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Abstract

How to �nance investment when continual e¤ort of key workers
is essential for developing and maintaining intangibles? If key work-
ers (engineers) cannot precommit to provide e¤ort in the future, how
does this a¤ect the horizons of external funding? We develop a model
of funding horizons in which, the further distant into the future, the
larger the fraction of revenue attributed to engineers�cumulative ef-
forts. Looking ahead from the time of investment, we show that be-
cause engineers cannot precommit to work for less than their marginal
contribution to future production, more surplus goes to them in the
distant future � and concomitantly less goes to external �nanciers.
Hence, ex ante, the external funding capacity of an investing engi-
neer is largely governed by revenues in the near horizon. This limits
external �nance, leading to possible under-investment. We examine
how funding horizons interact with plant dynamics and the aggregate
economy. We show that an unanticipated permanent fall in the in-
terest rate in a small open economy can lead to a temporary boom
followed by slower growth in the long run.
JEL Code: E44

�This was �rst presented as the keynote lecture by John Moore at the CESifo Area
Conference on Macro, Money and International Finance in Munich on 23 July 2020. The
previous title was "Credit Horizons." We would like to thank the U.S. National Science
Foundation and the U.K. Economic and Social Research Council for �nancial support.
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1 Introduction

Recently intangible capital appears to have become more important for pro-
duction and valuation relative to tangible capital.1 Intangible capital is
unique because continual e¤ort of key workers is often essential for develop-
ing and maintaining intangibles. Nonetheless the key workers often cannot
pecommit to provide e¤ort in the future, because they can work elsewhere.
How to �nance investment? How does the limited commitment of key work-
ers a¤ect the horizons of external funding? How do funding horizons interact
with plant dynamics and the aggregate economy?
To address these questions, we develop a model of funding horizons in

which the human capital of an entrepreneur-cum-engineer is essential for
the construction and then maintenance of a production facility. To get a
�avour of our model, think of an engineer investing in goods and a building
in which to construct plant. There is no obstacle for the engineer to raising
funds against the plant: it can be freely sold at the time of investment.2

What cannot be sold is the engineer�s expertise, her human capital, which
we assume is acquired through learning-by-doing associated with her gross
investment. This inalienability constrains the engineer�s fund-raising ability,
so the scale of her investment is limited by her net worth.3

A saver who buys the plant will subsequently need an engineer�s expertise
to maintain its productivity. Without adequate maintenance, productivity
would deteriorate. Generally we adopt a form of �roundabout�technology,
inspired by Böhm-Bawerk (1889): we suppose that tomorrow�s plant pro-
ductivity is a function of both today�s productivity and today�s engineering
input. Hence, although on any given date the plant�s current productiv-
ity is historically given, its long-run future productivity will mostly depend
upon the forthcoming cumulative maintenance e¤ort. We take an extreme
example in this Introduction: with engineer�s continual maintenance, each
unit of plant yields the deterministic �ow returns, yt+1; yt+2; yt+3;::: . If the
maintenance is missed once, the plant stops yielding returns forever.

1See, for example, Brynjolfsson, Rock and Syverson (2021), Corrado, Hulten, and Sichel
(2009), Crouzet, Eberly, Eisfeldt and Papanikolaou (2022), Eisfeldt and Papanikolaou
(2013), Karabarbounis and Nieman (2019), McGrattan and Prescott (2010), and Peters
and Taylor (2017).

2By "sold", we mean handing over all the control rights over the plant, all the equity.
3Hart and Moore (1994).
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Crucially, because her human capital is inalienable, the engineer cannot
commit at the time of investment, ex ante, subsequently to supply her main-
tenance services to the saver. We assume the match between engineers and
plant owners can change over time. In the future, the plant owner can hire
any engineer to maintain his plant and the engineer can work for any plant
owner. In this period, however, there is only one engineer who can maintain
a particular plant �the match is one engineer to one plant owner.
In this Introduction, let us consider a date t, when an owner and an

engineer bilaterally bargain over the engineer�s "wage" wt. The surplus to
the engineer equals wt because she can work for another plant from the
next period if the bargaining breaks down. The surplus for the plant owner
is more substantial, because failure to agree will destroy the future of the
plant. Let R > 1 be the gross interest rate per period, and Vt+1 be the
continuation value of the plant at the beginning of t+1. The surplus to the
owner equals the present value of the continuation value minus the present
wage to engineer, 1

R
Vt+1�wt. Let � and 1�� be the bargaining powers of the

owner and the engineer. We consider the wage is determined to maximize
the Nash product,

Max
wt

�
1

R
Vt+1 � wt

��
(wt)

1�� :

Through this bargaining, the engineer receives a fraction 1� � of the contin-
uation value of the plant as wage,

wt = (1� �)
1

R
Vt+1:

The value to the plant owner equals the present pro�t (output minus
wage) plus the present value of continuation value as

Vt = yt � wt +
1

R
Vt+1:

Then substituting the equilibrium wage, the owner�s value equals the present
output plus a fraction � of the present value of the continuation value as

Vt = yt +
�

R
Vt+1:

Iterating this forward, we learn

Vt = yt +
�

R
yt+1 +

�
�

R

�2
yt+2 +

�
�

R

�3
yt+3 + ::: .
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Because � < 1; the plant owner derives the value largely from near-future
revenue, say in the next several years.
At the time of investment at t, the engineer raises external fund by selling

the plant which starts yielding output from date t+1 at price

b =
1

R
Vt+1 =

1

R
yt+1 +

�

R2
yt+2 +

�2

R3
yt+3 +

�3

R4
yt+4 + ::: .

The horizon for the investing engineer to raise the external fund is relatively
short, because the saver who buys the plant to provide funds derives the
value largely from near-future revenue. It can thus be said that the external
�nance is largely near-term even when the plant is long-term.
Present wage to the engineer re�ects the long-run in�uence on future

production as

wt =
1� �
R

Vt+1 =
1� �
R

yt+1 +
1� �
R2

�yt+2 +
1� �
R3

�2yt+3 + ::: .

The engineer�s wage is forward looking because the engineer�s maintenance
a¤ects the entire future production.
Parenthetically, we note that an often made criticism of a capitalist econ-

omy is that the horizons of shareholders and managers are too short-term.
This idea �nds an echo in our model. Plant owners �who are akin to share-
holders and managers �derive value mainly from the plant�s near-term rev-
enues, insofar as they are obliged to pay engineers �their key workers �a
forward-looking reward to maintain the plant.4 The empirical corporate �-
nance literature documents that entrepreneurs usually raise external funding
against their future cash �ows as well as put up their �xed assets as collat-
eral5. The funds raised are typically only a few years�worth of revenue.6

Here, however, we are not arguing that the plant is not e¢ ciently main-
tained after investment. What we are arguing is that there can be under-
investment ex ante because the external funding horizon is short. At the

4De la O and Myers (2021) �nd that expectations of cash �ow growth in the near future
explain most movements in the S&P 500 price-dividend and price-earnings ratios.

5Lian and Ma (2021) examine �rm-level data of US non-�nancial corporations to doc-
ument that approximately 80% of corporate borrowing is backed by future cash �ow and
only 20% by collateral assets �though this 4:1 ratio tends to be lower for smaller US �rms
and lower in other countries like Japan. Drechsel (2020) also documents that much of US
corporate borrowing is constrained by �rms�current earnings.

6Lian and Ma (2021) further examine debt covenants to �nd that, at the 25 percentile,
the cash-�ow-based debt is restricted by 3 years�worth of EBITDA (earnings before inter-
est, taxes, depreciation and amortization) and, at the 75 percentile, by 4.5 years�worth.
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time of investment, the engineer uses her net worth (after consumption) and
the external fund to �nance the total investment cost: the unit investment
cost times the investment scale. Thus aggregate investment scale is limited
by

investment scale =
aggregate net worth of engineers

unit investment cost � b : (1)

When the capacity for the engineers to raise external funds per plant b is
limited due to the short funding horizon, there is possible under-investment.
Our model displays a rich interaction between funding horizons and plant

dynamics. The owner of plant has a distinct choice on a plan for future main-
tenance. Either he pays the costs needed to maintain, or even improve, pro-
ductivity with a view to staying in production over the long haul �call this
his continuing strategy. Or he curbs maintenance costs and allows productiv-
ity to deteriorate slowly, to some point when he decides to exit and liquidate
plant as a generic building �call this his stopping strategy. This dichoto-
mous decision �either planning to continue for the long haul, or planning
to stop within a �nite horizon �reveals an intriguing feature of equilibrium.
For an open set of parameters, even though all plant starts o¤ identical in
productivity, their qualities diverge over time: some plant improves in pro-
ductivity and other plant deteriorates and eventually shuts down.7 We think
all this may be a fruitful new vein for research into �rm/plant dynamics,
which should inform the study of how aggregate productivity evolves.
A question of particular concern to us is whether persistently low real

interest rates can sti�e aggregate investment and growth. The question is
motivated by Japan, where the economy struggles to regain robust growth
despite interest rates having been close to zero for over two decades. With
this in mind, we model a small open economy where the world interest rate,
R, is taken to be exogenous. What happens if the real interest rate R falls
permanently?
The e¤ects depend upon the impact on the numerator as well as on the

denominator of the above equation (1). The net worth of engineers in the
numerator rises as the value of their asset rises with a fall in R: In the denom-
inator, the investment cost includes the price of building which tends to have
a longer duration than the borrowing capacity. Then with a persistent fall
in R; the borrowing capacity may fail to catch up with the rise of investment

7Griliches and Regev (1995) presents evidence that the productivity of many �rms
starts deteriorating before exiting, calling it the "shadow of death.�
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cost, pushing up the denominator.
There may be a parallel here with the housing market. When interest

rates fall persistently, we often observe housing prices rising more than bor-
rowing capacities. As a result, �rst-time buyers have a hard time getting
onto the housing ladder. On the other hand, people who already own their
houses enjoy a large increase in net worth and can a¤ord to move into larger
properties.8 In the long run, the housing market may stagnate if not many
new buyers enter into the market.
Along a time path following an unexpected fall in R, the rise in net

worth initially dominates the rise in the required downpayment, leading to a
temporary boom �especially if the liability to foreign creditors is not indexed.
But the rise in the required downpayment can eventually overwhelm the rise
in net worth. Overall, we demonstrate that domestic investment can fall
with a fall in world interest rates, as can the growth rate in the long run.

We believe the dynamic path we uncover here �especially the disjunction
between the initial rise in the value of total investment (including real estate)
versus the subsequent fall in underlying productive investment in plant and
human capital �may provide a sobering account of a number of property-
fuelled booms sparked by lower interest rates. In particular, it may give a
less rosy picture of, say, the Japanese property boom in the late 1980s, or the
property boom in southern Europe following the introduction of the euro in
the early 2000s, than more popular narratives based on asset price bubbles.
Lastly, in terms of policy intervention, we show there can be scope for

an investment subsidy, �nanced by a plant-level payroll tax on engineers�
maintenance services. This policy can improve welfare by implementing a
form of additional group borrowing by the engineers, although the success of
any such policy depends on exactly what the government is able to monitor.
The plan of the paper is as follows. In the next section, we lay out the

model. Section 3 describes equilibrium in the part of the parameter space
where no plant owner chooses to shut down his plant in �nite time �what
we call the Pure Equilibrium with No Stopping. Section 4 considers the
complemetary part of the parameter space, where some plant owners choose
to continue and others choose to stop �what we call the Mixed Equilibrium.
Section 5 looks at the e¤ects of a fall in the interest rate. Section 6 extends
the model to allow for idiosyncratic uncertainty across plant. Finally, Section
7 considers policy intervention.

8Kiyotaki and Moore (1997).
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2 Model

We consider a small open economy with an exogenous world real interest
rate R. There is no aggregate uncertainty and, for the moment, we focus on
steady state equilibrium (later, we will examine the e¤ects of an unantici-
pated persistent drop in R). There is a homogeneous perishable consump-
tion/investment good at each date t = 0; 1; 2; : : : . We use this good as
numeraire as we consider a non-monetary economy.
There is a [0; 1] continuum of domestic agents, each maximizing utility of

consumption ct from the present to the in�nite future:

E0

" 1X
t=0

�t ln ct

#
; (2)

where � 2 (0; 1) is the utility discount factor and ln c is the natural logarithm
of c. We assume that the exogenous world interest rate is nonnegative in net
terms and lower than the subjective interest rate:

1 � R < 1

�
: (3)

Each agent sometimes has an investment opportunity (being an entre-
preneur or simply �engineer�), and sometimes not (�saver�). The transition
probabilities of being an engineer conditional on being an engineer or a saver
in the previous period are given by

Prob (engineer at t j engineer at t� 1) = �E;

Prob (engineer at t j saver at t� 1) = �S:

We assume the arrival of an investment opportunity is persistent to a limited
degree so that 0 � �S � �E < 1:
At each date t, an engineer E can jointly produce plant and tools from

goods and building: within the period, per unit of plant,

x goods
1 building

�
!
�
plant of productivity 1

1 E-tool
: (4)

The investment technology is constant returns to scale and scalable by any
positive number i. Investment takes place after output has been produced,
and plant and tools constructed are ready for use from date t + 1. Here
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we can think of tools as the engineer�s human capital acquired through her
learning by doing. As in Arrow (1962), the learning by doing is associated
with gross investment instead of regular production.
Each tool (or human capital) is speci�c to the engineer (�E-tool�) in that

only she knows how to use it �unless she sells it to another engineer and
teaches him. Because the engineer cannot usefully sell her tools to savers
and her human capital is inalienable, she raises funds by selling all she can,
the plant.
The plant owner has a constant returns to scale production technology.

Match between plant and engineer is not speci�c - not speci�c even in present
period, unlike in Introduction. At each date, the owner of one unit of plant
of productivity z can hire any number h � 0 of tools (hiring each tool along
with the engineer who knows how to use it) at a competitive rental price
w (�wage�) to produce goods and maintain plant productivity: within the
period, per unit of plant,

plant of productivity z
h tools

�
!

8<:
y = az goods

� plant of productivity z0 = z�h�

�h tools
. (5)

a > 0 is the common productivity of all plant and z0 is plant productivity
after maintenance. � < 1 re�ects depreciation, by which a fraction 1 � �
of plant and tools are destroyed after use. The parameter � is the share
of present plant productivity and � is the share of engineers�tools (human
capital) in maintaining plant productivity. We assume that �; � > 0, and
�+ � � 1:We can think of physical plant as tangible capital, productivity of
plant as intangible capital, and both contributing to production at present
and future.
Here, our sole departure from the Arrow-Debreu model is the assumption

that engineers are unable to commit to work for less than the ex post com-
petitive wage to the future plant owners (savers) at the time of investment.
This form of constraint is sometimes called a non-exclusivity constraint.9

A brief word about interpretation is in order here. Although we call w the
engineer�s �wage�, it is important to distinguish it from the simple wage of,
say, an unskilled worker. The engineer�s remuneration is like payment to a

9See, for example, Allen (1985), Townsend (1989), Cole and Kocherlakota (2001) and
Attar, Mariotti and Salanie (2011).
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skilled core employee who in�uences the �rm�s future productivity.10 Notice
that, unlike in a more �eshed-out macroeconomic framework, we assume a
simple reduced-form production of output: proportional to the productivity
of the plant. In Appendix A we show that this formulation is justi�ed when
output is a general decreasing returns to scale function of plant productivity
and unskilled labor, where unskilled labor is hired by plant owners in a
competitive market.
New buildings are supplied by foreigners. We assume foreign builders

have an alternative use of building to produces a �xed amount of goods f
per unit every period and the a building depreciate at the same rate as plant
as

1 building!
�

f goods
� building

:

Because foreigners are indi¤erent between supplying building to home engi-
neers and using building themselves, the price building q is

q =
f

R
+
�f

R2
+
�2f

R3
+ ::: =

f

R� �:

Competitive foreign builders have enough capacity to satisfy the building
demand of the domestic economy at their marginal cost q. We introduce
foreign builders to ease the exposition.11 Alternatively we can think engineers
and plant owners rent building and pay the rent f per unit every period.
Whether building is owned or rented by plant owners does not matter much
the economic implication.12

10We takes the non-exclusivity constraint broadly: The trading history of engineers is
private information, with which none can prevent engineers from selling their services and
assets in the competitive market. Then, whether the remuneration is a spot payment or
a claim to future revenue of the plant does not matter, because, to �nance downpayment,
an investing engineer can equally use a spot payment or the sale of a claim.
11Any di¤erence between the building purchase price and the construction cost is the

pro�t of foreign builders. If builders were domestic agents, we would need to take into
account the impact of their income and wealth on the domestic economy �although we
do not expect this would qualitatively change our �ndings.
12More generally, we can think plant owner needs to pay �xed cost f per period to

operate the plant. If f is �xed cost for production, total �xed cost should be subtracted
from GDP. Otherwise, it does not matter much whether f is opportunity cost of using
building (as in text), rental price, or �xed cost of production (aside from the impact of a
unexpected shock).
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The plant owner always has an option to stop and convert the plant into
generic building after production. The value of a unit of plant of productivity
z at the end of the period is given by

V (z;w;R) = az +Max

�
�q; max

h�0

�
�wh+ �

R
V
�
z�h�;w;R

���
: (6)

The �rst term in the right hand side (RHS) is the revenue from production.
The value �q inside the braces is the value of stopping, while the second term
is the value of continuing �minus wage cost and the capital value of the
remaining � units of plant with productivity z0 = z�h� in the next period.
Knowing that the return from maintaining plant productivity depends

upon his future production and maintenance choices, the plant owner must
devise a long-term plan: Either stop after a �nite number of periods T ,
or continue forever (T = 1)? For each T = 0; 1; 2; : : :, de�ne recursively
the owner�s value of a unit of plant of current productivity z stopping in T
periods:

S0(z;w;R) = az + �q;

S1(z;w;R) = az + max
h

�
�wh+ �

R
(az�h� + �q)

�
; (7)

: : :

ST (z;w;R) = az + max
h

�
�wh+ �

R
ST�1

�
z�h�;w;R

��
: (8)

If the plant is shut down after production, the value S0(z;w;R) is az + �q.
If the plant owner shuts down in tomorrow after production, he hires tools
today to balance the cost and bene�t of maintaining plant productivity for
production tomorrow. Generally, the owner�s value of a unit of plant of
current productivity z stopping in T periods, ST (z;w;R) , equals the sum of
present cash �ow (revenue minus wage cost) and the present value of � units
of plant of productivity z�h� stopping in T � 1 periods.
Now, for all value of z, the plant owner chooses the optimal stopping time

so that
V (z;w;R) � sup

T�0
ST (z;w;R) : (9)

Because new plant that she sells to a saver at the time of investment has
productivity 1, the engineer raises funds, per unit of plant,

b =
1

R
V (1;w;R): (10)
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The value b can be thought of as the engineer�s fund-raising capacity per unit
of investment.
The required own-funds (downpayment) per unit of investment equals the

gap between the investment cost and the fund-raising capacity,

x+ q � b.

We assume that a new saver �an engineer yesterday who switched to being
a saver today �can sell her tools (after use today) to an engineer, and teach
him how to use them, at a competitive price x+ q � b.
The budget constraint of an agent at date t who has ht tools and dt

�nancial assets is

ct + (x+ q � b)it +
dt+1
R

= wht + dt,

where ht is positive only if the agent was an engineer yesterday. Here, �-
nancial assets consist of the value of plant ownership as well as maturing
one-period discount bonds. The discount bond is traded internationally at
the interest rate R. Only if the agent is an engineer today, investment it can
be positive and her tools tomorrow will be

ht+1 = �ht + it.

The budget constraint can be rewritten as

ct + (x+ q � b)ht+1 +
dt+1
R

= [w + �(x+ q � b)]ht + dt = nt,

where nt is net worth � the sum of �ow return (wage) and capital value
(replacement cost or resale value) of tools, plus �nancial assets.
The rate of return for an engineer investing with maximal fund-raising is

given by

RE =
w + �(x+ q � b)

x+ q � b ; (11)

the ratio of total returns of one tool to the downpayment of investment.
(Remember she sells plant to a saver at the time of investment and so does
not receive the return on plant.) If the return on investment RE exceeds the
interest rateR, then, thanks to the logarithmic utility function, the engineer�s
consumption and investment are

ct = (1� �)nt; (12a)

(x+ q � b)ht+1 = �nt: (12b)
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And a saver�s consumption and asset holdings are

ct = (1� �)nt; (13a)
dt+1
R

= �nt: (13b)

Notice that individual consumption depends only on present net worth and
not on whether the agent has an investment opportunity today. Because
marginal utility is independent of whether or not there is an investment
opportunity, there are no gains from insurance (such as the agent receives a
bonus if she has an investment opportunity while pays a premium if not).
A steady state equilibrium of our small open economy is characterized by

the wage w and the new plant price b, together with the quantity choices of
savers/plant owners (c; d; h; z; y), engineers (c; h; i), and foreigners (who have
net asset holdings D�), such that the markets for goods, tools, plant, and
bonds all clear.

3 Pure Equilibrium with No Stopping

We use a guess and verify method to characterize equilibrium. Suppose that
in the steady state, no plant owner shuts down his plant until it depreciates
exogenously. Then the value function (6) is the present value of net cash �ow
into the inde�nite future:

V (z;w;R) = yt � wht +
�

R
(yt+1 � wht+1) +

�
�

R

�2
(yt+2 � wht+2) + :::

An optimal sequence fht; zt+1; ht+1; zt+2, ht+2; : : :g equates the discounted
sum of marginal product to the wage (see Appendix B for the derivation):

w =
�

R
a�
zt+1
ht

+

�
�

R

�2
a�
zt+1
ht
�
zt+2
zt+1

+

�
�

R

�3
a�
zt+1
ht
�
zt+2
zt+1

�
zt+3
zt+2

+ : : : (14)

The �rst term in the RHS is the marginal impact of a date-t tool on output
yt+1 through its impact on plant productivity zt+1. The second term is the
marginal impact of the date-t tool on yt+2 through its impact on zt+1 which
impacts zt+2. The third term is the marginal impact of the date-t tool on
yt+3 through its impact on zt+1 which impacts zt+2 which in turn impacts
zt+3.
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Multiplying through by ht and simplifying, we get

wht =
�

R
�yt+1 +

�
�

R

�2
��yt+2 +

�
�

R

�3
��2yt+3 + : : : (15)

The present wage bill for engineers equals the present discounted value of
a fraction � of tomorrow�s output, plus a fraction �� of output two periods
later, plus a fraction ��2 of output three periods later, etc.
An engineer raises funds by selling new plant at price

b =
1

R
V (1;w;R)

=
1

R
a+

�

R2
yt+1(1� �) +

�2

R3
yt+2(1� � � ��) + : : : (16)

All plant starts with productivity z = 1: Moreover, investment generates
an equal number of plant and tools, which have the same technological de-
preciation rate 1� �. If no plant is stopped, the ratio of tools to plant stays
one-to-one. Then because

z0 = z�h� = 1 when z = h = 1,

all plant is maintained at initial productivity z = 1 until the exogenous death
of plant through depreciation. Output per unit of plant is unchanged from
the initial level:

yt+1 = yt+2 = yt+3 = : : : = a.

The engineer�s fund-raising capacity b becomes

b =
1

R
a +

�

R2
a(1� �) + �2

R3
a(1� � � ��) + : : : (17)

Notice how the plant owner�s share declines in more distant future output:
1, 1� �, 1� � � ��; : : :
Figure 1 shows how future output is split between the plant owner (who

provides the external �nance) and the engineers (who maintain the plant).
The horizontal axis is time horizon: t measures how far distant future is
from present. The vertical axis is output per unit of surviving plant, and the
shares of future output for the plant owner and engineers as functions of time
horizon. The parameters and equilibrium wage rate w shown in the �gure. In
pure equilibrium with no stopping, output is yt = a. The downward sloping
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Figure 1: Horizons of owner�s contribution to �rm�s revenues.

curve is the share of future output the plant owner obtains. Think of this as
his rightful reward for his "contribution" to those revenues, stemming from
the initial productivity z = 1 of the plant that he paid to own.
Through investment the engineer acquires tools (human capital) which is

just enough to maintain the productivity of plant at the initial productivity
level in Pure Equilibrium with No Stopping. Thus her payo¤ from unit
investment equals the present value of the engineers�wage as

1

R
w +

�

R2
w +

�2

R3
w + : : :

= 0 +
�

R2
a� +

�2

R3
a(� + ��) +

�3

R4
a(� + �� + ��2) + : : : (18)

we see that, correspondingly, the engineers�share rises in more distant future
output: 0, �, �+��, �+��+��2; : : :The gap between output and the owner�s
share in Figure 1 is the engineers�share of future output. Intuitively, as the
cumulative contribution of engineers�human capital to plant productivity
rises with horizon, the e¤ects of the plant�s initial productivity �essentially
what a saver gets when he buys a new plant �tails o¤. Figure 1 illustrates
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why the plant owner�s share (investing engineer�s pledgeable return) is largely
near-term, and she raises funds against near future revenue.13

Take a special case of constant returns to scale maintenance technology
� + � = 1 and no depreciation � = 1: The value function of plant with no
stopping is

V (z) = az +Max
h

�
�wh+ 1

R
V (z�h1��)

�
:

The �rst order condition for h implies

w =
1

R
(1� �)V 0(z0)z

0

h
=
1

R
(1� �)V 0(z0)

�z
h

��
: (19)

We guess the value function to be proportional to z as

V (z) = �z = az +
�

R
�z0

= az +
�

R
V (z0): (20)

Because h and z0 are proportional to z from (19) and V 0(z) = �; we verify
the guess.
This expression (20) is identical to the bilateral bargaining between plant

owner and engineer if their bargaining powers are � and 1 � �. In bilateral
bargaining, because the plant owner needs the engineer every period, he only
obtains � < 1 fraction of the continuation value of the plant at the end of
this period. In our baseline model, because the wage bill of engineers equals
a fraction 1 � � of the next period value V 0(z0)z0 = V (z0) under constant
returns to scale maintenance technology from (19) ; the plant owner captures
only � fraction of the continuation value as in (20).14

13Notice that Figure 1 shows which shares of future output belongs to the plant owner vs.
engineers as a function of time horizon �how distant is the future from now. Because wage
re�ects contribution to future output and past wage payment is sunk cost, the realized
division of output does not change with the age of plant in Pure Equilibrium with No
Stopping: a� w to the plant owner and w to engineers.
Thus the implication our funding horizon model are very di¤erent from dynamic contract

literature in which the principal chooses the agents�wage to be back-loaded in order to
induce her e¤ort, when the earning depends upon the agent�s unobservable e¤ort and
idiosyncratic temporary shocks.
14These conditions resemble "Hosio�s condition" in the labor matching literature.
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In particular, in Pure Equilibrium with No Stopping, we have z = h =
1 = z0 and

b =
1

R
V (1) =

1

R
� =

a

R� � :

In both bilateral bargaining and competitive market cases, the saver is willing
to provide fund to the investing engineer at the time of investment only
against near-term revenue. An advantage of using a competitive framework
with non-exclusivity constraint is that we can analyze dynamics of economy
without specifying details of bilateral bargaining when each agent may or
may not have an investment opportunities at each future date.
Returning to the general baseline model, we can aggregate across en-

gineers and savers to obtain aggregate tool holdings Ht+1, �nancial asset
holdings Dt+1=R, consumption Ct, and net worth of engineers and savers�
NE
t and N

S
t

�
:

(x+ q � b)Ht+1 = �NE
t ; (21a)

Dt+1

R
= �NS

t ; (21b)

Ct = (1� �) (NE
t +N

S
t ); (21c)

NE
t = �E [w + �(x+ q � b)]Ht + �SDt; (21d)

NS
t = (1� �E) [w + �(x+ q � b)]Ht + (1� �S)Dt:(21e)

Equation (21a) says the aggregate capital value of tools equals the aggregate
net worth of engineers after subtracting their consumption, and equation
(21b) says the aggregate value of �nancial assets equals the aggregate net
worth of savers after consumption. In equation (21c), aggregate consumption
equals a fraction 1�� of the aggregate net worth of domestic residents. The
aggregate net worth of engineers is the sum of the net worth of continuing
and new engineers in equation (21d), and the aggregate net worth of savers
is sum of the net worth of new and continuing savers in equation (21e).
The economy exhibits endogenous growth G: along a steady state path,

such that
Ht+1
Ht

=
Dt+1

Dt

=
Ct+1
Ct

= G;

GNE
t = NE

t+1 = �
ERE�NE

t + �
SR�NS

t ;

GNS
t = NS

t+1 = (1� �E)RE�NE
t + (1� �S)R�NS

t .
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Substituting out Ns
t

NE
t
, we �nd that G solves

G = �ERE� + �SR�
(1� �E)RE�
G� (1� �S)R� : (22)

The growth rate depends on the rates of return for engineers and savers as
well as on the wealth distribution between them.
Now, under certain conditions, we can verify our initial guess that no

plant owner stops in the steady state:15

Proposition 1: If the opportunity cost for using building for produc-
tion is smaller than some critical value f critical, then there is a steady state
equilibrium in which
(a) no plant owner stops;
(b) the aggregate ratio of tools to plant stays one-to-one: h = 1;
(c) all plant is maintained at the initial productivity level: z = z� = 1;
(d) All plant has output y = a:

We call this a Pure Equilibrium with No Stopping, that exists when
the model�s parameters lie in the P-Region. In Appendix B, we derive a
su¢ cient (but not necessary) condition for the existence of a pure equilibrium
with no stopping:

f < a
R(1� � � �)
�(1� �)

"
1� R� �

R

�
R� ��
R

� �
1����

#
: (23)

4 Mixed Equilibrium

What happens if the condition for the pure equilibrium with no stopping is
violated, i.e. the opportunity cost is higher than the critical level f critical in
Proposition 1? It turns out there is a clear dichotomy for the plant owner
between continuing forever and stopping after a �nite number of periods (for
a given wage and interest rate):

Lemma:
(a) If the current plant productivity z is below some cuto¤ value, zy, it is

15All proofs and details of derivations are in Appendix B. Proposition 3(b) is demon-
strated numerically.
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Figure 2: Value functions and stopping horizons.

optimal for the plant owner to stop after, say, Tmax(z) <1 periods.
(b) If z is above zy, it is optimal to continue forever.
(c) The cuto¤ value zy increases with the opportunity cost f . It is also a
function of the wage rate and the interest rate.
In Figure 2, we plot the per-unit plant value, as a function of the current

productivity z, for a given wage w and interest rate R, and for di¤erent
stopping horizons T . The function S1 (z;w;R) is the value when the plant
owner chooses to maintain production forever. The upper envelope of all
these functions is the value function of plant V (z;w;R) with an optimal
choice of stopping (including non-stopping). If z is very low, then it is optimal
for the owner to shut down the plant immediately after present production.
Thus, if z is not very low but lower than zy, the owner will shut down plant
not immediately but in a �nite horizon, where the horizon is an increasing
function of z. At z = zy, the plant owner is indi¤erent between continuing
forever and shutting down in a �nite time (for this numerical example, in 20
periods). If z is higher than zy, the plant owner will continue forever �that
is, until the plant dies exogenously.
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Figure 3: Value functions ST (z) near threshold zy where plant owner is
indi¤erent between stopping in a �nite horizon or continuing forever.
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In Figure 3, we plot ST (z;w;R) as a function of horizon T for three di¤er-
ent levels of plant productivity, z = 0:9zy, zy, and 1:1zy. If plant productivity
is relatively low, at z = 0:9zy, then the value reaches a maximum with �nite
horizon: for our example, around T = 15 so that the owner will shut down in
15 periods. If plant productivity is exactly equal to zy, then the plant owner
is indi¤erent between shutting down in 20 periods (T = 20) and continuing
forever (T = 1). If plant productivity is relatively high, at z = 1:1zy, then
the owner �nds that S1 (z;w;R) > ST (z;w;R) for any �nite T so that he
will continue forever.
In general equilibrium, the wage rate w and the value of zy are endoge-

nous. The aggregate dynamics of net worth, tools, �nancial asset holdings
and consumption are still described by equations (21a)�(22) but, in contrast
to Proposition 1, there is now stopping:

Proposition 2: If the opportunity cost for operating a unit of plant f
is larger than a critical value f critical from Proposition 1, then there is an
equilibrium in which:
(a) Plant owners are initially indi¤erent between stopping in �nite time

T and continuing forever: zy = 1; in particular,
(i) if the initial output is larger than the opportunity cost, a > f , then

plant owners are initially indi¤erent between stopping in �nite time T � 1
and continuing forever, whereas

(ii) if the initial output is smaller than the opportunity cost (a <
f), then plant owners are initially indi¤erent between stopping immediately
(T = 0) and continuing forever;
(b) The aggregate ratio of tools-to-plant is larger than one-to-one for

continuing plant: h > 1;
(c) With decreasing returns to scale, � + � < 1, the productivity of con-

tinuing plant increases over time, converging to some z� 2 (1;1); whereas
with constant returns to scale, �+� = 1, the productivity of continuing plant
grows at some constant rate g > 1;
(d) If f 2 ( f critical; a), then the productivity of stopping plant decreases

over time;
(e) There is no equilibrium where all plant stops in �nite time.

We call this aMixed Equilibrium, that exists when the model�s para-
meters lie in theM-Region (the complement of the P-Region). Within this
region, the initial productivity is exactly equal to the critical productivity zy
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for shutting down, so that some plant is stopped and some continues forever
(modulo depreciation). Because the owners of stopping plant do not hire
many tools, the aggregate ratio of tools to plant is larger than one-to-one for
continuing plant: h > 1. With an abundant supply of tools per plant, contin-
uing plant keeps improving in productivity. If the maintenance technology
has decreasing returns to scale, �+� < 1, the productivity of continuing plant
converges to some �nite steady state level z�. If the maintenance technology
has constant returns to scale, �+ � = 1, the productivity of continuing plant
grows at some rate g > 1. Therefore, even though all plant is homogeneous
when new, some plant improves in productivity while the rest fails to main-
tain productivity and eventually exits (or immediately exits if a < f). That
is, �rms evolve heterogeneously in their productivity and output even though
they start o¤ homogenous and face no idiosyncratic shocks.16,17

If all plant were to stop in �nite time, the market for tools (engineers)
would be in excess supply: because of exit the quantity of active plant would
be smaller than tools, plus there would be little demand for tools by plant
owners who are planning to stop, so the equilibrium wage rate for tools
would fall to the point where at least some plant owners switch strategy and
continue forever.

5 E¤ects of Falling Interest Rate

Figure 4 adds to Figure 1 the opportunity cost of using operating plant
instead of liquidating in Pure Equilibrium with No Stopping. The grey and
red heights are the plant owner�s share of output net of the opportunity cost
f . In the near horizon his net share is positive (the grey area), as might
be expected. But in the far horizon his net share has switched to become
negative (the red area).

16This is di¤erent from the standard approach taken by Jovanovic (1981) and Hopen-
hayn (1992) in which initial heterogeneity and/or subsequent heterogeneity (induced by
idiosyncratic shocks) are essential to �rm dynamics. Even allowing for idiosyncratic shocks
(see Section 5), our approach may provide a di¤erent perspective on �rm dynamics. Our
model is more closely related to, for example, Atkeson and Burnstein (2010), Clementi and
Palazzo (2016), Ericson and Pakes (1995), Klette and Kortum (2004), and Rossi-Hansberg
and Wright (2007), all of which stress the interaction between heterogeneity, idiosyncratic
shocks, and investment.
17Allowing for initial heterogeneity would purify this mixed-strategy equilibrium so that
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Figure 4: Horizons of owner�s contribution to �rm�s revenues.

This begs the question: Why doesn�t the plant owner shut down at this
point and liquidate the plant into generic building to recover the building
value? The reason is that, while the present wage bill equals the present
value of engineers�current contribution to future revenues, past wage bills
are sunk costs for the plant owner. As long as the present value of future
pro�t exceeds that of opportunity cost, PV (yt+� � wt+� ) > PV (f) = q; the
owner chooses to continue with maintenance and production.
Because terms in the more distant future are more sensitive to a per-

manent change of interest rate, a fall in R may not expand the engineer�s
fund-raising capacity as much as the building price. In particular, when
� + � = 1, we can solve (17):

b =
a

R� �� : (24)

Notice that the plant owner�s share of gross output decreases with the horizon
by factor ��, because the owner in e¤ect pays to engineers an increasing

plant owners would, more realistically, follow pure strategies. See Aumann et al. (1983).
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fraction of more distant future output for their maintenance services. In
contrast, the engineer�s investment cost per unit equals

x+ q = x+
f

R� �

which is the sum of goods and building cost per unit. Since � > ��, building
has a longer horizon than the owner�s share of gross output: a fall in R may
not expand the present value of the plant owner�s share of gross revenues
(engineer�s pledgeable returns) in (24) as much as the unit investment cost.
This can increase the downpayment x+ q � b which the engineer has to pay
from her net worth.

Proposition 3 (Pure Equilibrium with No Stopping):
(a) For an open subset of the P-Region, in particular for R and � not

too far from unity, there is a pure equilibrium with no stopping such that
an unexpected permanent drop in the interest rate R leads to a lower steady
state growth.18

(b) Immediately following the drop in R, all agents (engineers and savers)
can be strictly worse o¤.

To understand why a fall in R can sti�e investment and growth, consider
the e¤ect on the equation for gross investment:

gross investment (Ht+1) # =

18A su¢ cient condition for the steady state growth rate to fall with a permanent drop
in interest rate in pure equilibrium with no stopping is that �S = 0 and

f > a
R� �(� + �)
R� �� � aG� �R�

E

G� ���E
��(R� �)
(R� ��)2

:

This inequality and a su¢ cient condition for the existence of Pure Equilibrium with No
Stopping (23) are mutually consistent if R and � are not too far from unity.
If �S > 0, then a su¢ cient condition for the growth rate to fall with permanent fall in

the interest rate is that

� (1� �) f > (R� �)2x+ �(1� � � �)a.

This condition guarantees that the rate of return for an investing engineer is an increasing
function of the interest rate. See Appendix B. Because �unlike the previous su¢ cient
condition �this condition involves x, it cannot be readily juxtaposed with (23).
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�
saving rate

�
net worth of engineers

�
NE
t

�
"

investment cost (x+ q) "" � borrowing capacity (b) " :

Although engineers�net worth increases with a fall in R (primarily through a
rise their wage w), a decrease in their borrowing capacity may have a larger
negative e¤ect on investment, and therefore on growth. Much of the macro
�nance literature (including Bernanke and Gertler (1989) and Kiyotaki and
Moore (1997)) has emphasized e¤ects on net worth in the numerator. Here
we are focussing on the e¤ect on borrowing capacity in the denominator.
In terms of welfare, a fall in R can make all domestic agents (engineers

and savers) strictly worse o¤. It is not surprising that savers may be worse
o¤ with a lower rate of return on �nancial assets. The reason why engineers
may be worse o¤ is that their leveraged rate of return

RE =
w + �(x+ q � b)

x+ q � b
can fall though increase of downpayment x + q � b. Appendix B derives
the welfare of engineers and savers immediately after an unanticipated and
permanent fall in the interest rate, taking into account the stochastic arrival
of future investment opportunities.
Suppose the economy was in steady state at date t � 1, for a presumed

constant interest rate. Unexpectedly at date t, the interest rate falls perma-
nently. If the parameters satisfy the condition of Proposition 3(a), then the
long-run growth rate falls. Figure 5 shows the movement of the aggregate
values of investment, consumption, output and foreign debt holdings, when
the real interest rate unexpectedly falls from 2.5% to 1.5% permanently at
date 5.
Initially, the measured value Imt of total investment increases because

buildings are more expensive and the new engineers have greater net worth
due to capital gains on plant they hold from the previous period. Consump-
tion increases too, with the greater net worth. Because domestic absorption
(investment and consumption) expands more than output, foreign debt rises
rapidly during the transition. Despite the boom, the growth rate of plant
and human capital eventually falls. As the boom fades, the slower growth
of productive capacity, exacerbated by a larger foreign debt-to-income ratio,
causes secular stagnation.19

19Here we examined the transition from a high interest-rate steady state to a low interest-
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Figure 5: Impluse Response to Permanent Fall in Interest Rate
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It has been observed that during the credit and asset price booms in Japan
in the late 1980s and in southern Europe in the early 2000s, the aggregate
values of credit and assets grew faster than productive capacity. (See Hoshi
and Ito (2020) and Gopinath, Kalemi-Ozcan, Karabarbounis and Villegas-
Sanchez (2017)). In the macro-�nance literature, many authors have ob-
served that credit booms associated with asset price booms are often followed
by �nancial crises. (See for example, Reinhart and Rogo¤ (2008), Schularick
and Taylor (2012) and Jorda, Schularick and Taylor (2018).) These authors
consider such booms as being associated with excessive expansion of credit
and assets values. Our model provides a di¤erent perspective, even though
we do not deny the possibility of excessive assets values.
From this perspective, a persistently lower real interest rate leads to an

initial credit and asset value boom, but stagnation in the long run, not be-
cause the boom was excessive, but because the underlying growth rate of the
productive capacity declined.20

For the Mixed Equilibrium we have limited analytical results, and derive
our �ndings by numerical simulations:

Proposition 4 (Mixed Equilibrium)

A lower interest rate R can be associated with a lower steady state growth
rate G.

In Figure 6, we illustrate how nine endogenous variables depend on the
interest rate R in the range between 1 and 1:03 (between 0 and 3% net) in

rate one. The result is very di¤erent if the interest rate �uctuates deterministically in
medium run, say 5 year low followed by 5 year high. Then the borrowing capacity is
likely to expand more than the building price in proportion. In addition the net worth of
engineers increases. Hence, aggregate investment, external funds and output all tend to
expand with a fall in the interest rate in the medium run. Therefore, a permanent fall in
interest rate can sti�e growth in the long run, even though a fall in interest rate in the
medium run tends to be expansionary - as commonly observed.
The sequence of events described in Figure 5 may correspond better to southern Euro-

pean countries in the early 2000s than to Japan in late 1980s, insofar as the fall in their
interest rate was fast and considered to be permanent.
20Another, complementary, perspective to ours is that credit and asset price booms as-

sociated with lower interest rates tend to lead to greater misallocation of capital when the
domestic �nancial system is underdeveloped. See, for example, Aoki, Benigno and Kiy-
otaki (2007), Reis (2013), Gopinath, Kalemi-Ozcan, Karabarbounis and Villegas-Sanchez
(2017), and Asriyan, Martin, Vanasco and Van der Ghote (2020).
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steady state equilibrium. We choose the parameters so that the economy is
in the pure no-stopping region (P-Region) for R 2 [1:015; 1:03] and in the
mixed equilibrium region (M-Region) for R 2 [1; 1:015).

� share of past productivity in maintenance 0:9
� share of engineer in maintenance 0:09
� one minus depreciation rate 0:98
a productivity 1
f opportunity cost 0:2091
x investment cost per plant 6:127
� utility discount factor 0:92
�E probability of staying to be engineer 0:7
�S probability of saver to become engineer 0:1
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Figure 6: Lower real rate, credit horizons and stagnation.
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In the top-left panel of Figure 6, the wage rate is a decreasing function of
the interest rate because an engineer�s contribution to future output through
maintenance work is forward looking. In the top-middle panel, the di¤erence
between engineer�s borrowing capacity and building price increases with the
interest rate because the plant owner�s share of output has a shorter duration
than building. Notice that this e¤ect is smaller in the M-Region, with an
endogenous adjustment of the fraction of stopping plant (extensive margin)
and of the stopping time (intensive margin). In the top-right panel, the
economy�s growth rate is an increasing function of interest rate, albeit that
the sensitivity is weaker in the M-Region.
In the middle-left panel, the asymptotic plant productivity z�equals 1

in the P-Region and is a decreasing function of R in the M-Region. The
threshold plant productivity for continuing and stopping zy equals 1 (initial
productivity) in the M-Region (consistent with plant owners being indi¤erent
between stopping and continuing) and is a decreasing function of R in the P-
Region (consistent with plant owners gaining more indirectly from the lower
wage rate than hurting directly from the higher interest rate). In the middle-
middle panel, the number of periods before stopping (Tmax) is �nite and is
an increasing function of R for those who choose to stop in the M-Region.
In the P-Region, no-one stops and Tmax =1. In the middle-right panel, the
fraction of stopping plant is zero in the P-Region and is a decreasing function
of R in the M-Region.
In the bottom-left panel, we see that the net �nancial asset holdings

of foreigners is positive, i.e., domestic residents borrow from foreigners in
net terms in the steady state. This is consistent with the home economy
being growing and the foreign interest rate being lower than the subjective
interest rate. With a lower interest rate, domestic residents borrow more
from foreigners. In the bottom-middle panel, the welfare of a representative
engineer (who holds the average net worth of engineers) is an increasing
function of R in the P-Region, i.e., welfare is lower with lower R. In our
example, the welfare of a representative engineer withR = 1:015 is lower than
that of R = 1:03 by the equivalent of a 0:12% permanent fall in consumption.
We do not have comparable results for the M-Region, because one cannot
de�ne simply what is meant by a representative engineer. In the bottom-right
panel, the welfare of savers is an increasing function of R in the P-Region.
The e¤ect on savers is larger: their welfare with R = 1:015 is lower compared
to R = 1:03 by the equivalent of a 1:2% permanent fall in consumption.
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6 Extension: idiosyncratic uncertainty

In the model thus far, even though plant produces output deterministically,
we �nd that equilibrium plant dynamics emerge in the mixed equilibrium
where some plant owners hire insu¢ cient engineers to maintain plant pro-
ductivity and slowly exit. In this section, we further connect our theory to
the literature on plant dynamics by introducing idiosyncratic shocks to plant
productivity. We study how these shocks a¤ect plant owners�decisions on
maintenance and exit.
Let us modify the production technology (5) to:

plant of productivity z
h tools

�
!

8<:
y = az goods

� plant of productivity z0 = �z�h�

�h tools
;

where � is an idiosyncratic productivity shock, i.i.d. across plant and over
time. It follows a lognormal distribution whose mean is normalized to one:

log � � N(��
2

2
; �2).

The value of a unit of plant of productivity z at the end of a period is

V (z) = az +Max

�
q; max

h
[�wh+ �

R
EV (�z�h�)]

�
: (25)

Compared with the plant value without productivity uncertainty, the only
di¤erence is that the continuation value of the �rm is subject to the idiosyn-
cratic shock, �.
To illustrate the e¤ect of the idiosyncratic shock, we continue with the

numerical example in the previous sections (� = 0:9, � = 0:09, � = 0:98,
a = 1, f = 0:2091, R = 1:015, and w = 0:6497).
When the productivity shock has a small variance, the owner�s produc-

tivity maintenance decision is similar to that in a deterministic environment.
Figure 7 illustrates the maintenance decision, h, and the expected produc-
tivity in the following period, z0, when idiosyncratic shocks have a small
dispersion, � = 0:0001. In this case, there still exists a dichotomy between
those plants that the owners intend to exit and those that the owners intend
to continue. If current plant productivity z is below a critical value, zy, the
plant owner does not hire much maintenance service and most likely exits in
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Figure 7: Productivity maintenance with small idiosyncratic risk, � = 0:0001.
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random �nite number of periods but not immediately. If z is above zy, the
plant owner hires distinctively larger engineering service and continues oper-
ating until the plant dies exogenously, unless extremely unlucky idiosyncratic
shocks bring down the plant productivity below zy.
At z = zy, the plant owner has two distinct optimal levels of maintenance:

his expected value from maintenance has twin peaks. If he chooses the slow
exit strategy, he saves some maintenance costs but receives less pro�t from
future production. If he chooses to continue operating the plant for the long
haul, he pays more to maintain the plant and in return receives more pro�t
from future production. The maintenance input h and expected productivity
z0 increase discontinuously as current productivity z moves up across the
critical value zy, as the plant owner �nds it optimal to operate the plant for
the long haul.21

Figure 8 illustrates the plant owner�s maintenance decision, h, and pro-
ductivity distribution in the following period, z0, when the idiosyncratic
shocks are large, � = 0:02. In the �gure on realized productivity, z0, the
blue curve represents the expected productivity in the following period. The
red curves represent the realized productivity that are three standard devi-
ations above or below the expected value. With large productivity shocks,
the dichotomy between exiting and continuing is blurred: the plant owner�s
maintenance input is a continuous function of the current plant productiv-
ity z. This is because even when the plant owner would like to improve
productivity, a large negative idiosyncratic shock may still lead to a low pro-
ductivity. This smooths the plant owner�s expected payo¤ from maintenance
and makes it single-peaked.

7 Policy

When the competitive equilibrium is not e¢ cient, it is natural to ask whether
the government could improve welfare through taxes and subsidies. The
sole departure from the Arrow-Debreu model in our framework is the non-
exclusivity constraint: a saver who buys plant from an engineer (the creditor
who lends to the engineer against the plant) cannot prevent this engineer

21If we allow for heterogeneity of initial productivity, there is no mass of plant which
have productivity exactly equal to zy:
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Figure 8: Productivity maintenance with large idiosyncratic risk, � = 0:02.
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from working for another plant in future. In e¤ect, we are supposing it is
impossible to keep track of each engineer�s trading history.
However, because the plant is easy to locate, it may be possible for the

government to keep track of how much the plant owner buys the maintenance
services of engineers �even though government does not know the identity of
engineers. Suppose government can tax the payroll for engineers of each plant
owner at rate � , and use the tax revenue to subsidize engineers by s per unit
of investment. We ignore idiosyncratic shocks to the realized productivity
after maintenance and restrict our attention to the steady state of a Pure
Equilibrium with No Stopping (the parameters lie in Region P). We assume
the government�s budget is balanced:

�woH = sI = s(G� �)H.

wo is wage rate for plant owners, �woH is the payroll tax revenue, and
sI = s(G� �)H is the investment subsidy.
Because plant owners equate the marginal contribution of engineers�ex-

pertise to the wage rate (including the payroll tax), we have

wo =
��

R� ��a; (26)

using (14) with ht = zt = 1 in the steady state. Notice that the payroll tax
does not a¤ect the wage cost to the plant owner, but reduces the wage rate
w = (1� �)wo for engineers. Together, we get

s = �
wo

G� �: (27)

The price of new plant is unchanged at

b =
1

R
V (1) =

a� wo
R� � :

The budget constraint of the agent becomes

ct + (x+ q � b� s)it +
dt+1
R

= wht + dt.

Solving for the individuals�choices and aggregating across agents, we get

(x+ q � b� s)Ht+1 = ��E [w + �(x+ q � b� s)]Ht + ��SDt;
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Dt+1

R
= �(1� �E) [w + �(x+ q � b� s)]Ht + �(1� �S)Dt.

As in (22), the steady state growth rate becomes

G = �RE
�
�E +

�S(1� �E)R�
G� (1� �S)R�

�
; (28)

where the rate of return for the engineer to invest with maximum leverage is

RE =
w + �(x+ q � b� s)

x+ q � b� s

=
(1� �)wo

x+ q � b� � wo

G��
+ �;

using (26; 27) . Then we learn that the rate of return from investment changes
with the tax and subsidy in the neighborhood of � = 0 as

dRE

d�
=

w

x+ q � b

�
�1 + w

(G� �)(x+ q � b)

�
=

w

(x+ q � b)(G� �)

��
w

x+ q � b + �
�
�G

�
=

w

(x+ q � b)(G� �)(R
E �G): (29)

Because the growth rate of the economy G is the weighted average of the
growth rate of engineers, �RE; and savers, �R; where RE > R in our econ-
omy, we learn G < �RE < RE and

dRE

d�
> 0:

The equilibrium growth rate in (28) solves

�RE =
G

�E + �S(1��E)�R
G�(1��S)�R

.

Since the RHS is an increasing function of G, we have

dG

d�
> 0:
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Thus the introduction of this tax and subsidy scheme increases steady state
investment, and therefore growth, relative to the laissez-faire.
To get a handle on the overall e¤ect of this policy intervention on the

welfare of the domestic economy, we de�ne a measure of social welfare as the
population-weighted average of the expected discounted utilities of engineers
and savers. The point is that we need to account for any short-term losses
(as well as gains) at the time the policy is introduced, in addition to the
longer-term bene�ts of higher growth. We show in Appendix B that, by this
measure, social welfare goes up.
Why? In our framework, because of the non-exclusivity constraint (an

individual engineer can work for any plant owner without getting traced by
her creditors ex post), the engineers each face a borrowing constraint ex ante
at the time of investment. By taxing the payroll of the plant owners, the
government in e¤ect acts as a collective creditor �the receipts from which,
when fed back to the engineers, subsidize investment. It is as if, through
the government intervention, the engineers as a group promise to pay back
a portion of each others�debt obligations.22 Crucial to the e¤ectiveness of
this policy is the government�s ability to keep an eye on all the various units
of plant (presumed to be �xed in buildings), to tax the owners�payments
to engineers, in a context where the identities of the engineers themselves
cannot be traced.

22In our model, the burden of the payroll tax is entirely borne by the engineers, because
plant owners face unchanged wage costs and plant prices. In this sense, it is the most
favorite case for the tax-subsidy scheme to boost the growth rate. In more general model,
the tax burden would be split between the engineers and plant owners.
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9 Appendix

9.1 Appendix A

In the main text, we assume that output is proportional to plant productivity.
More generally, suppose that gross output by of each unit of plant depends
upon the plant productivity bz and unskilled labor l as

by = babz�1l�2 ; where �1 + �2 � 1:
Suppose there is a competitive labor market for unskilled workers at wage
rate wl: Then we can de�ne the gross pro�t per plant as

y = Max
l
(babz�1l�2 � wll)

= az; (30)

where

z = bz �1
1��2 ;

a = (1� �2)
�
�2
wl

� �2
1��2 ba 1

1��2 :

If the supply of unskilled labor is perfectly elastic, we can treat a as exogenous
�this is the case of our model. (Otherwise, we need to take into account the
general equilibrium e¤ect on a through wl:)
If plant productivity depends upon initial plant productivity and human

capital of engineer h as

bz0 = bz�hb�; where � + b� � 1:
we can rewrite this as

z0 = z�h�; where � =
�1

1� �2
b�: (31)

Thus we obtain the formulation in the text: (30; 31) :
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9.2 Appendix B

9.2.1 Individual Choice

An individual agent takes wage, building price, plant price and interest rate
$ = fw; q; b; Rg as given. An engineer chooses consumption, gross invest-
ment on tools and �nancial assets (c; h0; d0) as a function of net worth n to
maximize V E(n;w; b; R);

V E(n;$) = Max
c;h0;d0�0

�
ln c+ �

�
�EV E(n0;$) + (1� �E)V S(n0;$)

�	
; (32)

subject to the budget constraint

c+ (x+ q � b)h0 + d
0

R
= n; and n0 = [w + � (x+ q � b)]h0 + d0:

De�ne the leveraged rate of return on investment as

RE =
w + � (x+ q � b)

x+ q � b :

The �rst order conditions of the engineer�s optimization problem are

1

c
� RE

�

c0
; where = holds if h0 > 0;

1

c
� R

�

c0
; where = holds if d0 > 0:

Thus if RE > R; we have d0 = 0; (12a; 12b) and

n0 = RE�n: (33)

A saver chooses consumption and �nancial assets (c; d0) as a function of net
worth n to maximize

V S(n;$) = Max
c;d0�0

�
ln c+ �

�
�SV E(n0;$) + (1� �S)V S(n0;$)

�	
(34)

subject to the budget constraint

c+
d0

R
= n; and n0 = d0:
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Using the �rst order condition

1

c
= R

�

c0
;

we get (13a; 13b) and
n0 = R�n: (35)

From these, we conjecture that the value functions of the engineer and
the saver are given by

V E(n;$) = �E ($) +
1

1� � lnn; (36a)

V S(n;$) = �S ($) +
1

1� � lnn: (36b)

From (12b; 13b; 33; 35) ; the conjecture is veri�ed if and only if

�E ($) = ��E�E ($) + �(1� �E)�S ($) + �

1� � lnR
E ($) + ln(1� �);

�S ($) = ��S�E ($) + �(1� �S)�S ($) + �

1� � lnR + ln(1� �);

when there is no change of $ = fw; q; b; Rg in the future. Then we get

�E ($) = �
(1� � + ��S) ln

�
RE ($)

�
+ �(1� �E) lnR

(1� �)2(1 + ��S � ��E) +
ln(1� �)
1� � ; (37)

�S ($) = �
��S ln

�
RE ($)

�
+ (1� ��E) lnR

(1� �)2(1 + ��S � ��E) +
ln(1� �)
1� � : (38)

The plant owner/saver�s choice is given by value function (6) in the main
text. The �rst order condition for those who choose to continue operating
the plant this period is

w � �
z0

h

�

R
V 0 (z0; &) ; where = holds if h > 0; (39)

V 0(z; &) = a+ �
z0

z

�

R
V 0 (z0; &) : (40)
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where & = fw; q;Rg is aggregate state variables that the plant owner takes
as given. From these, if ht; ht+1; : : : > 0; we have

w =
�

R

�
�
zt+1
ht
a+ �

zt+1
ht
�
zt+2
zt+1

�

R
V 0 (zt+2; &)

�
=

�

R
a�
zt+1
ht

+

�
�

R

�2
a�
zt+1
ht
�
zt+2
zt+1

+

�
�

R

�3
a�
zt+1
ht
�
zt+2
zt+1

�
zt+3
zt+2

+ : : :

This is (14) in the text. Multiplying through by ht; and simplifying, we get
(15) in the text. Then we get

V (z; &)

= (yt � wht) +
�

R
(yt+1 � wht+1) +

�2

R2
(yt+2 � wht+2) + : : :

= yt +
�

R
yt+1(1� �) +

�2

R2
yt+2(1� � � ��) + : : :

This implies (16) in the text.
If ht; ht+1 > 0; we can use (39; 40) to derive an alternative �rst order

condition as

w =
�

R
�
zt+1
ht
a+

�

R
w�
zt+1
ht

� zt+2
zt+1

� zt+2
ht+1

=
�

R
�
zt+1
ht
a+

�

R
�
ht+1
ht
w: (41)

Note that the second term on the RHS equals the discounted wage rate
times the marginal rate of substitution between ht and ht+1 to keep zt+2
constant. Thus equation (41) says the marginal cost of increasing ht by one
unit equals the discounted value of marginal bene�t �the sum of additional
output through zt+1 and saving of wage bill, keeping zt+2 constant.
In the case of constant-returns-to-scale maintenance technology, �+� = 1;

we conjecture
S1(z; &) = aA1z;

ST (z; &) = aAT z +
�T+1

RT
q:
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For plant which continues forever, we conjecture and verify that

ht+1
ht

=
zt+1
zt

=

�
ht
zt

�1��
= g > 1:

Then from (41), we get

w =
�
R
� zt+1
ht
a

1� �
R
�g
=
� (1� �) a
R� ��g g

� �
1�� : (42)

Then from (6) ; we learn that the Bellman equation for continuing plant holds
if and only if

A1 =
R

R� ��g : (43)

For stopping plant in �nite time, (39) implies that

w = (1� �)
�
zT

hT

��
�

R
aAT�1; (44)

where zT and hT are the productivity and tools of plant when it stops in T
periods. Then from (6) ; we learn that the Bellman equation for continuing
plant holds if and only if

AT = 1 +
�

R
�AT�1

�
1� �
w

�

R
aAT�1

� 1��
�

= 1 +
�

R
�gAT�1; (45)

for T � 1; using (42), and A0 = 1:
When the maintenance technology is decreasing returns to scale, �+ � <

1; we conjecture that the productivity of plant that continues forever will
converge to a steady state productivity

z = z�:

Thus the amount of tools employed converges to

h = h� = (z�)
1��
� :
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We also conjecture that

S1(z; &) = az�U1
� z
z�
;R
�
;

ST (z; &) = az�UT
� z
z�
;R
�
+
�T+1

RT
q:

Using (41) for plant to continue forever in steady state, we get

w =
��a

R� �� (z
�)�

1����
� : (46)

De�ne ez = z
z� : Using the relationship h =

�
z0

z�

� 1
� , we get

wh

az�
=

��

R� ��

� ez0ez�
� 1

�

:

Thus the guess is veri�ed if U1(ez) and UT (ez) solve
U1(ez;R) =Maxez0 ez � ��

R� ��

� ez0ez�
� 1

�

+
�

R
U1(ez0;R); (47)

UT (ez;R) =Maxez0 ez � ��

R� ��

� ez0ez�
� 1

�

+
�

R
UT�1(ez0;R); (48)

for T � 1 and U0(ez;R) = ez:
9.2.2 Market Clearing

In order to describe the aggregate economy, let Kt (�) be the aggregate num-
ber of age-� plant which continues forever at date t: Suppose some owners
choose to operate new plant for T periods and then stop. Let LT��t (�) be
aggregate number of age-� plant which stops in T � � periods at date t: A
plant that stops in 0 period stops at the end of the period, after production.
Then the laws of motion for Kt(�) and LT��t (�) are

Kt(�) = �Kt�1(� � 1);
LT��t (�) = �LT��+1t�1 (� � 1) ; for � = 1; 2; : : : ; T: (49)
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Let It be the aggregate investment at date t. We also have

It = Kt+1(0) + L
T
t+1 (0) ; (50)

We also know that

b =
1

R
S1(1; &) =

1

R
ST (1; &) in M-Region, (51)

b =
1

R
S1(1; &) and LTt (0) = 0 in P-Region.

Let zT��t (�) be the productivity of age-� plant which stops in T�� periods
at date t. Let hT��t (�) be the number of tools employed by one unit of age-�
plant to stop in T � � periods. Then the aggregate output and demand for
tools (and engineers) are given by

Yt =
1X
�=0

az1t (�)Kt(�) +
TX
�=0

azT��t (�)LT��t (�) ; (52)

Ht =
1X
�=0

h1t (�)Kt(�) +
TX
�=0

hT��t (�)LT��t (�) : (53)

Aggregate domestic asset holding at the beginning of period t equals the sum
of gross pro�t and the value of plant from the last period minus net foreign
debt:

Dt = Yt � wHt �D�
t

+
1

R

" 1X
�=1

V (z (�))Kt(�) +
TX
�=1

ST��
�
zT��t (�)

�
LT��t (�)

#
: (54)

The goods market clearing condition is given by

Ct + (x+ q)It +D
�
t �

D�
t+1

R
= Yt: (55)

Output equals consumption, investment and net export (which equals net
debt repayment to foreigners). One of the market clearing conditions for
output, tools and �nancial asset is not independent by Walras�Law.
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9.2.3 Pure Equilibrium with No Stopping

When no plant owner stops his plant, the total number of continuing plant
equals the total number of tools,

1X
�=0

Kt(�) = Ht;

and the ratio of tools to plant remains at the initial ratio

h1t (�) = 1; for all � and t:

The plant productivity remains at the initial level as

z1t (�) =
�
z1t�1 (� � 1)

�� �
h1t�1 (� � 1)

��
= 1; for all � and t:

Thus the plant growth rate g = 1 with constant-returns-to-scale maintenance
technology, steady state productivity z� = 1 with decreasing-returns-to-scale
maintenance technology, and

w =
��a

R� �� = w(R); (56a)

b =
a� w
R� � =

a

R� �
R� � (� + �)
R� �� = b(R): (56b)

In order to show that non-stopping is an optimal strategy for the plant
owner, we need to check

b(R) >
1

R
Max
T
ST (1; &(R)) =

1

R
Max
T
[aUT (1; &(R)) +

�T+1

RT
q(R)]; (57)

for any �nite T; where UT (1;R) is given by (48) with decreasing returns to
scale and equals AT with the constant returns to scale maintenance technol-
ogy, and &(R) = fw(R); q(R); Rg takes into consideration the dependence of
wage rate and building price on interest rate R:
Then from (52; 54), we have

Yt = aHt;

Dt = (a� w)Ht + b�Ht �D�
t : (58)

We also have

Ct = (1� �)[(w + �(x+ q � b))Ht +Dt]: (59)
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From (21a; 55), we obtain the transitions:

(x+ q � b)Ht+1 = �
�
�E(w + �(x+ q � b))Ht + �SDt

	
; (60a)

D�
t+1

R
= �aHt + Ct + (x+ q)(Ht+1 � �Ht) +D�

t : (60b)

(w; q; b) is a function of R and the other parameters, and (Dt; Ct) is a function
of (Ht; D�

t ) and R (through w and b). Then, the perfect foresight equilib-
rium (aside from a unanticipated permanent shock on R) is characterized
recursively by

�
Ht+1; D

�
t+1

�
as a function of (Ht; D�

t ; R) :
In steady state, we can use (22) to �nd steady-state growth rate where

RE =
w (R) + � [x+ q(R)� b (R)]

x+ q(R)� b (R) :

9.2.4 Mixed Equilibrium

For the mixed equilibrium, we only describe the steady state equilibrium.

Mixed equilibrium under constant returns to scale maintenance
technology From (42; 43) ; we have

w =
� (1� �) a
R� ��g g

� �
1�� = w(g;R)

b =
a

R� ��g = b(g;R):

Find
�
A1; A2; A3; : : : ; AT

	
to solve (45) with A0 = 1 as a function of (g;R):

Find g to solve the indi¤erence condition:

b(g;R) =
1

R
Max
�nite T

�
aAT (g;R) +

�T+1

RT
q(R)

�
: (61)

Equilibrium stopping time is the solution to equation (61) for this equilibrium
g:
Then we can �nd the steady state growth rate from (22) by using

RE =
w(g;R) + �[x+ q(R)� b(g;R)]

x+ q (R)� b(g;R) :
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For plant that continues forever, because z1(0) = 1; we get z1(�) = g� and

h1(�) =

�
z1(� + 1)

(z1(�))�

� 1
1��

= g
1

1��+� :

For those stopping in T periods, we get from the �rst order condition (44)

hT�� (�)

zT�� (�)
=

�
(1� �)�
w=a

AT���1
� 1
�

=

�
AT���1

A1

� 1
�

g
1

1�� ; (62)

for � = 0; 1; 2; : : : ; T�1: Because zT (0) = 1; we obtain fhT�� (�); zT���1 (� + 1)g
which satis�es (62) and

zT���1 (� + 1) =

�
AT���1

A1

� 1��
�

gzT�� (�) ;

for � = 0; 1; 2; : : : ; T � 1:

Mixed equilibrium under decreasing returns to scale maintenance
technology With decreasing returns, from (46), we get

w =
��a

R� �� (z
�)�

1����
� = w(z�;R):

For plant to continue for ever, we have from (47):

U1(ez) = Maxez0
"ez � ��

R� ��

� ez0ez�
� 1

�

+
�

R
U1(ez0)#

ez0 = argMaxez0
"ez � ��

R� ��

� ez0ez�
� 1

�

+
�

R
U1(ez0)# � '1(ez)

Let ez1(�) and eh1(�) be productivity and number of tools of age-� plant
which continues forever relative to the steady state. The we have

ez1(�) = ('1)� (ez1(0)) = ('1)� � 1
z�

�
eh1(�) =

�ez1(� + 1)
(ez1(�))�

� 1
�

:
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For plant to stop in T periods, we have from (48):

UT (ez) = Maxez0
"ez � ��

R� ��

� ez0ez�
� 1

�

+
�

R
UT�1(ez0)#

ez0 = argMaxez0
"ez � ��

R� ��

� ez0ez�
� 1

�

+
�

R
UT�1(ez0)# � 'T (ez) ,

where U0(ez) = ez: Let ezT�� (�) and ehT�� (�) be productivity and tools of age-�
plant which stops in T �� periods relative to the steady state. Then we have

ezT�� (�) = 'T � 'T�1 � : : : � 'T��+1
�
1

z�

�
ehT�� (�) =

�ezT���1(� + 1)
(ezT�� (�))�

� 1
�

:

We then �nd z� to satisfy the indi¤erence condition

az�U1
�
1

z�

�
= Max

�nite T

�
az�UT

�
1

z�

�
+
�T+1

RT
q(R)

�
(63a)

= Rb (z�;R) (63b)

This common value under equilibrium z� is the engineer�s borrowing capacity.
Equilibrium stopping time equals argMax

h
az�UT

�
1
z�

�
+ �T+1

RT
q(R)

i
:

We can �nd the steady state growth rate from (22) with

RE =
w(z�;R) + � [x+ q(R)� b (z�;R)]

x+ q(R)� b (z�;R) = RE (z�;R) :

9.2.5 Tools and goods market clearing in mixed equilibrium

In the steady state, we observe

G =
Ht+1
Ht

=
Kt+1(�)

Kt (�)
=
LT��t+1 (�)

LT��t (�)
:

For both constant and decreasing returns-to-scale maintenance technology,
we have aggregate output under mixed equilibrium as (52) : Using (49) ; we
obtain

Yt =

1X
�=0

az1(�)
��

G�
Kt (0) +

TX
�=0

azT�� (�)
��

G�
LTt (0) :
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Similarly, aggregate demand for tools (53) becomes

Ht =
1X
�=0

h1(�)
��

G�
Kt (0) +

TX
�=0

hT�� (�)
��

G�
LTt (0) : (64)

Because It = (G� �)Ht = Kt+1 (0) + L
T
t+1 (0) ; dividing (64) by Ht; we �nd

in the steady state:

1 =
1X
�=0

h1(�)
��

G�+1
(G� �)ik +

TX
�=0

hT�� (�)
��

G�+1
(G� �)(1� ik); (65)

where ik � Kt+1(0)
It

2 (0; 1) : We can solve for ik 2 (0; 1) to satisfy (65) :
Similarly, output per tool is

Yt
Ht
=

1X
�=0

az1(�)
��

G�+1
(G� �)ik +

TX
�=0

azT�� (�)
��

G�+1
(G� �)(1� ik): (66)

Aggregate domestic �nancial asset holding (54) under constant-returns-
to-scale maintenance technology is given by

Dt = Yt � wHt �D�
t

+
1X
�=1

a

R� ��g
��

G�
Kt (0) +

TX
�=1

aAT��zT�� (�)
��

G�
LTt (0) ;

or
Dt

Ht
=
Yt
Ht
� w � d�t

+

1X
�=1

a

R� ��g
��

G�+1
(G� �)ik +

TX
�=1

aAT��zT�� (�)
��

G�+1
(G� �)(1� ik);

where d�t = D
�
t =Ht:

Similarly, domestic �nancial asset holding per tool under decreasing re-
turns to scale is

Dt

Ht
=
Yt
Ht
� w � d�t

+
1

R

" 1X
�=1

az�U (ez1(�)) ��

G�+1
(G� �)ik +

TX
�=1

az�U
�ezT�� (�)� ��

G�+1
(G� �)(1� ik)

#
:
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We also �nd

Ct
Ht
= (1� �)

�
w + �(x+ q � b) + Dt

Ht

�
:

From (55) ;in steady state,

Yt
Ht
=
Ct
Ht
+ (x+ q)(G� �) + d� � G

R
d�

or �
1� G

R

�
d� =

Yt
Ht
� Ct
Ht
� (x+ q)(G� �): (67)

From this, we �nd the ratio of net foreign debt to tools in steady state.

9.3 Proof of Proposition 1

We derive a su¢ cient condition for the existence of a pure non-stopping
equilibrium in P-region:

V (1) =
R

R� �a
R� (� + �)�
R� ��

� a

�
1� ��

R

� �
1���� 1� � � �

1� � +
a�R

(1� �) (R� ��) +
�f

R� �: (68)

We consider a su¢ cient condition of (57)

b(R) >
1

R
Max
T
ST (1;w(R); R);

for the case of decreasing-returns-to-scale maintenance technology. Consider
an optimal stopping strategy where the plant owner stops in T periods in
the RHS as�

zT (0) > zT�1 (1) > : : : > z0 (T )
	
= fz0 > z1 > : : : > zTg

such that z0 = 1 and zT � z = f=a. Associated with fztg, there is a sequence
of human capital demand ht =

�
zt+1
z�t

�1=�
. Let v(hjz) denote the �ow payo¤

of the owner of a unit of plant with productivity z who hires h units of tools.

v(hjz) = az � wh:
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Because optimal stopping strategy zt > zt+1 is better than staying at zt with

h = z
1��
�

t ; we get

v(htjzt) +
�

R
V (zt+1) � v

�
z
1��
�

t jzt
�
+
�

R
V (zt); or

V (zt)� V (zt+1) �
R

�

�
v(htjzt)� v

�
z
1��
�

t jzt
��
: (69)

Let �(zjzt) � v
��
z=z�t

� 1
�

��� zt� = azt � w �z=z�t � 1� .
v(htjzt)� v(z

1��
�

t jzt) =
Z zt

zt+1

��0(zjzt)dz;

where

��0(zjzt) =
w

�

z
1
�
�1

z
�
�

t

:

Notice that because
@

@zt
[��0(zjzt)] < 0;

we have

��0(zjzt) =
w

�

z
1
�
�1

z
�
�

t

� w

�
z
1��
�
�1 = ��0(zjz); for zt+1 � z � zt:

Then,

v(htjzt)� v(z
1��
�

t jzt) =
Z zt

zt+1

��0(zjzt)dz �
Z zt

zt+1

��0(zjz)dz:

Combining this inequality with inequality (69), we have

V (zt)� V (zt+1) �
R

�

�
v(htjzt)� v

�
z
1��
�

t jzt
��

� R

�

Z zt

zt+1

w

�
z
1��
�
�1dz;

V (1)� V (zT ) =
T�1X
t=0

[V (zt)� V (zt+1)] �
R

�

Z 1

zT

w

�
z
1��
�
�1dz;
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where we use z1 = 1 in the last inequality. Because

V (zT ) = azT + �q

and
R

�

Z 1

zT

w

�
z
1��
�
�1dz =

Rw

�(1� �)

�
1� z

1��
�

T

�
;

we have

V (1) � azT + �q +
Rw

�(1� �)

�
1� z

1��
�

T

�
� RHS (zT ) ; (70)

if we are not in region P , i.e., some plant owners stop their plant.
To derive a su¢ cient condition for Region P , we use the fact that equi-

librium wage in this region satis�es

w

a
=

��

R� ��:

Then RHS of (70) reaches the maximum when

zT =

�
1� ��

R

� �
1����

RHS = a

�
1� ��

R

� �
1���� 1� � � �

1� � +
a�R

(1� �) (R� ��) + �q:

A su¢ cient condition for the economy to be in Region P is

V (1) =
aR

R� �
R� (� + �)�
R� ��

� a
�
1� ��

R

� �
1���� 1� � � �

1� � +
a�R

(1� �) (R� ��) + �
f

R� �:

This yields an upper bound on f=a:

f

a
� R (1� � � �)

�(1� �)

"
1� R� �

R

�
1� ��

R

� �
1����

#
� z(f=a):

z(f=a) denotes an upper bound for f=a as a su¢ cient condition for the
existence of a pure equilibrium with no stopping.
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9.4 Proof of Proposition 3

We �rst derive a lower bound on f=a such that the growth rate is an in-
creasing function of real interest rate in state equilibrium. From (22) ; we
learn

0 = (G� �E�RE)[G� (1� �S)�R]� �S(1� �E)�2RRE

=

�
G� �E�

�
�+

w

x+ q � b

��
[G� (1� �S)�R]� �S(1� �E)�2R

�
�+

w

x+ q � b

�
� 	

�
G;R;

w

x+ q � b

�
: (71)

Because we assume �R < 1; we restrict our attention the case

G > (1� �S)�R:

Then we learn

G � �E�
�
�+

w

x+ q � b

�
:

Then we learn
@

@G
	

�
G;R;

w

x+ q � b

�
> 0;

in the neighborhood of the equilibrium G: We can easily check

@

@R
	

�
G;R;

w

x� b

�
< 0;

@

@
�

w
x+q�b

�	�G;R; w

x+ q � b

�
< 0:

Thus a su¢ cient condition for

dG

dR
= �

@
@G
	
�
G;R; w

x+q�b

�
@
@R
	
�
G;R; w

x+q�b

�
+ @

@( w
x+q�b)

	
�
G;R; w

x+q�b

�
d
dR

�
w

x+q�b

� > 0
is

0 <
d

dR

�
w

x+ q � b

�
=

w

(x+ q � b)2(R� �)2(R� ��)
�
� (1� �) f � (R� �)2x� � (1� � � �) a

�
;
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or
� (1� �) f > (R� �)2x+ � (1� � � �) a: (72)

If �S = 0; then from (22), we have G = �E�
�
�+ w

x+q�b

�
; or

x = F (R;G) =
a� f � w
R� � +

��E

G� ���Ew

=
a� f
R� � �

G� �R�E
(R� �) (G� ���E)w:

Because FG < 0, dG=dR > 0 if and only if FR > 0. And because

(R� �)FR = �
a� f � w
R� � +

G� �R�E
G� ���E

a��

(R� ��)2 ;

dG=dR > 0 i¤

f=a >
R� (� + �)�
R� �� � G� �R�

E

G� ���E
�� (R� �)
(R� ��)2 � z(f=a)

when �S = 0:
Next, for the growth-enhancing e¤ect of interest rate to be in Region P ,

we need
z(f=a)�z(f=a) > 0

or

z(f=a)�z(f=a)
R� � =

R (1� � � �)� �(1� �)(� + �)
�(1� �) (R� ��)

� 1� � � �
�(1� �)

�
1� ��

R

� �
1����

+
G� �R�E
G� ���E

��

(R� ��)2 > 0:

Suppose both R and � are close to 1,

z(f=a)�z(f=a)
R� � � 1� � � � � (1� �)(� + �)

(1� �)2 � 1� � � �
(1� �) (1� �)

�
1���� +

�

(1� �)2

=
1� � � �
1� �

h
1� (1� �)

�
1����

i
> 0:
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This proves that for any f=a, there exists an open set of interest rates and
depreciation rates, both of which are close to 1, where we have the property
that the growth rate is an increasing function of the interest rate in Region
P .
To examine the e¤ect of an unanticipated fall in real interest rate on

welfare in the pure non-stopping region, we use (36a; 36b; 37; 38) : Continue
to assume �S = 0: Then we have

dV E

dR
=

1

1� �
d

dR
(lnnE)

+
�

(1� �)(1� ��E)
d

dR

�
ln

�
w + �(x+ q � b)

x+ q � b

��
+

�2(1� �E)
(1� �)2(1� ��E)

d

dR
lnR: (73)

From (56a; 56b) ; we have

dw

dR
= � w

R� �� ;

db

dR
=

1

R� �

�
w

R� �� � b
�
:

Then we get

d

dR
ln [w + �(x+ q � b)] = 1

w + �(x+ q � b)
1

(R� �)2

�
a� f � R2 � �2�

(R� ��)2�a
�
;

d

dR
ln

�
�+

w

x+ q � b

�
=

w

[w + �(x+ q � b)](x+ q � b)(R� �)2(R� ��)2
�
�
��a� �(1� �)(a� f)� (R� �)2x

�
:

When �S = 0; nE = [w + �(x+ q � b)]h: Then from (73) ; we have

(1� �)(1� ��E)(R� �)2(R� ��)2 [w + �(x+ q � b)] dV
E

dR
=�

= (1� ��E)
�
(R� ��)2(a� f)� (R2 � �2�)�a

�
+

�a�

x+ q � b
�
��a� �(1� �)(a� f)� (R� �)2x

�
+
�2(1� �E)
1� �

(R� �)(R� ��)
R

f(R� ��) [(R� �)x� (a� f)] +R�ag:
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Then we can �nd an open set of the P-Region in which dV E

dR
> 0 following an

anticipated change of R:
When �S = 0; we know (36b; 36b) that

(1� �)V S =
�

1� � lnR + lnn
S + constant, where

nS / (a� w + �b)H �D�:

De�ne

l� =
D�

(a� w + �b)H
as the leverage rate of this country. Then

(1� �) dV
S

dR
=

�

1� �
1

R
+

1

1� l�
Rw � �(R� ��)b

(R� �)(R� ��)(a� w + �b) ;

or

dV S

dR
(1� �)2 (1� l�) (R� �)(R� ��)(a� w + �b)=a

= � (1� l�) [R� � (� + �)] + �(1� �)
�
R2 � �2�

�
� � (R� ��)2

(R� �)(R� ��)

Then we can �nd an open set of parameters in P-Region in which dV S

dR
> 0:

Therefore, we can �nd an open subset of the P-Region, all agents is strictly
worse o¤ immediately after an unexpected fall in the real interest rate.

9.4.1 Welfare e¤ect of policy

From (36a; 36b; 37; 38) ; we learn that the welfare of a continuing engineer,
retiring engineer, new engineer, and continuing saver are

V EE = �
(1� � + ��S) lnRE + �(1� �E) lnR

(1� �)2(1 + ��S � ��E) +
ln f[w + � (x+ q � b� s)]hg

1� � + constant

V ES = �
��S lnRE + (1� ��E) lnR
(1� �)2(1 + ��S � ��E) +

ln f[w + � (x+ q � b� s)]hg
1� � + constant

V SE = �
(1� � + ��S) lnRE + �(1� �E) lnR

(1� �)2(1 + ��S � ��E) +
ln d

1� � + constant

V SS = �
��S lnRE + (1� ��E) lnR
(1� �)2(1 + ��S � ��E) +

ln d

1� � + constant;
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where h is the number of tools and d is �nancial asset held from the last
period. Notice that government tax-subsidy does not a¤ect the value of
plant b and thus it does not a¤ect d: From (26; 27; 29) ; we see that in the
neighborhood of � = 0,

d

d�
lnRE =

w

w + �(x+ q � b) �
RE �G
G� � ;

d

d�
ln [w + � (x+ q � b� s)] = � w

w + �(x+ q � b) �
G

G� �:

In steady state, we learn that the fractions of population of engineers and
savers, (mE;mS), satisfy

�SmS = (1� �E)mE;

where the LHS is the �ow of savers to become engineers and the RHS is the
�ow of retiring engineers. Thus

mE =
�S

�S + 1� �E ; and mS =
1� �E

�S + 1� �E :

We consider a welfare measure as the population-weighted average of the
welfare of each type of agents:

V = mE

�
�EV EE + (1� �E)V ES

�
+mS

�
�SV SE + (1� �S)V SS

�
:

Using the above expressions, we learn

V =
�S�E + (1� �E)�S
�S + 1� �E +

�S ln[w + �(x+ q � b)]
�S + 1� �E + constant

=
�S

(�S + 1� �E)(1� �)2
�
� lnRE + (1� �) ln[w + �(x+ q � b)]

	
+ constant:

Therefore the e¤ect of a tax and subsidy on the social welfare is

dV

d�
=

�S

(�S + 1� �E)(1� �)2
w

w + �(x+ q � b)

�
�
RE �G
G� � � (1� �) G

G� �

�
=

�S

(�S + 1� �E)(1� �)2
w

[w + �(x+ q � b)](G� �)(�R
E �G)

> 0:
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The last inequality is obtained because the growth rate of economy is the
weighted average of growth rate of engineers �RE and savers �R and RE > R
in our economy.
Individually, if �S is close to zero, we learn

dV EE

d�
> 0;

dV ES

d�
< 0;

dV SE

d�
> 0;

dV SS

d�
> 0:

For the continuing engineer, because the welfare gain from the higher rates
of return dominates the loss from the lower new worth, welfare increases,
dV EE

d�
> 0. For the retiring engineer, the loss from lower net worth dominates

the gain from the higher rates of return when she becomes an engineer in the
future, and thus welfare decreases, dV

ES

d�
< 0. For those who were the savers

in the previous period, there is no capital loss and only gains from the higher
rates of return, and welfare increases, dV

SE

d�
; dV

SS

d�
> 0:

9.5 Calibration strategy

We choose the following parameter values, �, �, �, �, �E and �S. We nor-
malize the productivity of plant productivity a to be 1.
We solve for f such that the economy is at the boundary between Region

P and Region M at R = 1:015. We design an algorithm to solve for the
in�mum of the set of f for which a plant owner stops in a �nite number of
periods.
Suppose the plant owner stops in T period at a particular value of f . Then

St(1; f; w;R) as a function of t reaches its peak at T . De�ne a sequence of
ft such that at f = ft, for z� = 1:

St+1(1; ft; w;R) = S
t(1; ft; w;R):

Intuitively, ft tracks the movement in the peak as we vary f . If f = ft, the
peak is either t or t + 1. As t goes to in�nity, the peak shifts to in�nity.
Because

St+1(1; a; w; r) = U t+1 (1;R) +
�t+1

Rt
q

and

St(1; a; w; r) = U t (1;R) +
�t

Rt�1
q;

we have

ft =
Rt

�t
�
U t+1 (1;R)� U t (1;R)

�
:
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The calibrated value of f is equal to inft=1;2;:::ft, which we approximate
by mint=1;2;:::;T ft with T large enough. For any value of f strictly above
inft=1;2;:::ft, there must exist a �nite optimal stopping time. For any value of
f strictly below inft=1;2;:::ft, there cannot exist a �nite stopping time.
After we calibrate the value of f , we solve for x to target a growth rate

of 0:5% at gross interest rate R = 1:015.

x =
a� f � w
R� � +

��

G� ���w;

where w = ��
R���a and

� = �E + �S
�R(1� �E)

G� �R(1� �S) :

60


