(MAT 313 / PHI 323) Category Theory
Homework for Chapter 4. Due on Wednesday, Nov 17.

1. CWM p 86, #1.

2. CWM p 92, #3. There is a typo in the exercise: The adjunction should
be (F,G, ), that is, F is left adjoint to G.

3. CWM p 92, #5.

4. Write the statement of the dual of Theorem 1 on CWM, p 90. Hint:
Use the table in Exercise 1, page 92.

5. CWM p 92, #6.

1 Lecture notes

Recall that the Yoneda lemma shows that for F' : D — Set and r € D,
there is a bijection y : Nat(D(r, —), F)) — Fr. If we replace F' for another
functor GG, or r with another object s, then we get another bijection between
Nat(D(s, —) and G's. We now show that the Yoneda bijections form a natural
transformation in these two variables.

Proposition 1. Consider two functors from Set” x D to Set given on objects
by:
(Fyr) — Fr, (1)
(F,r) +— Nat(D(r,—), F). (2)

The Yoneda correspondence is a natural isomorphism between these two func-
tors.

Before we begin the proof, let us be precise about the definition of these
two functors on arrows. In Set” x D, and arrow from (F,r) to (G,s) is of
the form (p, f) with ¢ : F' = G a natural transformation and f : 7 —s an
arrow in D. Functor (1) maps (u, f) to the diagonal of:

Fr—" o Gr
Ff Gf
F's Gs
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Functor (2) takes (u, f) to Nat(f*, i), which maps arbitrary a € Nat(D(r, —), F)
to p-a- f*.

Proof. We need to show that the following diagram commutes:

YF,r

Nat(D(r,—), F) Fr
Nat(f*,u) Gfour=pusoF f
Nat(D(s, —),G) —,-—=Gs

So choose arbitrary o € Nat(D(r,—), F'). By definition, yr,(a) = a,(1,).
Then moving down the right vertical arrow of the diagram we get [ F f (- (1,))].
Since v : D(r,—) = F is natural, F'f oo, = a0 f,. Thus, us[F f(a,(1,))] =
wslas(fo(1,))] = pslas(f)]. Clearly the same value results from chasing «
counterclockwise around the diagram. Therefore {yx, : (F,7) € Set” x D}
is a natural transformation. O

For future reference, we will call the first diagram in the preceding proof
the Yo-Nat diagram.

Proposition 2. Let K : D — Set. Then K is a colimit of representable
functors. In particular, K is a colimit of the diagram

Elts(K) = (x | K)—2> D > Set”

where 11 is the forgetful functor, and Y is the contravariant Yoneda embed-
ding.

Proof. For (r,z) € Elts(K), let 0(.,) : D(r,—) = K be given by 04, =
y;(?r(as). Since y is natural, so is y~'. We claim that {0, : (r,2) € Elts(K)}
forms a cocone on Y oll. Indeed, if f : (r,2)—(s, u) is an arrow in Elts(K),
which means that (K f)(x) = u, then

Oy - f* = Nat(f*, 1x) (yx,(2))
i (K f)(2))
= yr,(u)

= O(su),



where the second equality uses the Yo-Nat diagram with u = 1.

To show that (K, o) is a limiting cocone, suppose that (L,7) is an ar-
bitrary cocone on Y o Il. That is, for each r € D and v € Kr, 744 :
D(r,—) = L is a natural transformation, and when f : (r,z) — (s,u) is
an arrow in Elts(K) then T(sy) = Tirw) - f - We need to find a unique mor-
phism « : K = L of cocones. Indeed, for each » € D and x € Kr, define
() = Yo, [Trw)) € Lr.

Check that « is natural: Let f:r—s and consider the diagram

Kr—2 o~ [r<—""  Nat(D(r,—), L)
Kf LJ/f Nat(f*,L)
Ks——(;— Ls<—;——Nat(D(s,—), L)

Both squares commute: the left since « is natural, and the right is the Yo-Nat
diagram. Then we calculate:

(Lfoan)(x) = Lf(ar(x))

= Lf (YL [m0m)])

= yL,S(T(T,a:) : f*)

= Yrs[Ts rep@y)]

= as(K f(x))

= (s 0 Kf)(x).
In the third to last equation, we use that (L, 7) is a cocone and f : (r,z)—=(s, K f(x))
is an arrow in Elts(K).

Check that « is a morphism of cocones, that is the following triangle
commutes

K - L

I (r,x) T(rx)

D(Tv _)

Since both 7, ) and « - 0(, ;) are natural transformations from D(r, —) to L,
it is enough to check that they agree on 1, in D(r,r). But o(,,) = yl}}r(x)
means that o(, ) is induced by x. That is, [0 4)],(1,) = x. Therefore

(- U(r,x))r(lr) = a,(z),
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that is o - 0(,.4) is induced by a,.(x) and is therefore equal to 7. 4).
Finally check that « is the unique morphism of cocones: if §: K = L
also makes the triangle commute then

Toa) = (B 0(ray)r(1r) = Br(2),
for all r € D and x € Kr. Thus, f = a. [

2 Adjunctions

Proposition 3. Let ' : D —C and G : C —= D be functors, and let
n:1lc = FG and € : GF = 1p be natural transformations that satisfy the
triangle equalities:

(Ipxe)o(n*1lp) =1 (exlg)o(lg*n) = lg.
Then for each object ¢ of C, the pair (Ge,n.) is universal from ¢ to F.

Proof. Suppose that d is an object of D and f : ¢c— F'd an arrow of C. We
must show that there is a unique arrow f : Ge—=d such that F(f)on. = f.
We claim first that €5 0o G f satisfies this equation. Indeed,

F(egoGf)on.= Fego FGfon,
=F€d077FdOf
:1Fdof - f’

where we used the naturality of ) for the second equation and the first triangle
equality for the penultimate equation.
We now show uniqueness: if Faon., = f then a =450 G f. Indeed,

€dOGf:€dOG<FCLOT]C)
=¢40GFaoGn,
:a,OEGCOGnC

:aoch = a,

where we used the naturality of € for the third equation, and the second

triangle equality for the penultimate equation.
O



3 Reflective subcategories

F
/\
Lemma. Consider an adjunction X L A Then for any arrows x,y :
\E/
a—bin A, we have xoeg, = yoe, iff Gx = Gy.

Proof. Since € : FG = 14 is a natural transformation, both squares in the
following diagram commute:

FGa —==

a
FGz || FGy T||Y
b

FGb

&
Thus z oe, = yoeg, iff g, 0 F(Gx) = ¢, 0 F(Gy) iff o1 (Gz) = ¢ (Gy) iff
Gz = Gy (since g is a bijection). O
F
TN
Theorem 1. For an adjunction X L A we have:
~_

G

1. G is faithful iff every component ¢, of the counit ¢ is eps,

2. G s full iff every g, is a split monic.
Hence G s full and faithful iff each ¢, : FGa—a is an isomorphism.
Proof. (1) G is faithful means: for any z,y : a — b, Gx = Gy implies
x = y. All components of the counit ¢ are epi means: for any =,y : a —=b,
roe, =1yoeg, implies x = y. The lemma shows that the antecedent of the
two conditionals are equivalent; hence G is faithful iff each component of the
counit is epi.

(2) If G is full then there is an arrow z : a — F'Ga such that Gz = ng,.
In this case,

1rGa :5FGaanGa :8FGaOFGI = T 0&q,

where the first equality follows from the triangle equalities, and the third by
the naturality of . Therefore ¢, is a split monic.
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Conversely, suppose that ¢, is a split monic, in particular x o g, = 1pga.
By the previous equation, ¢~ (Gr) = lpgs = ¢ '(Nca). Since ¢! is a
bijection, Gx = ng,. Now let f: Ga— Gb. Then

G(EbOFf0x>:GEbOGFfOnGa:GEbOnGbof:f7

where the final equation uses the triangle equalities. Therefore G is full. [

4 Uniqueness of adjoints

Proposition 4. Suppose that G 4 F with unit n : 1 = FG, and suppose
also that G' 4 F with unit ' : 1 = FG'. Then there is a unique natural
isomorphism o : G —=G' such that n’ = (1p * a) o).

Proof. For an object ¢ of C, the pairs (Ge¢,n. : ¢ — FGc) and (G'c, 7, :
c—F'G'c) are universal arrows from c to F. By the uniqueness of universal
arrows, there is an isomorphism a. : Gc¢ — G’c such that 7. = F(«.) o n..
We now show that (a.).cc is a natural transformation.

Consider the following diagram:

c ! b
Y m,
e FG'e SR FG'b
FGe o FGb

The left and right triangles commute, by the definition of o, and «;. The
front square commutes since n is natural. The top back parallelogram com-
mutes since 1’ is natural. We can then compute:

Fayo FGfon.= Fayon,o f
=m0 f
=FG'fon,
= FG'foFa.on,.



Therefore F(ay o Gf)on. = F(G'foa.)on.. Since (Ge,n,.) is universal from
c to F, it follows that a0 Gf = G’ f o a.. Since this is true for all f : c—=b,
« is a natural transformation.

We already showed that 7, = F'(a,)on., which entails that n = (1p*a)on.
Finally, if 8 is a natural transformation that satisfies this equation then

F(Oéc) OMNe = F(Bc) O Ne,
for all c. Since (Gc,n.) is universal, 5, = «. for all c. ]
Here is a sketch of an alternate proof of the same result.

Proof. If G and G’ are left adjoints of F', then there are bijections

—1

D(Ge,d) —"~ C(c, Fd) —"~ D(G'e, d),

natural in ¢ and d. In particular, the functors D(Gc,—) and D(G'¢c, —) are
naturally isomorphic. By the Yoneda lemma, Gc¢ and G'c are isomorphic. []



