
(MAT 313 / PHI 323) Category Theory
Homework for Chapter 4. Due on Wednesday, Nov 17.

1. CWM p 86, #1.

2. CWM p 92, #3. There is a typo in the exercise: The adjunction should
be 〈F,G, ϕ〉, that is, F is left adjoint to G.

3. CWM p 92, #5.

4. Write the statement of the dual of Theorem 1 on CWM, p 90. Hint:
Use the table in Exercise 1, page 92.

5. CWM p 92, #6.

1 Lecture notes

Recall that the Yoneda lemma shows that for F : D // Set and r ∈ D,
there is a bijection y : Nat(D(r,−), F ) // Fr. If we replace F for another
functor G, or r with another object s, then we get another bijection between
Nat(D(s,−) and Gs. We now show that the Yoneda bijections form a natural
transformation in these two variables.

Proposition 1. Consider two functors from SetD×D to Set given on objects
by:

(F, r) 7−→ Fr, (1)

(F, r) 7−→ Nat(D(r,−), F ). (2)

The Yoneda correspondence is a natural isomorphism between these two func-
tors.

Before we begin the proof, let us be precise about the definition of these
two functors on arrows. In SetD × D, and arrow from (F, r) to (G, s) is of
the form (µ, f) with µ : F ⇒ G a natural transformation and f : r // s an
arrow in D. Functor (1) maps (µ, f) to the diagonal of:

Fs Gsµs
//

Fr

Fs

Ff

��

Fr Gr
µr // Gr

Gs

Gf

��



Functor (2) takes (µ, f) to Nat(f ∗, µ), which maps arbitrary α ∈ Nat(D(r,−), F )
to µ · α · f ∗.

Proof. We need to show that the following diagram commutes:

Nat(D(s,−), G) GsyG,s

//

Nat(D(r,−), F )

Nat(D(s,−), G)

Nat(f∗,µ)

��

Nat(D(r,−), F ) Fr
yF,r // Fr

Gs

Gf◦µr=µs◦Ff

��

So choose arbitrary α ∈ Nat(D(r,−), F ). By definition, yF,r(α) = αr(1r).
Then moving down the right vertical arrow of the diagram we get µs[Ff(αr(1r))].
Since α : D(r,−)⇒ F is natural, Ff ◦αr = αs ◦ f∗. Thus, µs[Ff(αr(1r))] =
µs[αs(f∗(1r))] = µs[αs(f)]. Clearly the same value results from chasing α
counterclockwise around the diagram. Therefore {yF,r : (F, r) ∈ SetD ×D}
is a natural transformation.

For future reference, we will call the first diagram in the preceding proof
the Yo-Nat diagram.

Proposition 2. Let K : D // Set. Then K is a colimit of representable
functors. In particular, K is a colimit of the diagram

Elts(K) = (∗ ↓ K) Π // D
Y // SetD

where Π is the forgetful functor, and Y is the contravariant Yoneda embed-
ding.

Proof. For (r, x) ∈ Elts(K), let σ(r,x) : D(r,−) ⇒ K be given by σ(r,x) =
y−1
K,r(x). Since y is natural, so is y−1. We claim that {σ(r,x) : (r, x) ∈ Elts(K)}

forms a cocone on Y ◦Π. Indeed, if f : (r, x) // (s, u) is an arrow in Elts(K),
which means that (Kf)(x) = u, then

σ(r,x) · f ∗ = Nat(f ∗, 1K)(y−1
K,r(x))

= y−1
K,s((Kf)(x))

= y−1
K,s(u)

= σ(s,u),
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where the second equality uses the Yo-Nat diagram with µ = 1K .
To show that (K, σ) is a limiting cocone, suppose that (L, τ) is an ar-

bitrary cocone on Y ◦ Π. That is, for each r ∈ D and x ∈ Kr, τ(r,x) :
D(r,−) ⇒ L is a natural transformation, and when f : (r, x) // (s, u) is
an arrow in Elts(K) then τ(s,y) = τ(r,x) · f ∗. We need to find a unique mor-
phism α : K ⇒ L of cocones. Indeed, for each r ∈ D and x ∈ Kr, define
αr(x) = yL,r[τ(r,x)] ∈ Lr.

Check that α is natural: Let f : r // s and consider the diagram

Ks Lsαs
//

Kr

Ks

Kf

��

Kr Lr
αr // Lr

Ls

Lf

��
Nat(D(s,−), L)oo

yL,s

Nat(D(r,−), L)oo
yL,r

Nat(D(r,−), L)

Nat(D(s,−), L)

Nat(f∗,L)

��

Both squares commute: the left since α is natural, and the right is the Yo-Nat
diagram. Then we calculate:

(Lf ◦ αr)(x) = Lf(αr(x))

= Lf(yL,r[τ(r,x)])

= yL,s(τ(r,x) · f ∗)
= yL,s[τ(s,Kf(x))]

= αs(Kf(x))

= (αs ◦Kf)(x).

In the third to last equation, we use that (L, τ) is a cocone and f : (r, x) //(s,Kf(x))
is an arrow in Elts(K).

Check that α is a morphism of cocones, that is the following triangle
commutes

K

D(r,−)

__

σ(r,x)

??
??

??
??

??
??

?K L
α // L

D(r,−)

??

τ(r,x)

��
��

��
��

��
��

�

Since both τ(r,x) and α · σ(r,x) are natural transformations from D(r,−) to L,
it is enough to check that they agree on 1r in D(r, r). But σ(r,x) = y−1

K,r(x)
means that σ(r,x) is induced by x. That is, [σ(r,x)]r(1r) = x. Therefore

(α · σ(r,x))r(1r) = αr(x),
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that is α · σ(r,x) is induced by αr(x) and is therefore equal to τ(r,x).
Finally check that α is the unique morphism of cocones: if β : K ⇒ L

also makes the triangle commute then

τ(r,x) = (β · σ(r,x))r(1r) = βr(x),

for all r ∈ D and x ∈ Kr. Thus, β = α.

2 Adjunctions

Proposition 3. Let F : D // C and G : C // D be functors, and let
η : 1C ⇒ FG and ε : GF ⇒ 1D be natural transformations that satisfy the
triangle equalities:

(1F ∗ ε) ◦ (η ∗ 1F ) = 1F (ε ∗ 1G) ◦ (1G ∗ η) = 1G.

Then for each object c of C, the pair 〈Gc, ηc〉 is universal from c to F .

Proof. Suppose that d is an object of D and f : c //Fd an arrow of C. We
must show that there is a unique arrow f̂ : Gc // d such that F (f̂) ◦ ηc = f .
We claim first that εd ◦Gf satisfies this equation. Indeed,

F (εd ◦Gf) ◦ ηc = Fεd ◦ FGf ◦ ηc
= Fεd ◦ ηFd ◦ f
= 1Fd ◦ f = f,

where we used the naturality of η for the second equation and the first triangle
equality for the penultimate equation.

We now show uniqueness: if Fa ◦ ηc = f then a = εd ◦Gf . Indeed,

εd ◦Gf = εd ◦G(Fa ◦ ηc)
= εd ◦GFa ◦Gηc
= a ◦ εGc ◦Gηc
= a ◦ 1Gc = a,

where we used the naturality of ε for the third equation, and the second
triangle equality for the penultimate equation.
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3 Reflective subcategories

Lemma. Consider an adjunction X A

F
%%

X Aff

G

⊥ Then for any arrows x, y :

a // b in A, we have x ◦ εa = y ◦ εa iff Gx = Gy.

Proof. Since ε : FG ⇒ 1A is a natural transformation, both squares in the
following diagram commute:

FGb bεb
//

FGa

FGb

FGy

��

FGa a
εa // a

b

y

��

FGx

��

x

��

Thus x ◦ εa = y ◦ εa iff εb ◦ F (Gx) = εb ◦ F (Gy) iff ϕ−1(Gx) = ϕ−1(Gy) iff
Gx = Gy (since ϕ is a bijection).

Theorem 1. For an adjunction X A

F
%%

X Aff

G

⊥ we have:

1. G is faithful iff every component εa of the counit ε is epi,

2. G is full iff every εa is a split monic.

Hence G is full and faithful iff each εa : FGa // a is an isomorphism.

Proof. (1) G is faithful means: for any x, y : a // b, Gx = Gy implies
x = y. All components of the counit ε are epi means: for any x, y : a // b,
x ◦ εa = y ◦ εa implies x = y. The lemma shows that the antecedent of the
two conditionals are equivalent; hence G is faithful iff each component of the
counit is epi.

(2) If G is full then there is an arrow x : a // FGa such that Gx = ηGa.
In this case,

1FGa = εFGa ◦ FηGa = εFGa ◦ FGx = x ◦ εa,

where the first equality follows from the triangle equalities, and the third by
the naturality of ε. Therefore εa is a split monic.
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Conversely, suppose that εa is a split monic, in particular x ◦ εa = 1FGa.
By the previous equation, ϕ−1(Gx) = 1FGa = ϕ−1(ηGa). Since ϕ−1 is a
bijection, Gx = ηGa. Now let f : Ga // Gb. Then

G(εb ◦ Ff ◦ x) = Gεb ◦GFf ◦ ηGa = Gεb ◦ ηGb ◦ f = f,

where the final equation uses the triangle equalities. Therefore G is full.

4 Uniqueness of adjoints

Proposition 4. Suppose that G a F with unit η : 1 ⇒ FG, and suppose
also that G′ a F with unit η′ : 1 ⇒ FG′. Then there is a unique natural
isomorphism α : G // G′ such that η′ = (1F ∗ α) ◦ η.

Proof. For an object c of C, the pairs 〈Gc, ηc : c // FGc〉 and 〈G′c, η′c :
c //FG′c〉 are universal arrows from c to F . By the uniqueness of universal
arrows, there is an isomorphism αc : Gc // G′c such that η′c = F (αc) ◦ ηc.
We now show that (αc)c∈C is a natural transformation.

Consider the following diagram:

FG′c

FGc

??

Fαc
��

��
��

��
��

c

FG′c

η′c

��?
??

??
??

??
?c

FGc

ηc

��

FGf
//

f //

FG′b

FGb

??

Fαb
��

��
��

��
��

b

FG′b

η′b

��?
??

??
??

??
?b

FGb

ηb

��

FG′f //

The left and right triangles commute, by the definition of αc and αb. The
front square commutes since η is natural. The top back parallelogram com-
mutes since η′ is natural. We can then compute:

Fαb ◦ FGf ◦ ηc = Fαb ◦ ηb ◦ f
= η′b ◦ f
= FG′f ◦ η′c
= FG′f ◦ Fαc ◦ ηc.

6



Therefore F (αb ◦Gf) ◦ ηc = F (G′f ◦αc) ◦ ηc. Since 〈Gc, ηc〉 is universal from
c to F , it follows that αb ◦Gf = G′f ◦αc. Since this is true for all f : c // b,
α is a natural transformation.

We already showed that η′c = F (αc)◦ηc, which entails that η′ = (1F ∗α)◦η.
Finally, if β is a natural transformation that satisfies this equation then

F (αc) ◦ ηc = F (βc) ◦ ηc,

for all c. Since 〈Gc, ηc〉 is universal, βc = αc for all c.

Here is a sketch of an alternate proof of the same result.

Proof. If G and G′ are left adjoints of F , then there are bijections

D(Gc, d)
ϕ−1
c,d // C(c, Fd)

ϕ′c,d // D(G′c, d),

natural in c and d. In particular, the functors D(Gc,−) and D(G′c,−) are
naturally isomorphic. By the Yoneda lemma, Gc and G′c are isomorphic.
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