
(MAT 313 / PHI 323) Category Theory
Homework and Notes for Chapter 5.

The homework assignment will be listed here.

1 Lecture notes

Theorem 1. In a functor category, limits can be computed pointwise. More
precisely, let S : J // XP be a functor such that each Ep ◦ S has a limit
(Lp, τp) in X. Then there is a unique extension of L to a functor from P
to X such that p 7→ τp is a natural transformation τ : ∆L ⇒ S, and this τ
makes (L, τ) a limit of S in XP .

Proof. Given f : p //q in P , we need to define an arrow Lf : Lp //Lq, and
then check that this definition makes L a functor. Recall that [f ] : Ep ⇒ Eq
is a natural transformation. By assumption (Lp, τp) is the limit of the functor
EpS. That means that τp : ∆(Lp) ⇒ EpS is a natural transformation. In
particular, for u : j // k in J , we have EpSu ◦ τp,j = τp,k. Thus, the two end
triangles in the following diagram commute:
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The bottom parallelogram also commutes since [f ] is a natural transforma-
tion. It follows that the arrows αj ≡ [f ]Sj ◦ τp,j give a cone from Lp to EqS.
Since Lq is the vertex of a limiting cone on EqS, there is a unique arrow
Lf : Lp // Lq such that τq,j ◦ Lf = [f ]Sj ◦ τp,j for all objects j of J .

To see that L is a functor, use the uniqueness of the arrow Lf . In par-
ticular, 1Lp also gives a morphism of the cone (Lp, τp) to itself; and Lg ◦ Lf
also gives a morphism of the cone (Lp, [g ◦ f ] ◦ τp) to the cone (Lr, τr).

We claim now that for each object j of J , p 7→ τp,j is a natural transfor-
mation from L to Sj; i.e. it is an arrow in the category XP . Expanding the



definitions of the evaluation functors transforms in the front square of the
previous diagram gives

τq,j ◦ L(f) = Sj(f) ◦ τp,j,

which is precisely naturality of p // τp,j. In a slight abuse of notation, let
τj : L⇒ Sj denote this natural transformation.

Next we claim that j 7→ τj is a natural transformation from ∆(L) to S.
In other words, for u : j // k in J , we have the following equality of natural
transformations:

Su ◦ τj = τk.

Natural transformations are equal just in case they are equal at each co-
ordinate, hence we need to show that (Su)p ◦ τp,j = τp,k for all p. But
(Su)p = Ep(Su) by definition, and so the equality is just the left triangle of
the previous diagram.

Finally we need to show that (L, τ) is the limiting cone on S. To this
end, suppose that (M,σ) is another cone on S. For each p, (Lp, τp) is the
limit of EpS, and (Mp, σp) is a cone on EpS. Thus, there is a unique arrow
αp : Mp //Lp such that τj,p ◦αp = σj,p. To see that α is natural from M to
L, consider the following diagram:
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The triangles commute by the definition of αp and αq. The parallelograms
commute since σ and τ are natural. Thus the front square commutes when
suffixed by τj,q. Since this is true for all j, and (Lq, τq) is a limiting cone on
EqS, the front square commutes. That is, α is a natural transformation.

2 The adjoint functor theorem

Lemma 1. Suppose that e : v // w is an equalizer of the family of all
endomorphisms of w. Then any arrow f : w // v is a split epi.
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Proof. ef is an endomorphism of w, hence

e(fe) = (ef)e = 1we = e1v.

Since e is an equalizer, it is monic; hence fe = 1v and f is a split epi.

Lemma 2. Suppose that e : v // w is an equalizer of all endomorphisms of
w. Suppose also that for each object d there is an arrow g : w // d. Then
each arrow into v is epi.

Proof. Let f : d //v be an arrow. By assumption there is an arrow g : w //d.
By the previous lemma, fg is split epi, and hence f is epi.

Note 1. If the category D has equalizers, then “every arrow into v is an epi”
entails that v has at most one arrow to any other object.

Theorem 2. Let D be small complete and locally small. Then the following
are equivalent:

1. D has an initial object.

2. There is a set {ki : i ∈ I} of objects of D such that for every object d,
there is an i ∈ I and an arrow f : ki // d.

Proof. (2) ⇒ (1) Since D is small complete, w =
∏

i∈I ki exists. Clearly
for any object d of D, there is an arrow g : w // d. Since D is locally
small and small complete, there is an equalizer e : v // w of the set of all
endomorphisms of w. Thus, for each object d, there is at least one arrow
ge : v // d. By the previous lemma, every arrow into v is epi; and since
D has equalizers, v has at most one arrow to any object. Therefore v is an
initial object.
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