,

where dKt =
(∫

I k
i
t(Φ(ιt)− δ) di−

∫
J δ k

j
t dj
)
dt+ σKt dZt.

Note that if three of the markets clear, then the remaining market for risk-free lending and
borrowing at rate r automatically clears by Walras’ Law.

3 Solving for the Equilibrium

To solve for the equilibrium, we first derive conditions for households’ and experts’ optimal capital
holding given prices qt, and use them together with the market-clearing conditions to solve for
prices, and investment and consumption choices simultaneously. We proceed in two steps. First,
we derive equilibrium conditions that the stochastic equations for the price of capital and the
marginal value of net worth have to satisfy in general. Second, we show that the dynamics of our
basic setup can be described by a single state variable and derive the system of equations to solve
for the price of capital and the marginal value of net worth as functions of this state variable.

10In equilibrium while aggregate consumption is continuous with respect to time, the experts’ and households’
consumption is not. However, their singular parts cancel out in the aggregate.
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Intuitively, we expect the equilibrium prices to fall after negative macro shocks, because those
shocks lead to expert losses and make them more constrained. At some point, prices may drop
so far that less productive households may find it profitable to buy capital from experts. Less
productive households are speculative as they hope to make capital gains. In this sense they are
liquidity providers as they pick up some of the functions of the traditional financial sector in times
of crises.11

Households’ optimization problem is straightforward as they are not financially constrained. In
equilibrium they must earn a return of r, their discount rate, on investments in the risk-free assets
and expert’s equity. Their expected return on physical capital cannot exceed r in equilibrium,
since otherwise they would demand an infinite amount of capital. Formally, denote the fraction
of physical capital held by households by

1− ψt =
1

Kt

∫
J
kjt dj.

Households expected return has to be exactly r when 1 − ψt > 0, and not greater than r when
1− ψt = 0. This leads to the equilibrium condition

a

qt
− δ + µqt + σσqt︸ ︷︷ ︸

Et[rkt ]

≤ r, with equality if 1− ψt > 0. (H)

Experts’ optimization problems are significantly more complex because experts are financially
constrained and the problem that they face is dynamic. That is, their decisions on how much to
lever up depend not only on the current price levels and their production technologies, but also
on the whole future law of motion of prices. They face the following trade-off: greater leverage
leads to both higher profit and greater risk. Even though experts are risk-neutral with respect
to consumption streams in our model, our analysis shows that they exhibit risk-averse behavior
(in aggregate) because their investment opportunities are time-varying. Taking on greater risk
leads experts to suffer greater losses exactly in the events when they value funds the most - after
negative shocks when prices become depressed and profitable opportunities arise.

Before discussing dynamic optimality of experts’ strategies, note that one choice that experts
make, internal investment ιt, is static. Optimal investment maximizes

ktqtΦ(ιt)− ktιt.

The first-order condition is qtΦ
′(ιt) = 1 (marginal Tobin’s q) which implies that the optimal level

of investment and the resulting growth rate of capital are functions of the price qt, i.e.

ιt = ι(qt) and Φ(ιt)− δ = g(qt).

From now on, we assume that experts are optimizing with respect to internal investment, and
take Et[r

k
t ] to incorporate the optimal choice of ιt.

11Investors like Warren Buffet have helped institutions like Goldman Sachs and Wells Fargo with capital infusions.
More generally, governments through backstop facilities have played a huge role in providing capital to financial
institutions in various ways and induced large shifts in asset holdings (see He, Khang, and Krishnamurthy (2010)).
Our model does not capture the important role the government played in providing various lending facilities during
the great recession.

10



Unlike internal investment, expert choices with respect to the trading of capital kt, consumption
dct and the fraction of risk ϕt ≥ ϕ they hold are fully dynamic.12 To solve the experts’ dynamic
optimization problems, we define the experts’ value functions and write their Bellman equations.
The value function of an expert summarizes how his continuation payoff depends on his wealth
and market conditions. The following lemma highlights an important property of the expert
value functions: they are proportionate to their wealth, because of the assumption that experts
are atomistic and act competitively. That is, expert A whose wealth differs from that of expert
B by a factor of ς can get the payoff of expert B times ς by scaling the strategy of expert B
proportionately. We denote the proportionality coefficient that summarizes how market conditions
affect the experts’ expected payoff per dollar of net worth by the process θt. The process θt is
determined endogenously in equilibrium.

Lemma 1 There exists a process θt such that the value function of any expert with net worth nt
is of the form θtnt.

Lemma 2 characterizes expert optimization problem via the Bellman equation.

Lemma 2 Let {qt, t ≥ 0} be a price process for which the experts’ value functions are finite.13

Then the following two statements are equivalent

(i) the process {θt, t ≥ 0} represents the marginal value of net worth and
{kt, dct, ϕt, ιt; t ≥ 0} is an optimal strategy

(ii) the Bellman equation

ρθtnt dt = max
kt ≥ 0, dct ≥ 0, ϕt ≥ ϕ̃

s.t. (3) holds

dct + E[d(θtnt)], (5)

together with transversality condition that E[e−ρtθtnt]→ 0 as t→∞ hold.

From the Bellman equation, we can derive more specific conditions that stochastic laws of
motion of qt and θt, together with the experts’ optimal strategies, have to satisfy. We conjecture
that in equilibrium σqt ≥ 0, σθt ≤ 0 and ψt > 0, i.e. capital prices rise after positive macro shocks
(which make experts less constrained) and drop after negative shocks, the marginal value of expert
net worth rises when prices fall, and experts always hold positive amounts of capital. Under these
assumptions we derive necessary and sufficient conditions for the optimality of expert’ strategies
in the following proposition.

Proposition 1 Consider a pair of processes

dqt
qt

= µqt dt+ σqt dZt and
dθt
θt

= µθt dt+ σθt dZt

such that σqt ≥ 0 and σθt ≤ 0. Then θt < ∞ represents the expert’s marginal value of net worth
and {kt ≥ 0, dct > 0, ϕt ≥ ϕ̃} is an optimal strategy if and only if

12Of these choices, the fraction of risk that the experts retain is straightforward, ϕt = ϕ̃, as we verify later. That
is, experts wish to minimize their exposure to aggregate risk.

13In our setting, because experts are risk-neutral, their value functions under many price processes can be easily
infinite (although, of course, in equilibrium they are finite).
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(i) θt ≥ 1 at all times, and dct > 0 only when θt = 1,

(ii) µθt = ρ− r (E)

(iii) either
a− ι
qt

+ g(qt) + µqt + σσqt − r︸ ︷︷ ︸
expected excess return on capital, E[rkt ]−r

= −ϕ̃σθt (σ + σqt )︸ ︷︷ ︸
risk premium

(EK)

kt > 0 and ϕt = ϕ̃, or E[rkt ]− r ≤ −ϕ̃σθt (σ + σqt ) and kt = 0,14

(iv) and the transversality condition holds.

Our definition of an equilibrium requires three conditions: household and expert optimization
and market clearing. Household problem is characterized by condition (H), that of experts, by
conditions (E) and (EK) of Proposition 1. According to Proposition 1, as long as (EK) holds, any
nonnegative amount of capital in experts’ portfolio is consistent with experts’ utility maximization,
so markets for capital clear automatically. Markets for consumption clear because the risk-free rate
is r and households’ consumption may be positive or negative, and markets for expert’s outside
equity clear because it generates an expected return of r.

Proof. Consider a process θt that satisfies the Bellman equation, and let us justify (i) through
(iii). For (i), θt can never be less than 1 because an expert can guarantee a payoff of nt by
consuming his entire net worth immediately. When θt > 1, then the maximization problem inside
the Bellman equation requires that dct = 0. Intuitively, when the marginal value of an extra dollar
is worth more on the expert’s balance sheet, it is not optimal to consume. Therefore, (i) holds.

Using the laws of motion of θt and nt as well as Ito’s lemma, we transform the Bellman equation
to

ρθtnt = max
kt≥0,ϕt≥ϕ̃

θt

{
rnt + (ktqt)

(
a− ι(qt)

qt
+ g(qt) + µqt + σσqt − r

)}
+ θtµ

θ
tnt + σθt θt (ktqt)ϕt(σ + σqt ) + max

dct≥0
(dct − θtdct)︸ ︷︷ ︸

0

.

When some value kt > 0 solves the maximization problem above, then (EK) must hold as the
first-order condition with respect to kt but with ϕt instead of ϕ̃. Moreover, because σθt (σ+σqt ) ≤ 0,
it follows that ϕt = ϕ̃ maximizes the right hand side. When (EK) holds then any value of kt
maximizes the right hand side, and we obtain

ρθtnt = θtrnt + θtµ
θ
tnt ⇒ ρ− r = µθt .

When only kt = 0 solves the maximization problem in the Bellman equation, then E[rkt ] − r <
−ϕ̃σθt (σ + σqt ), because otherwise it would be possible to set ϕt = ϕ̃ and increase kt above 0
without hurting the right hand side of the Bellman equation. With kt = 0, the Bellman equation
also implies ρ− r = µθt .

Conversely, it is easy to show that if (i) through (iii) hold then the Bellman equation also
holds.

14Without the assumptions that σqt ≥ 0 and σθt ≤ 0, condition (iii) has to be replaced with maxE[rkt ] − r +
ϕtσ

θ
t (σ + σqt ) ≤ 0, with strict inequality only if kt = 0.
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Equation (EK) is instructive. Experts earn profit by levering up to buy capital, but at the same
time taking risk. The risk is that they lose ϕ̃(σ + σqt ) dZt per dollar invested in capital exactly in
the event that better investment opportunities arise as θt goes up by σθt θt dZt. Thus, while the left
hand side of (EK) reflects the experts’ incentives to hold more capital, the expression ϕ̃σθt (σ+σqt )
on the right hand side reflects the experts’ precautionary motive. If endogenous risk ever made
the right hand side of (EK) greater than the left hand side, experts would choose to hold cash
in volatile times waiting to pick up assets at low prices at the bottom (“flight to quality”). The
subsequent analysis shows how this trade-off leads to an equilibrium choice of leverage, because
individual experts’ incentives to take risk are decreasing in the risks taken by other experts in the
aggregate.

While not directly relevant to our derivation of the equilibrium, it is interesting to note that
θt can be related to the stochastic discount factor (SDF) that experts use to price assets. Note
that experts are willing to pay price

θtxt = Et[e
−ρsθt+sxt+s]

for an asset that pays xt+s at time t + s, since their marginal value of a dollar of net worth
at time t is θt and at time t+ s, θt+s. Thus, e−ρsθt+s/θt is the experts’ stochastic discount factor
(SDF) at time t, which prices all assets that experts invest in (i.e. capital minus the outside equity
and the risk-free asset).15

Scale Invariance. Define the aggregate net worth of experts in our model by

Nt ≡
∫
I
nitdi,

and the level of expert net-worth per unit of aggregate capital by

ηt ≡
Nt

Kt

.

Our model has scale-invariance properties, which imply that inefficiencies with respect to in-
vestment and capital allocation as well as that the level of prices depend on ηt. That is, under
our assumptions an economy with aggregate expert net worth ςNt and aggregate capital ςKt has
the same properties as an economy with aggregate expert net worth Nt and capital Kt, scaled by
a factor of ς. More specifically, if (qt, θt) is an equilibrium price-value function pair in an economy
with aggregate expert net worth Nt and capital Kt, then it can be an equilibrium pair also in an
economy with aggregate expert net worth ςNt and aggregate capital ςKt.

We will characterize an equilibrium that is Markov in the state variable ηt. Before we proceed,
Lemma 3 derives the equilibrium law of motion of ηt = Nt/Kt from the equations for dNt and
dKt. In Lemma 3, we do not assume that the equilibrium is Markov.16

Lemma 3 The equilibrium law of motion of ηt is

dηt = µηt ηt dt+ σηt ηt dZt − dζt, (6)

15Note that returns are linear in portfolio weights in our basic model. With decreasing returns the SDF
e−ρsθt+s/θt prices only the experts’ optimal portfolios under optimal leverage.

16We conjecture that the Markov equilibrium we derive in this paper is unique, i.e. there are no other equilibria
in the model (Markov or non-Markov). While the proof of uniqueness is beyond the scope of the paper, a result
like Lemma 3 should be helpful for the proof of uniqueness.
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where
µηt = r − ψtg(qt) + (1− ψt)δ + ψt

qt
ηt

(Et[r
k
t ]− r)− σσ

η
t ,

σηt =
ψtϕtqt
ηt

(σ + σqt )− σ, dζt =
dCt
Kt

,

dCt =
∫
I(dc

i
t) di are aggregate payouts to experts and ϕt = 1

ψtKt

∫
I(ϕ

i
tk
i
t) di. Moreover, if σqt ≥

0, σθt ≤ 0 and ψt > 0, then expert optimization implies that ϕt = ϕ̃ and

µηt = r − ψtg(qt) + (1− ψt)δ − σηt (σ + σθt )− σσθ.

Markov Equilibrium. Because of scale invariance, it is natural to look for an equilibrium that
is Markov in the state variable ηt. In a Markov equilibrium, qt, θt and ψt are functions of ηt, so

qt = q(ηt), θt = θ(ηt) and ψt = ψ(ηt).

Equation (5), the law of motion of ηt, expresses how the state variable ηt is determined by the
path of aggregate shocks {Zs, s ≤ t}, and qt, θt and ψt are determined by ηt. In the following
proposition, we characterize a Markov equilibrium via a system of differential equations. We
conjecture that σqt ≥ 0, σθt ≤ 0 and ψt > 0 and use conditions (E), (EK) and (H) together with
Ito’s lemma to mechanically express µqt , µ

θ
t , σ

q
t , and σθt through the derivatives of q(η) and θ (η).

Proposition 2 The equilibrium domain of functions q(η) and θ(η) is an interval [0, η∗]. For
η ∈ [0, η∗], these functions can be computed from the differential equations

q′′(η) =
2(µqtqt − q′(η)µηt η)

(σηt )2 η2
and θ′′(η) =

2 [(ρ− r)θt − θ′(η)µηt η]

(σηt )2 η2
,

where qt = q(ηt), θt = θ(ηt), ψt = ψ(ηt), µ
η
t = r − ψtg(qt) + (1− ψt)δ − σηt (σ + σθt )− σσθ,

µqt = −
(
a− ιt
qt

+ g(qt) + σσqt − r + ϕ̃σθt (σ + σqt )

)
,

and σηt , σqt and σθt are determined as follows

σηt =

ψtϕ̃qt
η
− 1

1− ψtϕ̃q′(ηt)
σ, σqt =

q′(ηt)

qt
σηt ηt, and σθt =

θ′(ηt)

θt
σηt ηt.

Also, ψt = 1 if

g(qt) + δ − ι(qt)

qt
+ ϕ̃σθt (σ + σqt ) < 0,

and, otherwise, ψt is determined by the equation

g(qt) + δ − ι(qt)

qt
+ ϕ̃σθt (σ + σqt ) = 0.

Function q(η) is increasing, θ(η) is decreasing, and the boundary conditions are

q(0) = q, θ(η∗) = 1, q′(η∗) = 0, θ′(η∗) = 0 and lim
η→0

θ(η) =∞.
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Proof. First, we derive expressions for the volatilities of ηt, qt and θt. Using the law of motion of
ηt from Lemma 3 and Ito’s lemma, the volatility of qt is given by

σqt qt = q′(η)(ψtϕ̃(σ + σqt )qt − σηt)⇒ σqt qt =
q′(ηt)(ψtϕ̃qt − ηt)

1− ψtϕ̃q′(ηt)
σ

The expressions for σηt and σθt follow immediately from Ito’s lemma.
Second, note that from (EK) and (H), it follows that

g(qt) + δ − ι(qt)

qt
+ ϕ̃σθt (σ + σqt ) ≤ 0

with equality if ψt < 1, which justifies our procedure for determining ψt.
The expression for µqt follows directly from (EK). The differential equation for q′′(η) follows

from the law of motion of ηt and Ito’s lemma: the drift of qt is given by

µqtqt = q′(ηt)µ
η
t ηt +

1

2
(σηt )2η2

t q
′′(ηt).

Similarly, µθt = ρ− r and Ito’s lemma imply that

θ′(ηt)µ
η
t ηt +

1

2
(σηt )2η2

t θ
′′(η) = (ρ− r)θ(ηt).

Finally, let us justify the five boundary conditions. First, because in the event that ηt drops
to 0 experts are pushed to the solvency constraint and must liquidate any capital holdings to
households, we have q(0) = q. In this case, households have to hold capital until it is fully
depreciated and hence their willingness to pay is simply q = a/(r + δ). Second, because η∗ is
defined as the point where experts consume, expert optimization implies that θ(η∗) = 1 (see
Proposition 1). Third and fourth, q′(η∗) = 0 and θ′(η∗) = 0 are the standard boundary conditions
at a reflecting boundary. If one of these conditions were violated, e.g. if q′(η∗) < 0, then any
expert holding capital when ηt = η∗ would suffer losses at an infinite expected rate.17 Likewise,
if θ′(η∗) < 0, then the drift of θ(ηt) would be infinite at the moment when ηt = η∗, contradicting
Proposition 1. Fifth, if ηt ever reaches 0, it becomes absorbed there. If any expert had an
infinitesimal amount of capital at that point, he would face a permanent price of capital of q. At
this price, he is able to generate the return on capital of

a− ι(q)
q

+ g(q) > r

without leverage, and arbitrarily high return with leverage. In particular, with high enough
leverage this expert can generate a return that exceeds his rate of time preference ρ, and since he
is risk-neutral, he can attain infinite utility. It follows that θ(0) =∞.

Note that we have five boundary conditions required to solve a system of two second-order
ordinary differential equations with an unknown boundary η∗.

17To see intuition behind this result, if ηt = η∗ then ηt+ε is approximately distributed as η∗ − ω̄, where ω̄ is the

absolute value of a normal random variable with mean 0 and variance (σηt )
2
ε As a result, ηt+ε ∼ η∗ − σηt

√
ε, so

q(η∗)−q′(η∗)σηt
√
ε. Thus, the loss per unit of time ε is q′(η∗)σηt

√
ε, and the average rate of loss is q′(η∗)σηt /

√
ε→∞

as ε→ 0.
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Figure 2: The price of capital, the marginal component of experts’ value function and the fraction
of capital managed by experts, as functions of η

Numerical Example. Proposition 2 allows us to compute equilibria numerically, and to derive
analytical results about equilibrium behavior and asset prices. To compute the example in Figure 2,
we took parameter values r = 5%, ρ = 6%, δ = 5%, a = a = 1, σ = 0.35, ϕ̃ = 1, and assumed that
the production sets of experts are degenerate, so g(q) = 4% (so that δ = −4%) and ι(q) = 0 for all
q. Under these assumptions, capital, when permanently managed by less productive households,
has an NPV of q = 10.

As ηt increases, capital becomes more expensive (i.e. q(ηt) goes up), and θ(ηt), experts’
marginal value per dollar of net worth, declines. Denote by ηψ the point that divides the state
space of [0, η∗] into the region where less productive households hold some capital directly, and
the region where all capital is held by experts. In other words, when ηt < ηψ, capital is so cheap
that less productive households find it profitable to start speculating for capital gains, i.e. ψt < 1.
Experts hold all capital in the economy when ηt ∈ [ηψ, η∗].

In equilibrium, the state variable ηt, which determines the price of capital, fluctuates due to
aggregate shocks dZt that affect the value of capital held by experts. To get a better sense of
equilibrium dynamics, Figure 3 shows the drift and volatility of ηt for our computed example. The
drift of ηt is positive on the entire interval [0, η∗), because experts refrain from consumption and
get an expected return of at least r. The magnitude of the drift is determined by the amount of
capital they hold, i.e. ψt, and the expected return they get from investing in capital (which is
related to whether capital is cheap or expensive). In expectation, ηt gravitates towards η∗, where
it hits a reflecting boundary as experts consume excess net worth.

Thus, point η∗ is the stochastic steady state of our system. We draw an analogy between point
η∗ is our model and the steady state in traditional macro models, such as BGG and KM. Just
like the steady state in BGG and KM, η∗ is the point of global attraction of the system and, as
we see from Figure 3 and as we discuss below, the volatility near η∗ is low. However, unlike in
traditional macro models, we do not consider the limit as noise η goes to 0 to identify the steady
state, but rather look for the point where the system remains still in the absence of shocks when
the agents take future volatility into account. Strictly speaking in our model, in the deterministic
steady state where ηt ends up as σ → 0 : experts do not require any net worth to manage capital
as financial frictions go away. Rather than studying how our economy responds to small shocks
in the neighborhood of a stable steady state, we want to identify a region where the system stays
relatively stable in response to small shocks, and see if large shocks can cause drastic changes in
system dynamics. In fact, they will, and variations in system behavior are explained by endogenous
risk.
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Figure 3: The drift ηµη and volatility ηση of ηt process.

4 Instability, Endogenous Risk, and Asset Pricing

Having solved for the full dynamics, we can address various economic questions like (i) How
important is fundamental cash flow risk relative to endogenous risk created by the system? (ii)
Does the economy react to large exogenous shocks differently compared to small shocks? (iii) Is
the dynamical system unstable and hence the economy is subject to systemic risk? (iv) How does
this affect prices of physical capital, equity and derivatives?

4.1 Amplification due to Endogenous Risk

Endogenous risk refers to changes in asset prices that are caused not by shocks to fundamentals,
but rather by adjustments that institutions make in response to shocks, which may be driven
by constraints or simply the precautionary motive. While exogenous fundamental shocks cause
initial losses that make institutions constrained, endogenous risk is created through feedback loops
that arise when experts react to initial losses. In our model, exogenous risk, σ, is assumed to be
constant, whereas endogenous risk σqt varies with the state of the system. Total instantaneous
volatility is the sum of exogenous and endogenous risk, σ+σqt . Total risk is also systematic in our
baseline setting, since it is not diversifiable.

The amplification of shocks that creates endogenous risk depends on (i) expert leverage and
(ii) feedback loops that arise as prices react to changes in expert net worth, and affect expert net
worth further. Note that experts’ debt is financed in short-term, while their assets are subject to
aggregate market illiquidity.18 Figure 4 illustrates the feedback mechanism of amplification, which
has been identified by both BGG and KM near the steady state of their models.

Proposition 2 provides formulas that capture how leverage and feedback loops contribute to

18Recall that the price impact of a single expert is zero in our setting. However, the price impact due to aggregate
shocks can be large. Hence, a “liquidity mismatch index” that tries captures the mismatch between market liquidity
of experts’ asset and funding liquidity on the liability side has to focus on price impact of assets caused by aggregate
shocks rather than idiosyncratic shocks.

17



Figure 4: Adverse Feedback Loop.

endogenous risk,

σηt =

ψtϕ̃qt
η
− 1

1− ψtϕ̃q′(ηt)
σ and σqt =

q′(ηt)

qt
σηt ηt.

The numerator of σηt , ψtϕ̃qt/ηt − 1, is the experts’ debt to equity ratio. Without taking into
account the reaction of prices to experts’ net worths, this ratio captures the effect of an exogenous
aggregate shock on ηt. An exogenous shock of dZt changes Kt by dKt = σKt dZt, and has an
immediate effect on the net worth of experts of the size dNt = ψtϕ̃qtσKtdZt. The immediate effect
is that the ratio ηt of net worth to total capital changes by (ψtϕ̃qt − ηt) dZt, since

d

(
Nt

Kt

)
=
dNtKt −NtdKt

(Kt)2
= σ(ψtϕ̃qt − ηt) dZt.

The denominator of σηt captures feedback effects through prices. When q′(η) = 0, even though
a shock to experts’ net worth’s is magnified through leverage, it does not affect prices. However,
when q′(η) > 0, then a drop in ηt by σ(ψtϕ̃qt−ηt)dZt, causes the price qt to drop by q′(ηt)σ(ψtϕ̃qt−
ηt)dZt, leading to further deterioration of the net worth of experts, which feeds back into prices, and
so on. The amplification effect is nonlinear, which is captured by 1−ψtϕ̃q′(ηt) in the denominator
of σηt (and if q′(η) were even greater than 1/(ψtϕ̃), then the feedback effect would be completely
unstable, leading to infinite volatility). Note that the amplification does not arise if agents could
directly contract on kt instead of only at ktqt. Appendix Bshows that the denominator simplifies
to one in this case.

Normal versus crisis times. The equilibrium in our model has no endogenous risk near the
stochastic steady state, and significant endogenous risk below the steady state. This result strongly
resonates what we observe in practice during normal times and crisis episodes.

Theorem 1 For ηt < η∗, shocks to experts’ net worth’s spill over into prices and indirect dynamic
amplification is given by 1/ [1− ψtϕ̃q′(ηt)], while at η = η∗, there is no amplification since q′(η∗) =
0.

Proof. This result follows directly from Proposition 2.
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The reason amplification is so different in normal times and after unusual losses has to do with
endogenous risk-taking. When intermediaries choose leverage, or equity buffer against the risk of
their assets, they take into account the trade-off between the threat that they become constrained
and the opportunity cost of funds. As a result, at target leverage intermediaries are relatively
unconstrained and can easily absorb small losses. However, after large shocks, the imperative to
adjust balance sheets becomes much greater, and feedback effects due to reactions to new shocks
create volatility endogenously.

In our setting, endogenous leverage corresponds to the choice of the payout point η∗. Near η∗,
experts are relatively unconstrained: because shocks to experts’ net worth’s can be easily absorbed
through adjustments to payouts, they have little effect on the experts’ demand for capital or on
prices. In contrast, below η∗ experts become constrained, and so shocks to their net worth’s
immediately feed into their demand for assets.

“Ergodic Instability.” Due to the non-linear dynamics, the system is inherently unstable. As
a consequence agents are exposed to systemic risk. As the experts’ net worth falls below η∗,
total price volatility σ + σq rises sharply. The left panel of Figure 5 shows the total (systematic)
volatility of the value of capital, σ + σqt , for our computed example.

Figure 5: Systematic and systemic risk: Volatility of the value of capital and the stationary
distribution of ηt.

The right panel of Figure 5 shows the stationary distribution of ηt. Starting from any point
η0 ∈ (0, η∗) in the state space, the density of the state variable ηt converges to the stationary
distribution in the long run as t → ∞. Stationary density also measures the average amount of
time that the variable ηt spends in the long run near each point. Proposition C1 in Appendix C
provides equations that characterize this stationary distribution directly derived from µη(η) and
ση(η) depicted in Figure 3.

The key feature of the stationary distribution is that it is bimodal with high densities at
the extremes. We refer to this characteristic as “ergodic instability”. The system exhibits large
swings, but it is still ergodic ensuring that a stationary distribution exists. More specifically, the
stationary density is high near η∗, which is the attracting point of the system, but very thin in
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the middle region below η∗ where the volatility is high. The system moves fast through regions
of high volatility, and so the time spent there is very short. These excursions below the steady
state are characterized by high uncertainty, and occasionally may take the system very far below
the steady state. In other words, the economy is subject to break-downs – i.e. systemic risk. At
the extreme low end of the state space, assets are essentially valued by unproductive households,
with qt ∼ q, and so the volatility is low. The system spends most of the time around the extreme
points: either experts are well capitalized and financial system can deal well with small adverse
shocks or it drops off quite rapidly to very low η-values, where prices and experts’ net worth drop
dramatically. As the economy occasionally implodes, it exhibits systemic risk, because the net
worth of the highly levered expert sector is inappropriately low reflects systemic risk in our model.
The (undiversifiable) systematic risk σ + σq is also high for η < η∗.

Full Equilibrium Dynamics vs. Linear Approximations. Macroeconomic models with
financial frictions such as BGG and KM do not fully characterize the whole dynamical system
but focus on the log-linearization around the deterministic steady state. The implications of our
framework differ in at least three important dimensions:

First, linear approximation near the stochastic steady state predicts a normal stationary distri-
bution around it, suggesting a much more stable system. The fact that the stationary distribution
is bimodal, as depicted on the right panel of Figure 5, suggests a more powerful amplification
mechanism away from the steady state. Papers such as BGG and KM do not capture the distinc-
tion between relatively stable dynamics near the steady state, and much stronger amplification
loops below the steady state. Our analysis highlights the sharp distinction between crisis and
normal times, which has important implication when calibrating a macro-model.

Second, while log-linearized solutions can capture amplification effects of various magnitudes
by placing the steady state in a particular part of the state space, these experiments may be
misleading as they force the system to behave in a completely different way. Steady state can me
“moved” by a choice of an exogenous parameter such as exogenous drainage of expert net worth
in BGG. With endogenous payouts and a setting in which agents anticipate adverse shocks, the
steady state naturally falls in the relatively unconstrained region where amplification is low, and
amplification below the steady state is high.

Third, the traditional approach determines the steady state by focusing on the limiting case
in which the aggregate exogenous risk σ goes to zero. A single unanticipated (zero probability)
shock upsets the system that subsequently slowly drifts back to the steady state. As mentioned
above, setting the exogenous risk σ to zero also alters experts behavior. In particular, they would
not accumulate any net worth and the steady state would be deterministic at η∗ → 0.

4.2 Asset Pricing

Volatility and the Precautionary Motive. Endogenous risk leads to excess volatility, as the
value of capital is not only affected by cash flow shocks σ but also by changes in the stochastic
discount factor reflected leading to endogenous risk σq. Excess volatility increases the experts’
precautionary motive, leading to a higher required expected return on capital. This can be seen
directly from equation (EK) in Proposition 1,

a− ι(qt)
qt

+ g(qt) + µqt + σσqt − r︸ ︷︷ ︸
expected excess return on capital, E[rkt ]−r

= ϕ̃(−σθt )(σ + σqt )︸ ︷︷ ︸
risk premium

. (EK)
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Endogenous risk increases the experts’ incentives to hoard cash (note that (−σθt ) > 0), because
cash has a greater option value when a larger fraction of price movements is explained by reasons
other than changes in fundamentals.

Of course, the profit that experts can make following a price drop depends on their value
functions, which are forward-looking - anticipating all future investment opportunities. According
to (EK), the experts’ equilibrium expected return from capital has to depend on the covariance
between the experts’ marginal values of net worth’s θt and the value of capital. Capital prices
have to drop in anticipation of volatile episodes, so that higher expected return balances out the
experts’ precautionary motive. This is our first empirical prediction.

Viewed through the stochastic discount factor (SDF) lens, Equation (EK) shows that expected
return on capital is simply given by the covariance between the value of capital and the experts’
stochastic discount factor. As discussed in Section 3, at time t experts value future cash flow at
time t + s with the SDF e−ρsθt+s/θt, so that an asset producing cash flow xt+s at time t + s has
price

Et

[
e−ρs

θt+s
θt

xt+s

]
at time t. Note that less productive households’ SDF is simply e−rs since they are not financially
constrained. Of course, they only price capital for ψ < 1 and their payoff from holding the same
physical capital is lower.

In models with risk averse agents, the precautionary motive is often linked to a positive “pru-
dence coefficient” which is given by the third derivative of their utility function normalized by the
second derivative. In our setting the third derivative of experts’ value function (second derivative
of θ(η)) plays a similar role. It is positive, since the marginal value function, θ, is convex (see
Figure 2). In short, even though experts are risk-neutral, financial frictions and the fact that
dct ≥ 0 make experts behave in a risk-averse and prudent manner – a feature that our setting
shares with buffer stock models.

Asset Prices in Cross-Section. Excess volatility due to endogenous risk spills over across all
assets held by constrained agents, making asset prices in cross-section significantly more correlated
in crisis times. Erb, Harvey, and Viskanta (1994) document this increase in correlation within an
international context. This phenomenon is important in practice as many risk models have failed
to take this correlation effects into account in the recent housing price crash.19

To demonstrate this result, we have to extend the model to allow for multiple types of capital.
Each type of capital kl is hit by aggregate and type-specific shocks. Specifically, capital of type l
evolves according to

dklt = gklt dt+ σklt dZt + σ′klt dZ
l
t,

where dZ l
t is a type-specific Brownian shock uncorrelated with the aggregate shock dZt.

In aggregate, idiosyncratic shocks cancel out and the total amount of capital in the economy
still evolves according to

dKt = gKt dt+ σKt dZt.

19See “Efficiency and Beyond” in The Economist, July 16, 2009.
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Then, in equilibrium financial intermediaries hold fully diversified portfolios and experience only
aggregate shocks. The equilibrium looks identical to one in the single-asset model, with price of
capital of any kind given by qt per unit of capital. Then

d(qtk
l
t) = (Φ(ιjt)− δ + µqt + σσqt )(k

l
tqt) dt+ (qtk

l
t)(σ + σqt ) dZt + (qtk

l
t)σ
′ dZ l

t.

The correlation between assets l and l′ is

Cov[qtk
l
t, qtk

l
t]√

V ar[qtklt]V ar[qtk
l
t]

=
(σ + σqt )

2

(σ + σqt )
2 + (σ′)2

.

Near the steady state ηt = η∗, there is only as much correlation between the prices of assets
l and l′ as there is correlation between shocks. Specifically, σqt = 0 near the steady state, and so
the correlation is

σ2

σ2 + (σ′)2 .

Away from η∗, correlation increases as σqt increases. Asset prices become most correlated in prices
when σqt is the largest. As σqt →∞, the correlation tends to 1.

Of course, in practice financial institutions specialize and do not hold fully diversified portfolios.
One could capture this in a model in which experts differ by specialization, with each type of
expert having special skills to manage some types of capital but not others. In this case, feedback
effects from shocks to one particular type of capital would depend on (i) who holds the largest
quantities of this type of capital (ii) how constrained they are and (iii) who holds similar portfolios.
Thus, we hypothesize that in general spillover effects depend on the network structure of financial
institutions, and that shocks propagate through the strongest links and get amplified in the weakest
nodes.

Outside equity. Our results on excess volatility carry over to outside equity. Returns on outside
equity are also negatively skewed as a negative fundamental macro shock is amplified in times of
crisis. If experts cannot perfectly diversify across all forms of capital, experts outside equity is also
more correlated in crisis times. However, expected returns of outside equity is not time-varying as
they are priced by risk-neutral and financially unconstrained households whose stochastic discount
factor is e−rt. The discounted outside equity price processes follow a martingale. If households
were assumed to be risk averse, these implied risk characteristics of outside equity would lead to
predictability in returns in outside equity as well.

Derivatives. Since data for crisis periods are limited, it is worthwhile to look at option prices
that reflect market participants’ implicit probability weights of extreme events. Our result that
price volatility is higher for lower ηt-values also has strong implications for option prices.

First, it provides an explanation for “volatility smirks” of options in normal times, see e.g.
Bates (2000). Since the values of options monotonically increase with the volatility of the under-
lying stock, option prices can be used to compute the “implied volatility” from the Black-Scholes
option pricing formula. One example of a “volatility smirk” is that empirically put options have a
higher implied volatility when they are further out of the money. That is, the larger the price drop
has to be for an option to ultimately pay off, the higher is the implied volatility or, put differently,
far out of the money options are overpriced relative to at the money options. Our model naturally
delivers this result as volatility in times of crises is higher.
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Second, so called “dispersion trades” try to exploit the empirical pattern that the smirk effect
is more pronounced for index options than for options written on individual stocks (Driessen,
Maenhout, and Vilkov (2009)). Note that index options are primarily driven by macro shocks,
while individual stock options are also affected by idiosyncratic shocks. The observed option price
patterns arise quite naturally in our setting as the correlation across stock prices increases in crisis
times. Note that in our setting options are redundant assets as their payoffs can be replicated
by the underlying asset and the bond, since the volatility is a smooth function in qt. This is in
contrast to stochastic volatility models in which volatility is independently drawn and subject to
a further stochastic factor for which no hedging instrument exists.

5 Volatility Paradox

Given that the economy is prone to self-generated systemic risk it is natural to ask whether a
reduction in fundamental exogenous volatility would stabilize the system. In the second part of
this section, we address the question whether new financial products, like derivatives, that allow
experts to (better) hedge idiosyncratic risk lead to an overall reduction in risk.

5.1 Reduction in Exogenous Risk

A reduction in exogenous cash flow risk σ reduces financial frictions. Paradoxically, it can make
the economy less stable. That is, it can increase the maximum volatility of experts’ net worth.
The reason is that a decline in cash flow volatility encourages experts to increase their leverage
by reducing their net worth buffer.

Figure 6 reverts to our previous numerical example and illustrates the price of capital qt, the
volatility of the state variable σηt as well as expert leverage ψtqt/(ϕ̃ηt) for three different exogenous
risk values σ =.025 (blue), .05 (red), and .1 (black) (recall that r = 5%, ρ = 6% , δ = 5%, a = 1,
ϕ̃ = 1, and the production sets of experts are degenerate, so g(q) = 4% and ι(q) = 0 for all q).

Figure 6: Equilibrium for three different levels of exogenous risk σ = .025 (blue), .05 (red), .1
(black).
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As one would expect, as aggregate exogenous risk goes down, volatility near the global attractor
η∗ is typically declining. However, in equilibrium experts respond to lower exogenous risk by taking
on higher leverage and paying out bonuses sooner (i.e. η∗ is lower). Overall, this results in higher
systemic risk reflected by greater amplification below steady state. This “volatility paradox” is
consistent with the fact that the current crisis was preceded by a low volatility environment,
referred to as the “great moderation.” In other words, in the absence of financial regulation, the
system is prone to instabilities even and especially when the level of aggregate risk is low.

5.2 Financial Innovation: Hedging of Idiosyncratic Jump Risk

Next, we explore the impact of financial innovations. New financial products allow experts to
better share risk, and hedge idiosyncratic risks in particular. These products can also involve
securitization, including pooling and trenching, credit default swaps, and various options and fu-
tures contracts. We find that financial innovation reduces idiosyncratic risk but it also emboldens
experts to live with smaller net worth buffers and higher leverage, increasing systemic risk. Ironi-
cally tools intended for more efficient risk management can lead to amplification of systemic risks,
making the system less stable.

To study this question we enrich our baseline setting by introducing idiosyncratic jump risk.
Introducing jump risk has two further advantages. First, now debt may default and hence we can
study credit spreads, the interest rate spreads between risky loans and the risk-free rate. Second,
we can draw a direct comparison with the model in BGG.

Formally, we assume that capital kt managed by expert i evolves according to

dkt = gkt dt+ σkt dZt + kt dJ
i
t ,

where dJ it is an idiosyncratic Poisson loss process. As BGG we make the simplifying assumption
that when experts get bigger, their idiosyncratic shocks are amplified proportionately, that is,
there is no diversification of idiosyncratic shocks within any expert.

Losses after an idiosyncratic jump are characterized by the distribution function F : [0, 1] →
[0, 1], which describes the percentage of capital that is recovered in the event of a loss. We denote
the individual intensity of Poisson loss shocks by λ.

We assume that experts’ balance sheets are the same as in our baseline model: experts are
required to hold a fraction of ϕ̃ of the equity. As BGG, we adopt the costly state verification
framework of Townsend (1979) to deal with the possibility that the value of the expert’s total
assets qtkt drops below the value of debt, i.e. equity nt/ϕ̃ becomes negative. Specifically, we
assume that in such an event bankruptcy is triggered and debt holders must incur a verification
cost and recover only a fraction 1 − c of remaining capital. That is, as in BGG, we assume that
the verification cost is a constant fraction c ∈ (0, 1) of the remaining capital.20

Default and costly state verification occur when the value of the assets ktqt falls below the
value of debt ktqt − nt/ϕ̃ i.e. a fraction of capital less than ϑt = 1 − nt/(ϕ̃qtkt) remains after a
jump. If x is the fraction of assets recovered in the event of default, then debt holders lose

20The basic costly state verification framework, developed by Townsend (1979) and adopted by Bernanke, Gertler,
and Gilchrist (1999) is a two-period contracting framework. At date 0, the agent requires investment i from the
principal, and at date 1 he receives random output y distributed on the interval The agent privately observes output
y, but the principal can verify it at a cost. The optimal contract under commitment is a standard debt contract.
If the agent receives y ≤ D, the face value of debt, then he pays the principal D and there is no verification. If
y < D, the agent cannot pay D and costly state verification (bankruptcy) is triggered, and debt holders receive all
of output.
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ktqt(ϑt − x) + c(ktqt)x.

Denote

L(ϑ) = λ

∫ ϑ

0

(ϑ− x) dF (x) and C(ϑ) = λ

∫ ϑ

0

cx dF (x).

Then the expected loss rate to debt holders due to default is given by (ktqt)(L(ϑt) + C(ϑt)). To
receive compensation for this loss, debt holders require a credit spread of

ktqt
ktqt − nt/ϕ̃

(L(ϑt) + C(ϑt)) =
L(ϑt) + C(ϑt)

ϑt

We formally justify this form of modeling default via a costly state verification framework at the
end of Section 7.

As before, the equilibrium is characterized by the state variable ηt, and prices qt = q(ηt) and
the expert’s (marginal) value function θt = θ(ηt) are functions of ηt. The net worth of an individual
expert evolves according to

dnt = rnt dt+ (ktqt)[(Et[r
k
t ]− r − L(ϑt)− C(ϑt)) dt+ dJ it + ϕ̃(σ + σqt ) dZt]− dct

Recall that in Section 3 we defined Et[r
k
t ] = [a− ι(qt)]/qt + g(qt) + µqt + σσqt as experts’ expected

return on unleveraged capital.
In the aggregate, experts that survive have to pay high interest rate spread partially due to

L(ϑt), while other experts that go bankrupt experience a positive transfer since due to limited lia-
bility they do not have to cover their full losses. Hence, aggregate expert capital evolves according
to

dNt = rNt dt+ ψtKtqt[(Et[r
k
t ]− r − C(ϑt)) dt+ ϕ̃(σ + σqt ) dZt]− dCt,

where the term L(ϑt) drops out. The modified law of motion of ηt = Nt/Kt is

dηt = µηt ηt dt+ σηt ηt dZt − dζt
where

µηt = r − ψtg(qt) + (1− ψt)δ +
ψtqt
ηt

(
Et[r

k
t ]− r − C(ϑt)

)
− σσηt

σηt =
ψtϕ̃qt
ηt

(σ + σqt )− σ, and dζt =
dCt
Kt

.

The Bellman equation and the first-order condition with respect to kt are now

ρθtnt = max
kt

[
rnt + (ktqt)(Et[r

k
t ]− r − C(ϑt))

]
θt + ntµ

θ
tθt + σθt θt(ktqt)ϕ̃(σ + σqt ).

Replacing total assets over net worth ktqt
nt

with 1
(1−ϑt)ϕ̃ and dividing by ntθt, the Bellman equation

can be written as

ρ− r = µθt + max
ϑ

1

ϕ̃(1− ϑ)

(
Et[r

k
t ]− r − C(ϑt) + ϕ̃σθt (σ + σqt )

)
The first-order condition with respect to ϑ is now

Et[r
k
t ]− r − C(ϑ) + ϕ̃σθt (σ + σqt ) + (1− ϑ)C ′(ϑ) = 0

As before, in equilibrium ηt evolves on the range [0, η∗], with a different boundary η∗. Experts
pay themselves bonuses only when ηt is at η∗.
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Comparison with BGG and KM (1997). As in BGG the credit spread in our extended
setting is due to idiosyncratic default risk and is higher when experts are less well capitalized, i.e.
for lower η. Our model closely resembles the discrete time steady state model in BGG if we set
ϕt = 1. The key distinction is however that experts are not exogenously forced to consume when
they lack net worth in our setting since they endogenously decide when to pay out bonuses and
are not forced to exit after facing an exogenous “exit shock”. This difference is important when
calibrating the model, since it implies that in our setting amplification is large in crises times,
while it is muted in normal times.

By varying the verification costs and the loss distribution, our extended setting encompasses
several other models in the literature. For example, the assumptions of KM imply that financial
experts can borrow only up to a fraction ζt of the market value of assets. Thus, someone with
net worth nt can hold at most nt/(1− ζt) worth of assets, by financing ntζt/(1− ζt) of the assets
with debt and the rest, nt, with personal wealth. This is captured in our framework by setting
the verification costs to zero up to a certain level and infinity afterwards. Alternatively, one can
assume that margins are set equal to the value-at-risk (VaR) as in Brunnermeier and Pedersen
(2009) and Shin (2010). In the former margins increase with endogenous price volatility. These
effects can be captured in our model by letting the intensity of Poisson jumps λ(σqt ) depend on
price volatility.

Introducing Securitization. Securitization and new financial innovation allows risk-sharing
within the expert sector in our model. Specifically, assume that securitization makes all shocks,
both idiosyncratic J it and aggregate Zt, observable and contractible among the experts, but not
between experts and households.

Denote by ωt the risk premium on aggregate risk and by ωit the risk premium on idiosyncratic
risk. A hedging contract for aggregate risk adds

ςt(ωt dt+ dZt)

to the law of motion of expert i’s wealth, where ςt is the overall risk exposure. A contract on
idiosyncratic risk of expert i, adds

ς it(ω
i
t dt+ dJ it )

to the law of motion of expert i’s wealth, and may affect the verification region and verification
costs. The following proposition characterizes the equilibrium when hedging within the financial
sector is possible.

Proposition 3 If hedging within the financial sector is possible, then in equilibrium experts will
fully hedge idiosyncratic risk, which carries the risk premium of ωit = 0. Nobody hedges aggregate
risk, which carries the risk premium of ωt = −σθt ≥ 0.Since idiosyncratic shocks are fully hedged,
the equilibrium is identical to one in a setting without those shocks.

Proof. It is easy to see that the idiosyncratic risks are fully hedged and that the risk premia
are zero, since market clears when each expert optimally chooses to offload his own idiosyncratic
risk, and take on a little bit of everybody’s risks (which cancel out). Once idiosyncratic risks are
removed, the law of motion of individual expert’s capital is

dnt = rnt dt+ (ktqt)[(Et[r
k
t ]− r) dt+ ϕ̃(σ + σqt ) dZt]− dct − ςt(ωt dt+ dZt)
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where the optimal choice of ςt must be zero in order for hedging markets to clear. The appropriate
risk premium for aggregate risk can be found from the Bellman equation

ρθtnt = max
k,ς

θt
[
rnt + (kqt)(Et[r

k
t ]− r)− ςωt

]
+ µθtθtnt + σθt θt [(kqt)ϕ̃(σ + σqt )− ς] .

In order for ςt = 0 to be optimal, we need ωt = −σθt .

Experts fully hedge out idiosyncratic shocks when securitization is allowed, they face the cost
of borrowing of only r, instead of r + C(ϑt)/ϑt. Lower cost of borrowing leads to higher leverage
and quicker payouts. As a result, the financial system becomes less stable. Thus, even though
in principle securitization is a good thing, as it allows financial institutions to share idiosyncratic
risks better and avoid bankruptcy costs, it can lead to greater leverage and the amplification of
endogenous systemic risks.

6 Efficiency and Externalities

The fact that financial frictions lead to systemic instability and excess volatility does not necessarily
prescribe strict financial regulation. Making the system more stable might stifle long-run economic
growth. To study financial regulation one has to conduct a welfare analysis. This section makes
a first small step in this direction. We start with the first-best efficient benchmark outcome that
would emerge in an economy without frictions. In absence of any frictions the social planner’s
solution coincides with the market outcome. With frictions even a social planner faces constraints
and hence his solution is only constrained efficient. The market outcome might not even be
constrained efficient due to externalities. Individual market participants distort the outcome since
they do not fully internalize the impact of their action on others.

6.1 First Best and Inefficiencies

First best without financial frictions. In the economy without friction, more productive
experts should manage capital forever. They borrow from less productive households at the
interest rate r. As a consequence, the price of capital would reach its maximal theoretical level of

q̄ = max
a− ι

r − Φ(ι) + δ

We discount the future cash flow a−ι by using the households’ discount rate of r, since experts
would consume their net worth in lump sum at time 0, borrow from less productive households
and promise them all future cash flows. This is the maximal theoretically possible price of capital.
Note that the least efficient allocation of capital is the one in which all the capital is held by
less productive households. Hence, the NPV of future cash flow (and minimum price level) is
q = a (r + δ).

Inefficiencies with financial frictions. With financial frictions there are inefficiencies and the
allocation of capital between experts and less productive households depends on the level of ηt, i.e.
how close experts are to their solvency constraint. The price of capital depends on how efficiently
it is allocated, and on the speculative incentives of experts and households. With financial frictions
the maximal price of capital, attained at ηt = η∗, is less than q̄. At η∗ the value of capital equals
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the sum of the NPV’s of cash flows that go to experts and less productive households, valued at
their respective discount rates. That is,

q(η∗)Kt = θ(η∗)Nt︸ ︷︷ ︸
expert NPV/wealth

+ q(η∗)Kt −Nt︸ ︷︷ ︸
household wealth

= E

[∫ ∞
0

e−ρtdCt

]
︸ ︷︷ ︸

expert payoff

+ E

[∫ ∞
0

e−rtdCt

]
︸ ︷︷ ︸

household payoff

(7)

since θ(η∗) = 1. With financial frictions, because of three types of inefficiencies

(i) capital mis-allocation, since less productive households end up managing capital for low ηt,

(ii) under-investment, since ι(qt) < ι(q̄), and

(iii) consumption distortion, since experts postpone some of their consumption into the future.

In fact, as ηt goes down, all three forms of inefficiencies increase. When ηt < η∗, identity given
by (7) no longer holds because θ(ηt) > 1, i.e. experts get the expected payoff of more than one
per unit of net worth. In general,

qtKt = Nt︸︷︷︸
expert wealth

+ (qtKt −Nt)︸ ︷︷ ︸
household wealth

≤ θtNt︸︷︷︸
expert payoff

+ (qtKt −Nt)︸ ︷︷ ︸
household payoff

= E

[∫ ∞
0

e−ρtdCt

]
︸ ︷︷ ︸

expert payoff

+ E

[∫ ∞
0

e−rtdCt

]
︸ ︷︷ ︸

household payoff

.

Experts are consuming only when ηt = η∗, where a unit of their net worth has marginal value
θ(η∗) = 1.

6.2 Constrained Efficiency

While the first best efficient outcome is an interesting theoretical benchmark, it is unrealistic as it
implicitly assumes that the social planner can overcome all financing frictions and agency problems.
Therefore, in this subsection we explore what a social planner can achieve when bound by the
same agency constraints as the market. To make this analysis formal, we first define the set of
symmetric constrained feasible policies. Under these policies, the central planner treats all experts
and households symmetrically, controls prices as well as the agents’ consumption and investment
choices, but must respect the financing constraint with respect to the experts’ outside equity.
We argue that constrained-feasible policies are incentive compatible given our microfoundation of
balance sheets, which we present in Section 7. At the end of the subsection, we characterize the
best outcome attainable by constrained feasible policies, and show that it coincides with the first
best outcome.

Definition 2 A symmetric constrained-feasible policy is described by a group of stochastic pro-
cesses on the filtered probability space defined by the Brownian motion {Zt, t ≥ 0}: the price
process {qt}; expert investment rate {ιt}, fractions of equity retained {ϕt ≥ ϕ̃}, aggregate expert
capital holdings ψtKt, consumption dCt, and transfers dτt; aggregate household capital holdings
(1− ψt)Kt, consumption dCt, transfers dτ t, and equity holdings ξ

t
, such that
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(i) representative expert net worth Nt stays nonnegative, where

dNt = dτt + (ψtKtqt)

[(
a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt

)
dt+ ϕt(σ + σqt ) dZt

]
− dCt,

(ii) representative household net worth N t is defined by

dN t = dτ t + ξ
t
(σ + σqt ) dZt + (1− ψt)Ktqt

[(
a

qt
− δ + µqt + σσqt

)
dt+ (σ + σqt ) dZt

]
− dCt

(iii) and the resource constraints are satisfied, i.e.

dCt + dCt = (a− ιt)Kt dt, (1− ϕt)ψtKt = ξ
t
, and Nt +N t = qtKt,

where dKt/Kt = [ψt(Φ(ιt)− δ)− (1− ψt)δ] dt+ σ dZt.

Note that since the sum of net worth adds to the total wealth in the economy qtKt, aggregate
transfers across both sectors are zero. Moreover, because of transfers we can set the risk-free
rate to zero, without loss of generality. Under such a social planner policy, the net worth of an
individual expert evolves according to

dnit =
nit
Nt

dτt + (1− ϕt)(qtkit)
(
a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt

)
dt

+ϕt

(
a− ιt
qt

dt+ d(qtk
i
t)

)
− nit
Nt

dCt

where nit/Nt dτt is the expert’s share of transfers, nit/Nt dCt is his share of consumption and
kit = ψtKt(n

i
t/Nt) is the required holding of capital. The expert receives a fraction 1 − ϕt of

the expected return on capital (risk-free) and a fraction ϕt of the realized return on capital.
There exists a process {θt} such that the experts’ value functions are given by nitθt. It can be
shown that under the agency model that we spell out in Section 7 to microfound contracting,
any constrained-feasible policy remains incentive-compatible. Thus, constrained-feasible policies
defined above respect the financing constraints that we assume throughout the paper, and solve
the agency problem that microfound these financing constraints.21

The following proposition characterizes constrained-feasible policies that achieve the first-best
allocation.

Proposition 4 A policy is constrained-feasible and achieves first-best outcome if and only if dC0 =
N0, dC0 = −N0, ιt = ι(q̄), ψt = 1 for all t ≥ 0, dCt = 0 and dCt = (a− ι(q̄))Kt dt for all t > 0,
ξ
t

= (1−ϕt)ψtKt for some ϕt ≥ ϕ̃ and transfers dτt are chosen to keep the net worth’s of experts
nonnegative.

Proof. The policies outlined in the proposition are constrained-feasible because the experts’ net
worth’s stay nonnegative. They attain first-best because experts consume amounts equal to their

21If an expert diverts value from capital at rate btkt, he obtains benefits in the amount of ϕ̃btktθt. This action
reduces the value of the firm to the expert by ϕtbtktθt, and creates funds of ϕ̃btkt outside the firm that have value
ϕ̃btktθt ≤ ϕtbtktθt. Because the private costs of diverting value from the firm exceed the benefits, the expert has
incentives to refrain from benefit extraction under any constrained-feasible policy.

29



entire net worth at time 0 and not consume thereafter, and because at all times all capital is
allocated to experts who are forced to invest at the first-best rate ιt = ι(q̄). Note that after time
0, experts may receive large transfers of wealth to keep their net worth nonnegative, but they are
not allowed to consume any of their net worth.

The main role of transfers is to ensure that the net worth of experts stays nonnegative. Inter-
estingly, this can also be achieved by an appropriate choice of the price process qt. That is, price
stabilization policies that prevents a decline of qtKt after an adverse shock to Kt can enhance
welfare since they reduce the volatility of experts’ net worth and make incentive constraint less se-
vere. For example, by picking σq = −σ, the planner can make the experts’ net worth non-random.
In this case, the experts’ incentive constraints can be satisfied without exposing them to risk. In
short, price distortions can be a powerful device to improve upon the market outcomes that are
plagued by pecuniary externalities and other inefficiencies.

6.3 Externalities

Externalities that make the market outcome constrained inefficient emerge in our setting and its
generalizations. Pecuniary externalities work through prices. Individual market participants take
prices as given, but as a group they affect them. While in complete frictionless market settings
pecuniary externalities do not lead to inefficiencies (since a marginal change at the optimum has
no welfare implication by the Envelope Theorem), in incomplete market settings this is generically
not the case. Stiglitz (1982), Geanakoplos and Polemarchakis (1986), and Bhattacharya and Gale
(1987) were among the first to highlight the inefficiency of a pecuniary externality.

The fire-sale externality is a pecuniary externality that arises when in crisis (i) experts are
able to sell assets to another sector, e.g. vulture investors, the government or household sector
(in our case) and (ii) the new asset buyers provide a downward-sloping demand function. When
levering up ex-ante, financial experts do not take into account that in crisis, its own fire sales will
depress prices that other institutions are able to sell at. This effect leads to excess leverage since
they take fire-sale prices as given, i.e. a social planner would lever up less. Recent applications of
this inefficiency due to pecuniary externalities within a finance context are Lorenzoni (2008) and
Jeanne and Korinek (2010).

Besides the fire-sale externality, many other pecuniary externalities may exist in models of
financial intermediation. These externalities arise whenever contracts are written based on prices.
Examples include

• when experts can unload a fraction 1−ϕt of risk to outside investors, there are externalities
when ϕt depends on prices, for example when ϕt = Ξ/qt. This situation arises when
the expert can derive private benefits measured in output by mismanaging capital in ways
that makes capital depreciate faster (see Section 7, where we formally spell out the agency
problem that microfounds of balance sheets in our model)

• the terms of borrowing - the spread between the interest rate experts need to pay and the
risk-free rate - may depend on prices. For example, there are externalities in the setting of
Section 5, where experts face idiosyncratic jump risk

• experts may be bound by margin requirements, which may depend on both price level and
price volatility
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• in asset management, the willingness of investors to keep money in the fund depends on
short-term returns, and thus market prices

Overall, it may be hard to quantify the effects of many of these externalities directly, because
each action has rippling effects through future histories, and there can be a mix of positive and
negative effects. Given that, it is best to study the overall significance of various externalities, as
well as the welfare effects of possible regulatory policies, numerically on a calibrated model.

Externalities that affect the real economy and the labor sector were studied in an earlier draft
Brunnermeier and Sannikov (2010) which included an extension with a labor sector.

7 Microfoundation of Balance Sheets and Intermediation

This section presents an agency model that provides a possible microfoundation for our balance
sheet assumptions. First, we focus on a setting without idiosyncratic risk but introduce in addition
an intermediation sector. That is, we divide expert agents into entrepreneurs and intermediaries
to allow for a better interpretation of our results in the context of the financial system. Second,
we extend the microfoundation to the setting with idiosyncratic jump default risk.

7.1 Intermediation Sector

Consider a continuous-time model, analogous to the one-period setting of Holmström and Tirole
(1997). Experts are divided into entrepreneurs who manage capital and intermediaries who mon-
itor entrepreneurs and facilitate lending from the less productive households. There is a double
moral hazard problem. Entrepreneurs are able to divert capital at a rate of bt ∈ [0, b̄], in order to
generate private benefits. Intermediaries can reduce the private benefits that entrepreneurs derive
from diverted funds. By spending capital at rate mt ∈ [0, m̄] (per unit of capital) to monitor
entrepreneurs, intermediaries lower the entrepreneurs’ private benefits. Entrepreneur enjoys pri-
vate benefits at the rate of Ξ(mt)bt units of capital, where Ξ(mt) is a decreasing weakly convex
function in mt. We assume that the diversion of capital is inefficient, i.e. Ξ(mt) < 1. In addin-
tion, monitoring adds value to the project such that the quantity of capital under entrepreneur’s
management evolves according to

dkt = (Φ(ιt)− δ + Ω(mt)−mt − bt)kt dt+ σkt dZt,

where Ω is value added through monitoring,we assume that Ω(m) is weakly concave function such
that Ω′(m) ≤ 1.

If the market price of capital is denoted by qt, then the value ktqt of an investment in capital
evolves according to

dVt
Vt

=

(
a− ι(qt)

qt
+ g(qt) + µqt + σσqt + Ω(mt)−mt − bt

)
dt+ (σ + σqt ) dZt,

There is a continuum of entrepreneurs and intermediaries who act in a competitive and anonymous
market. The market for capital is fully liquid and individual market participants have no price
impact.

In order to solve the agency problems, entrepreneurs, intermediaries and less productive house-
hold investors sign a contract that specifies how the value produced by the investment and produc-
tion activities of the entrepreneur are divided among the three groups. As in our baseline model,
we make the following two assumptions about contracting:
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A The allocation of profit is determined by the total value of capital, and shocks to kt or qt
separately are not contractible

B Lockups are not allowed - at any moment of time any party can break the contractual
relationship and the value of assets is divided among the parties the same way independently
of who breaks the relationship

Condition A creates an amplification channel in which market prices affect the agents’ net
worth. This assumption is consistent with what we see in the real world, as well as with the
models of Kiyotaki and Moore (1997) and Bernanke, Gertler, and Gilchrist (1999). We assume
that contracting directly on kt is difficult because we view kt not as something objective and
static like the number of machines, but rather something much more forward looking, like the
expected NPV of assets under a particular management strategy. Moreover, even though in our
model there is a one-to-one correspondence between kt and output, in a more general model this
relationship could be different for different types of projects, and could depend on the private
information of the expert. Furthermore, output can be manipulated, e.g. by underinvestment.

Condition B is related to daily settlement of derivatives contracts through the mark-to-market
process. It subsumes a degree of anonymity, so that once the relationship breaks, parties never
meet again and the outcome of the relationship that just ended affects future relationships only
through net worth. This assumption prevents commitment to long-term contracts, such as in the
setting of Myerson (2010). However, the restriction is natural, and in many settings it is possible to
implement an optimal long-term contract through short-term contracts with continuous marking-
to-market, as shown in Fudenberg, Holmström, and Milgrom (1990).22

As in our baseline model, Conditions A and B and anonymity implies that the payoff of any
agent is proportional to his net worth. Denote by θet the value that an entrepreneur gets per unit
of net worth, and by θit the value that an intermediary gets per unit of net worth. Furthermore,
denote by ϕet the fraction of asset risk that the entrepreneur bears and by ϕit the fraction that the
intermediary bears. Then ϕet , ϕ

i
t and 1− ϕet − ϕit are the equity investments of the entrepreneurs,

intermediaries and households respectively. Then changes in the value of the project Vt affect
the net worth’s of the participating entrepreneur, intermediary and less productive household
according to

net + nit + nht = Vt, dnet = ϕetdVt + f et dt,

dnit = ϕit dVt + f it dt and dnht = ϕht dVt − (f et + f it ) dt,

where contractually specified variables f et and f it adjust for the cost of capital committed by each
party, as well as management fees of the entrepreneurs and intermediaries. This system of profit-
sharing captures the most general set of contracts allowed under Conditions A and B. Figure 7
depicts this more general financing structure, in which entrepreneurs hold capital receive funds
from intermediaries. Financial intermediaries issue debt bt claims as well as outside equity towards
less productive households, and households may also hold entrepreneur equity directly.

Let us discuss the relationship between equity shares ϕet and ϕit and the entrepreneur incentives
to divert funds for private benefits as well as intermediary incentives to monitor. By extracting
private benefit bt ≥ 0, the entrepreneur decreases the value of the assets at rate bt, causing an
impact of

22In our setting the result of Fudenberg, Holmström, and Milgrom (1990) does not hold because of incomplete
contracting, as long-term contracts can subtly make the allocation of profits dependent on qt and kt separately,
instead of the total value.
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Figure 7: Balance sheets structures of entrepreneurs and financial intermediaries.

−ϕetbtθet
on the entrepreneur’s payoff. The monitoring intensity of the intermediary is observable by the
entrepreneur, but not by the less productive household investors (and, therefore, it is not con-
tractible). Of the diverted funds, the entrepreneur receives Ξ(mt)bt, and (1− Ξ(mt)) bt is wasted.
The entrepreneur can use diverted funds to receive the payoff of

Ξ(mt)btθ
e
t .

It is incentive-compatible for the entrepreneur to not pursue private benefits if and only if

Ξ(mt)btθ
e
t − ϕetbtθet ≤ 0⇒ ϕet ≥ Ξ(mt) ≡ ϕe(mt).

Otherwise, the entrepreneur diverts capital at the maximal rate, i.e. bt = b̄. When Ξ(mt) > 0,
the incentive constraint also implies a solvency constraint, since it is possible to reward and punish
the entrepreneur only as long as his net worth is positive. For high enough monitoring effort mt

such that Ξ(mt) = 0, the intermediary completely eliminates the entrepreneur’s agency problem
through monitoring, and it becomes possible to employ insolvent entrepreneurs with zero net
worth.

The monitoring incentives of the intermediary are more complicated. The intermediary knows
that for low monitoring intensities such that Ξ(mt) > ϕet , the entrepreneur will divert funds
at rate and for higher monitoring intensities such that Ξ(mt) ≤ ϕet , the entrepreneur will not
divert funds. Since Ω′(m) ≤ 1 for all m, the marginal costs of monitoring always exceed the
direct marginal benefits on the productivity of capital. Thus, the intermediary always chooses
the lowest level of monitoring that induces a given action of the entrepreneur: either monitoring
intensity 0 that allows benefit extraction at a rate of b̄, or the lowest monitoring intensity, such
that Ξ(m′) = ϕet , to prevent benefit extraction altogether. The intermediary has incentives to
prevent benefit extraction if his share of equity ϕit satisfies

ϕit Ω(m′)−m′ ≥ ϕit (Ω(0)− b̄) ⇔ ϕit ≥ ϕi(m′) ≡ m′

Ω(m′)− Ω(0) + b̄
.
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Thus, the class of contracts in which the entrepreneur refrains from benefit extraction is char-
acterized by pairs{

(ϕet , ϕ
i
t) such that ϕet = ϕe(m) and ϕit ≥ ϕi(m), for some m ∈ [0, m̄]

}
.

Whenever ϕit < ϕi(m) for m defined by ϕet = ϕie(m), the intermediary monitors with zero intensity
and the entrepreneur pursues benefit extraction, so the value of assets follows

dVt
Vt

=

(
a− ι(qt)

qt
+ g(qt) + µqt + σσqt − b̄

)
dt+ (σ + σqt ) dZt.

We assume that b̄ is large enough, so that capital management under entrepreneurs who extract
private benefits is always less efficient than under the less productive households.

The equilibrium conditions that determine θet , θ
i
t, qt, ψt, the monitoring intensity mt and risk

allocation (ϕet , ϕ
i
t) are

max
mt≥0

a− ι(qt)
qt

+ g(qt) + µqt + σσqt + Ω(mt)−mt − r + (ϕe(m)σθ,et + ϕi(m)σθ,it )(σ + σqt ) = 0

µθ,et = ρe − r, µθ,it = ρi − r, ϕet = ϕe(mt), ϕit = ϕi(mt),

and
a

qt
− δ + µqt + σσqt ≥ r, with equality if 1− ψt > 0,

where ρe and ρi are the discount rates of entrepreneurs and intermediaries.
Together with the two conditions that arise directly from the Bellman equation, these seven

conditions determine seven equilibrium processes.
The equilibrium can be characterized with state variables ηet = N e

t /Kt, and ηit = N i
t/Kt, where

N e
t and N i

t are aggregate net worth’s of entrepreneur and intermediary sectors. The evolution of
net worth’s over time is given by the equations

dN e
t = rN e

t dt+ ψtϕ
e
t (σ + σqt )Kt(−σθ,et dt+ dZt)− dCe

t ,

and
dN i

t = rN i
t dt+ ψtϕ

i
t(σ + σqt )Kt(−σθ,it dt+ dZt)− dCi

t ,

and aggregate capital evolves according to

dKt = (ψt(g(qt) + Ω(mt)−mt)− (1− ψt)δ)Kt dt+ σKt dZt.

Reduced Form with One State Variable. Next, we consider three special cases in which the
general two-state-variable model reduces to our baseline model with one state variable. The first
case is when the net worth of entrepreneurs is N e

t = 0. The second case is when the net worth of
intermediaries is N i

t = 0. The third case is when the net worth of entrepreneurs and intermediaries
are perfect substitutes, so only the total net worth Nt = N e

t +N i
t matters.

First, if N e
t = 0, then the only way to discipline entrepreneurs to refrain from benefit extraction

is through “complete” monitoring. Without loss of generality suppose that m̄ is the minimal
monitoring intensity such that Ξ(m) = 0 and let us normalize Ω(m̄) = m̄ (we can always change the
entire function Ω and the depreciation rate δ by the same constant to make sure that Ω(m̄) = m̄).
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Then under the monitoring intensity m̄, capital managed by entrepreneurs evolves according to
the equation

dkt
kt

= (Φ(ιt)− δ + Ω(m̄)− m̄) dt+ σ dZt = (Φ(ιt)− δ) dt+ σ dZt,

as in the baseline model. The minimal fraction of equity that gives the intermediaries incentives
to eliminate benefit extraction by entrepreneurs is

ϕ̃ ≡ ϕi(m̄) =
m̄

(Ω(m̄)− Ω(0) + b̄)
.

Thus, with the constraint ϕit ≥ ϕ̃, the setting is reduced to our baseline model, as summarized by
the following proposition:

Proposition 5 If N e
0 = 0, Ξ(m) = 0 and Ω(m̄) = m̄ then the model with entrepreneurs and

intermediaries reduces to our baseline model with the constraint that ϕit ≥ ϕ̃ and ρ = ρi.

Proof. Under the assumptions of Proposition 3, it is possible to prevent entrepreneurs from
extracting benefits only through monitoring. Moreover, because Ω′(m) ≤ 1, monitoring level
m = m̄ is optimal. The equilibrium conditions are reduced to

a− ι(qt)
qt

+ g(qt) + µqt + σσqt + Ω(mt)−mt − r = −ϕ̃σθ,it (σ + σqt ),

µθ,it = ρi − r, and

a/qt − δ + µqt + σσqt ≥ r, with equality if 1− ψt > 0,

as in our baseline model. The intermediaries take the role of expert, and value functions of
entrepreneurs are no longer relevant because they have zero net worth.

Second, the general model also reduces to our baseline model if we assume (as in BGG or KM)
that there are no intermediaries who can monitor entrepreneurs, i.e N i

t = 0. Normalizing Ω(0) = 0
for the monitoring intensity m = 0, capital managed by entrepreneurs evolves according to

dkt
kt

= (Φ(ιt)− δ + Ω(0)− 0) dt+ σ dZt = (Φ(ιt)− δ) dt+ σ dZt,

as in the baseline model. The minimal fraction of equity that gives the entrepreneurs incentives
to refrain from benefit extraction is

ϕet ≥ ϕ̃ = Ξ(0).

Third, the model also collapses to a one-state variable model if the net worth of intermediaries
and entrepreneurs are perfect substitutes. In this case, we can merge entrepreneurial and inter-
mediary sectors to an “expert sector”. The sum of entrepreneurial and intermediary net worths
N e and N i, divided by capital Kt, forms the single state variable. This case emerges, for example,
when entrepreneurs and intermediaries have the same discount rate ρ = ρe = ρi, the direct benefits
of monitoring offset the monitoring costs, i.e. Ω(m) = m, and when for all m, ϕe(m)+ϕi(m) = ϕ̃.
In this case, the financing constraint is that entrepreneurs and intermediaries must together hold
at least a fraction ϕ̃ of entrepreneur equity, so it is their total net worth that determines their
ability to absorb risk.
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7.2 Contracting with Idiosyncratic Losses and Costly State Verifica-
tion

The reduced-form model with a single state variable can be extended to allow for idiosyncratic
shocks to capital. Below we discuss the extension under the specific assumption that there are no
intermediaries, i.e. N i

t = 0. The other two cases, with N e
t = 0 and with N e

t and N i
t being perfect

substitutes, also admit similar extensions with details dependent on the case at hand.23

Assume as in Section 5.2 that in the absence of benefit extraction, capital managed by expert
(entrepreneur) i ∈ I evolves according to

dkt = (Φ(ιt)− δ) kt dt+ σkt dZt + kt dJ
i
t ,

where dJ it is a loss process with intensity λ, and the distribution the percentage of capital recovered
in the event of a loss given by the function F : [0, 1]→ [0, 1]. We assume that dJ it is a compensated
process, i.e. in the absence of jumps it has a positive drift of

dJ it =

(
λ

∫ 1

0

(1− x)dF (x)

)
dt,

so that E[dJ it ] = 0.
The entrepreneur can extract benefits continuously or via discrete-jumps. Benefit extraction

is described by a non-decreasing process {Bt, t ≥ 0}, which alters the law of motion of capital to

dkt = (Φ(ι)− δ) kt dt+ σkt dZt + kt dJ
i
t − dBt,

and gives entrepreneur benefits at the rate of ϕ̃dBt units of capital. The jumps in Bt are bounded
by kt−, i.e. the total amount of capital under entrepreneur management just before time t.

This specification of the agency problem between the entrepreneur and less productive house-
hold investors corresponds to our earlier formulation when the rate of extraction is finite, i.e.
dBt = bt dt. However, now the entrepreneur may also extract benefits discontinuously, including
in quantities that reduce the value of capital under management below the value of debt.

We assume that there is a monitoring technology that can be employed in the event of discrete
drops in capital. In particular, if a monitoring action is triggered by outside investors when capital
drops from kt− to kt at time t, then investors

(i) learn whether a drop in capital was caused partially by entrepreneur’s benefit extraction at
time t and in what amount

(ii) recover all capital that was diverted by the entrepreneur at time t

(iii) pay the monitoring cost of c(kt−+dJ it ) that is proportional to the amount of capital recovered
kt− + dJ it .

If the drop in capital from kt− to kt at time t was partially caused by benefit extraction,
then kt− + dJ it > kt. In this event (usually dJ it = 0 - unless the entrepreneur can anticipate
Poisson losses, it is a probability-zero event for a discrete extraction of benefits to coincide with a

23For the case when Ne
t = 0, we have to allow intermediaries to extract benefits via discrete jumps. For the

case when both entrepreneurs and intermediaries have positive net worth, we need to make the assumption that
entrepreneurs can extract benefits only occasionally, during opportunities that arrive at a Poisson rate.
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discrete drop in asset value), the entrepreneur is not able extract any benefits, as diverted capital
kt− + dJ it − kt is returned to investors through the monitoring process.

About contracting, we maintain the same assumptions as before about what happens in the
event that no monitoring action is triggered, i.e. (A) the contract determines how the total market
value of assets is divided between the entrepreneur and outside investors, and (B) at any moment
either party can break the relationship and walk away with its share of assets. In particular,
contracting on kt or qt separately is not possible. In addition, the contract specifies conditions
under which a change (kt, qt) in triggers a monitoring action. In this event, the contract specifies
how the remaining assets, net of monitoring costs, are divided among the contracting parties
conditional on the amount of capital that was diverted at time t. As in Townsend (1979) and
BGG, we assume that the monitoring action is not randomized, i.e. it is completely determined
by the asset value history.

The following proposition shows that with Poisson losses and costly state verification, there
exists an optimal contract of the same form as we considered previously, i.e. the entrepreneur
holds a fraction ϕ̃ of equity, with the modification that a monitoring action is triggered in the
event that the value of the assets falls below the value of debt.

Proposition 6 Assume that σqt ≥ 0 and σθt ≤ 0. Then there is an optimal contract in which
the entrepreneur holds a fraction ϕ̃ of the firm’s equity, and operates as long as his net worth is
positive. Default with costly state verification is triggered in the event that the value of assets drops
by more than nt−/ϕ̃, and in the event of default the entrepreneur does not get any of the value
recovered through the verification process.

8 Conclusions

Events during the great liquidity and credit crunch in 2007-10 have highlighted the importance
of financing frictions for macroeconomics. Unlike many existing papers in macroeconomics, our
analysis is not restricted to local effects around the steady state. Importantly, we show that
non-linear effects in form of adverse feedback loops and liquidity spirals are significantly larger
further away from the steady state. Especially volatility effects and behavior due to precautionary
motives cause these large effects. In addition to exogenous risk, swings in the economy are amplified
by endogenous risk that arises due to financial frictions. This leads to interesting asset pricing
implications with time-varying risk premia even though all agents in the economy are risk-neutral.
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