For transverse loading of the same composite the components are now in an iso-stress situation and the total transverse strain is just the sum of the fiber strain and matrix strain. |
||||||||||||||||||||||
For the iso-stress case,
the strains are linearly distributed between the components so that: |
![]() |
![]() |
||||||||||||||||||||
From: McMahon and Graham, :"The Bicycle and the Walkman," Merion (1992) |
||||||||||||||||||||||
![]() |
||||||||||||||||||||||
The lower diagram shows how the longitudinal and transverse values of the Composite Young's modulus depends on the fiber volume fraction. In a realistic material only volume fractions between 5% and 80% are of use. |
||||||||||||||||||||||
|
|
|
|
|||||||||||||||||||