Notes on the Soundness Theorem

Definition: A (propositional logic) *valuation* is an assignment of truth values to sentences that obeys the functional relationships given by the truth tables.

Definition: Let Γ be a set of sentences, and let v be a valuation. We say that v satisfies Γ just in case $(A)(A \in \Gamma \Rightarrow v(A) = T)$. In words: v assigns T to all sentences in Γ .

Definition: Let Γ be a set of sentences, and let A be a sentence. Then Γ semantically implies A, written $\Gamma \models A$ just in case any valuation that satisfies Γ also assigns T to A. That is, $(v)(v \text{ satisfies } \Gamma \Rightarrow v(A) = T)$.

Lemma (Expansion): If $\Delta \models A$, and $\Delta \subseteq \Gamma$, then $\Gamma \models A$.

(Note: The following proof mixes formal — Lemmon style proof — and informal methods.)

1	(1) $\Delta \models A$	PREMISE
2	(2) $\Delta \subseteq \Gamma$	PREMISE
3	(3) v satisfies Γ	Assumption
2	$(4) (B)(B \in \Delta \Rightarrow B \in \Gamma)$	2 Defn of \subseteq
5	(5) $B \in \Delta$	Assumption
2	$(6) \ B \in \Delta \Rightarrow B \in \Gamma$	4 UE
2,5	(7) $B \in \Gamma$	7,6 MPP
3	$(8) (B)(B \in \Gamma \Rightarrow v(B) = T)$	3 Defn of "satisfies"
3	$(9) \ B \in \Gamma \Rightarrow v(B) = T$	8 UE
$2,\!3,\!5$	$(10) \ v(B) = T$	9,7 MPP
$2,\!3$	$(11) \ B \in \Delta \Rightarrow v(B) = T$	3,10 CP
2,3	$(12) (B)(B \in \Delta \Rightarrow v(B) = T$	11 UI
2,3	(13) v satisfies Δ	12 Defn of "satisfies"
$1,\!2,\!3$	(14) v(A) = T	12,1 Defn of \models
1,2	(15) v satisfies $\Gamma \Rightarrow v(A) = T$	3,14 CP
$1,\!2$	(16) $(v)(v \text{ satisfies } \Gamma \Rightarrow v(A) = T)$	15 UI
$1,\!2$	(17) $\Gamma \models A$	16 Defn of \models

Lemma (Transitivity): If $\Gamma \models A$ for all A in Δ , and $\Delta \models B$, then $\Gamma \models B$.

1	(1) $(A)[A \in \Delta \Rightarrow \Gamma \text{ implies } A]$	PREMISE
2	(2) Δ implies B	PREMISE
3	(3) Suppose v satisfies Γ .	Assumption
1	(4) $A \in \Delta \Rightarrow \Gamma$ implies A	$1 \mathrm{UE}$
5	$(5) \ A \in \Delta$	Assumption
$1,\!5$	(6) Γ implies A	4,5 MPP
$1,\!3,\!5$	$(7) \ v(A) = T$	3,6 Defn of "implies"

$1,\!3$	$(8) \ A \in \Delta \Rightarrow v(A) = T$	$5,7 \mathrm{CP}$
$1,\!3$	(9) $(A)(A \in \Delta \Rightarrow v(A) = T)$	8 UI (Note: A doesn't occur free in 1,3)
$1,\!3$	(10) v satisfies Δ	9 Defn of "satisfies"
$1,\!2,\!3$	$(11) \ v(B) = T$	2,10 Defn of "implies"
1,2	(12) v satisfies $\Gamma \Rightarrow v(B) = T$	3,11 CP
1,2	(13) $(v)[v \text{ satisfies } \Gamma \Rightarrow v(B) = T]$	12 UI (Note: v doesn't occur free in 1,2)
$1,\!2$	(14) Γ implies B	13 Defn of "implies"

Lemma (ST1): Let A_i, A_j, A_k be the sentences that occur on lines i, j, k of a proof. If line k results from lines i, j by application of a Stage 1 rule of inference, then $\{A_i, A_j\} \models A_k$.

Proof: Examine the truth tables for the connectives.

Theorem (Soundness). Let

D(n) (n) A_n

be a line of a correctly written proof. Then $\underline{D}(n) \models A_n$, where $\underline{D}(n)$ is the set of formulas on the dependency lines D(n).

Proof: We use induction on the construction of proof lines. So, we have one base case (Rule of Assumptions), and inductive cases corresponding to each of the other inference rules.

<u>Base Case</u>: The rule of assumptions yields lines of the form:

n (n) A Assumption

In this case we have $\underline{D}(n) = \{A\}$, and so we need only note that $\{A\} \models A$.

<u>Inductive Step (Stage 1 Rules)</u>: Suppose that line k results from lines i, j via some Stage 1 rule, and suppose that lines i and j are good. We need to show that line k is good.

Saying that lines *i* and *j* are good means $\underline{D}(i) \models A_i$ and $\underline{D}(j) \models A_j$. By the Expansion Lemma, $\underline{D}(i) \cup \underline{D}(j) \models A_i$ and $\underline{D}(i) \cup \underline{D}(j) \models A_j$. By the Stage 1 Lemma, $\{A_i, A_j\} \models A_k$. Thus, by the Transitivity Lemma, $\underline{D}(i) \cup \underline{D}(j) \models A_k$. However, $\underline{D}(k) = \underline{D}(i) \cup \underline{D}(j)$, since Stage 1 rules aggregate dependency numbers. Therefore, $\underline{D}(k) \models A_k$, which means that line k is good.

<u>Inductive Step (CP)</u>: Suppose that line k results from lines i, j via CP, and suppose that lines i and j are good. We need to show that line k is good.

For CP to be applicable, it must be the case that line *i* is an assumption; so, $\underline{D}(i) = \{A_i\}$, where A_i is the sentence occurring on line *i*. It must also be the case that $A_k = A_i \to A_j$.

Furthermore, it must be the case that $\underline{D}(k) = \underline{D}(j) - \underline{D}(i)$. Now let v be a valuation that satisfies $\underline{D}(k)$. Then either $v(A_i) = F$ or $v(A_i) = T$. We consider these two cases in turn, and show that in each case, $v(A_i \to A_j) = T$.

If $v(A_i) = F$, then truth tables immediately yields $v(A_i \to A_j) = T$. If $v(A_i) = T$, then v satisfies $\underline{D}(j)$. Indeed, we assumed that v satisfies $\underline{D}(k) = \underline{D}(j) - \underline{D}(i) = \underline{D}(j) - \{A_i\}$. But now we also know that $v(A_i) = T$, and so v makes all the sentences in $\underline{D}(j)$ true. But then since line j is good, $\underline{D}(j) \models A_j$, and so $v(A_j) = T$. Therefore by truth tables, $v(A_i \to A_j) = T$. So, any valuation v that satisfies $\underline{D}(k)$ also assigns T to A_k , which means that line k is good.

<u>Inductive Step (RAA)</u>: Suppose that line k results from lines i and j via RAA, and suppose that lines i and j are good. We need to show that line k is good.

For RAA to be applicable, it must be the case that line *i* is an assumption, that A_j is a contradiction, that $\underline{D}(k) = \underline{D}(j) - \{A_i\}$, and that $A_k = -A_i$. Since line *j* is assumed to be good, we have $\underline{D}(j) \models A_j$, where A_j is a sentence which is assigned false by all valuations. Thus, $\underline{D}(j)$ is not satisfied by any valuation.

Let v be a valuation that satisfies $\underline{D}(k)$. If $v(A_i) = T$ then v satisfies $\underline{D}(j)$, which is impossible. So, $v(A_i) = F$, and $v(A_k) = v(-A_i) = T$. Therefore $\underline{D}(k) \models A_k$, which means that line k is good.

Inductive Step (\lor -Elimination): Homework Assignment.