
Semantics for Classical Predicate Logic
(Part I)∗

Hans Halvorson

Formal logic begins with the assumption that the validity of an argu-
ment depends only on its logical form, and not on its content. In particu-
lar, if two arguments have the same logical form, then either they are both
valid, or they are both invalid. But what is logical form? Our first ap-
proach (before the midsemester break) was to identify logical form with
sentence connecting words, such as “and”, “or”, and “if . . . then . . . ”. But
we found that there are some arguments whose validity is not due to sen-
tence connecting words; instead, these arguments are valid because of cer-
tain quantifier phrases, such as “all . . . ” or “some . . . ”.

We have now proposed four rules of inference for quantifier phrases:
U-Elimination, U-Introduction, E-Introduction, and E-Elimination. It should
seem reasonably clear that these rules are acceptable, i.e. will not lead you
from true premises to a false conclusion. But since the rules are somewhat
subtle, we should provide an independent method for checking their va-
lidity. Furthermore, it is not at all clear whether or not these rules form a
“complete” system — i.e. if there is a sense in which they can be used to
reproduce any valid argument.

Let’s consider first the question of the safety of these rules, and com-
pare with the case of the sentence connective rules. How do we know that
the rule &E is safe? Roughly speaking, we know that in every situation
where P & Q is true, P is also true. So, the inference “P & Q therefore P”
can never lead from truth to falsity. But what do we mean by “every sit-
uation”? We made the notion of a “situation” precise by means of a truth
assignment to propositional variables P, Q, R, . . .. We stipulated that these
propositional variables do not have any logical relations (e.g. P does not

∗Version 0.1, revised April 14, 2006. Please report typos to: hhalvors@princeton.edu.

1



logically imply −Q), and so any combination of their truth values is a pos-
sibility we must consider.

Conversely, how do we know that the argument form “P ∨Q therefore
P” is invalid? We know that this argument form is is invalid because there
are instances of that form that have true premises and false conclusions, for
example:

Tilghman is either Harvard’s or Princeton’s President. There-
fore Tilghman is Harvard’s President.

In fact, the point of this example is that there are sentences P and Q such
that P ∨ Q is true, while P is false. So, to give a counterexample, we only
need specify the corresponding row in the truth table for “∨”.

It is obvious how to give “informal” counterexamples to predicate logic
arguments: just replace predicate letters with real predicates, and replace
name letters with real names. For example, to show that “(∃x)Fx therefore
Fm” is invalid, simply note that somebody is a Princeton student (Fx ≡
x is a Princeton student) but John Tesh is not a Princeton student (m ≡
John Tesh). The main question of this Chapter is whether this heuristic
method for finding counterexamples can be transformed into something
systematic and efficient, something like truth tables.

So far the following is clear: to give a counterexample to a predicate
logic argument, one must replace the predicate letters with real predi-
cates, and the name letters with real names. It might then seem that once
we replace the predicate letters with predicates and the name letters with
names, then each sentence is either true or false. But actually, there is one
small complication: unless we specify a “domain of quantification,” then
it is not clear what the quantifiers mean. For example, is it true or false that
there was a Danish prince who loved Ophelia? Is it true or false that there
are infinitely many prime numbers? Is it true that the color red exists?

Now you might say that “(x)” should always be translated as “For all
x”, where the “all” is taken to apply to just those things that actually do
exist. So then “(x)Fx” would simply mean that all actually existing things
are F. But this seems too strict. For example, it seems that we should
also be able to use quantifiers to translate sentences such as “all of Jane
Austen’s characters are complex.”

In order to deal with this and other related issues, we require that each
time an argument is translated into quantifier form, one must provide

PHI 201, Introductory Logic p. 2 of 16



a “domain of quantification,” abbreviated “DoQ”. For example, we can
show that the argument form

(x)(Fx ∨ Gx)
(x)Fx ∨ (x)Gx (*)

is invalid by specifying the natural numbers as the DoQ, and by setting
“Fx ≡ x is even” and “Gx ≡ x is odd.”

1 From Predicates to Sets

In order to give counterexamples in propositional logic, we employed a
simplifying strategy: replace sentences with their truth values. In predi-
cate logic, we will also employ a simplifying strategy: replace predicates
with their extensions.

Definition. The extension of a predicate is just the collection of those things
to which the predicate truly applies.

Example. The extension of the predicate “is even” (relative to the domain of
natural numbers) is just the collection of even numbers. But if the DoQ is
the set {1, 2, 3} then the extension of the predicate “is even” is the singleton
set {2}.

In order to give formal counterexamples to invalid arguments, we will
make use of the mathematical theory called “set theory.” Roughly speak-
ing, set theory is the study of collections of things.

We use curly braces “{” and “}” around a list of things in order to de-
note the set of those things. For example, the set consisting of the numbers
2, 6, and 17 is denoted by:

{2, 6, 17}

Axiom (Axiom of Extensionality:). Two sets A and B are equal, written
A = B, just in case they have the same members.

For example {2, 4} and {4, 2} are two different ways to write the unique
set whose elements are 2 and 4. Similarly, {2, 2, 4} = {2, 4} since the for-
mer set contains exactly the same elements as the latter.

PHI 201, Introductory Logic p. 3 of 16



Definition (Member). The number 2 is a member of the set {2, 6, 17}. We
can indicate this fact by writing 2 ∈ {2, 6, 17}, where “∈” is shorthand for
“is a member of.”

Definition (Subset). Every member of the set {2, 17} is also a member of
the set {2, 6, 17}. So, we say that {2, 17} is a subset of {2, 6, 17}. And if
we don’t feel like writing out the words, we might just write {2, 17} ⊆
{2, 6, 17} as a shorthand.

Note that is does not make sense to write 2 ⊆ {2, 6, 17}, because 2 is not
itself a set. On the other hand, it does make sense to write {2} ⊆ {2, 6, 17}.
The number “2” and the singleton set “{2}′′ are two different things.

Definition (Empty Set). There is a set that does not contain anything at
all. This set is called the empty set, and it is denoted by ∅. The empty set is
the one and only set that is contained in all other sets.

Definition. If A and B are sets, we use A∩ B to denote the set that consists
of those things that are in both A and B. We use A ∪ B to denote the set
that consists of those things that are in either A or B. Finally, we use B− A
to denote those things that are in the set B but not in the set A.

2 Formal Counterexamples

Now we revisit the concepts of counterexamples and interpretations, this
time with an eye toward precision and rigor.

Definition. An interpretation of a sentence (or sentences) of the predicate
calculus consists of:

(a.) A set X, called the domain of quantification.

(b.) An assignment Ref of names to elements of X.

(c.) An assignment Ext of predicate letters to subsets of X.

PHI 201, Introductory Logic p. 4 of 16



Definition. A formal counterexample to an argument in predicate logic is
an interpretation where the premises of the argument are true, and the
conclusion of the argument is false.

I have not yet given a precise definition of when a sentence is true rel-
ative to an interpretation. I have not done so because the definition turns
out to be quite complicated, and your intuitions will be sufficient for most
cases.
Example. Consider the interpretation with domain X = {1, 2, 3, 4} and

Ref(m) = 1, Ref(n) = 1, Ref(o) = 2,
Ext(Fx) = {1, 2, 3} Ext(Gx) = {3, 4} Ext(Hx) = ∅.

Then, it follows that:

• (∃x)(Fx & Gx) is true relative to this interpretation, since the element
3 is in both Ext(Fx) and Ext(Gx).

• (x)(Fx → Gx) is false relative to this interpretation, since the element
1 is in Ext(Fx) but not in Ext(Gx).

• (x)(Fx ∨ Gx) is true relative to this interpretation, since every ele-
ment in the domain is in either Ext(Fx) or Ext(Gx).

• (x)(Hx → Gx) is true relative to this interpretation, since Ext(Hx) is
the empty set.

Problem. Give a formal counterexample to the argument:

(x)(Fx ∨ Gx) ` ((x)Fx ∨ (x)Gx).

Solution: Let X = {1, 2}, let Ext(Fx) = {1} and Ext(Gx) = {2}. Since all
elements of X are either in Ext(Fx) or Ext(Fx), (x)(Fx ∨ Gx) is true rel-
ative to this interpretation. But since Ext(Fx) is not equal to X, (x)Fx is
not true relative to this interpretation. Similarly, (x)Gx is not true rela-
tive to this interpretation, and so (x)Fx ∨ (x)Gx is not true relative to this
interpretation.

PHI 201, Introductory Logic p. 5 of 16



Problem. Give a formal counterexample to the argument with no premises
and conclusion (x)(y)(Fx → Fy).

Solution: Let X = {1, 2}, and let Ext(Fx) = {1}. Then it is not true that
for all x, y in the DoQ, if Fx then Fy. In particular, 1 ∈ Ext(Fx) but 2 6∈
Ext(Fx).

2.1 Specifying interpretations with tables

It can be boring to write out the interpretations of a bunch of predicates.
So, in order to spice up life, we give here an alternative way to specify
the interpretation of predicate letters. (This method only works when the
domain X is a finite set.)

First we list the predicate letters in the top row of the table, and we list
the elements of the domain in the first column of the table. We then write
“+” in cell (i, j) if the predicate in column j applies to the object on row i.
Otherwise, we write “−” in cell (i, j).

Problem. Give an interpretation for a problem involving the predicate let-
ters F, G, H, and the names m, n, o.

Solution:

X = {1, 2, 3}, Ref(m) = 1, Ref(n) = 1, Ref(o) = 2.

F G H
1 + − −
2 + + −
3 + − −

Instead of drawing the table, we could have just written:

Ext(Fx) = {1, 2, 3}, Ext(Gx) = {2}, Ext(Hx) = ∅.

But tables are fun.
When giving an interpretation, you must be clear and explicit about

which subsets are assigned to which predicate letters. But given that you
satisfy the requirements of clarity and explicitness, you can use whatever
method you want to specify your interpretation.

PHI 201, Introductory Logic p. 6 of 16



Note. An interpretation must assign the same subset of the domain to both
Fx and Fy, even though they have different variables. In other words, the
interpretation gives the extension of the predicate letter F, and doesn’t care
about what variable we put after F. We will deal later with the tricky case
of sentences that involve the same predicate letter with different variables
— e.g., (x)(y)(Fx → Fy) and (∃x)(Fx → (y)Fy).

3 Semantic Properties and Relations

Recall that within propositional logic, we defined a bunch of special kinds
of sentences (e.g., tautologies, inconsistencies), and a bunch of special log-
ical relationships between sentences (e.g., implies, is subcontrary to). Ac-
tually, these concepts are defined in terms of interpretations, and so they
extend naturally to predicate logic. For example, we would define a pred-
icate logic sentence as tautologous just in case it is true relative to every
predicate logic interpretation.

Definition.

• If φ is false relative to some interpretation, then φ is said to be falsifi-
able.

• If φ is false relative to every interpretation, then φ is said to be incon-
sistent.

• If φ is true relative to some interpretation, then φ is said to be consis-
tent.

• Let Γ be a set of sentences. If there is an interpretation relative to
which every sentence in Γ is true, then Γ is said to be consistent. Oth-
erwise, Γ is said to be inconsistent.

• A set Γ of sentences logically implies a sentence ψ if there is no inter-
pretation that makes all of Γ true while making ψ false. That is, there
is no formal counterexample. In that case, the argument with premises
Γ and conclusion ψ is valid.

• Two sentences φ, ψ are logically equivalent if they have the same truth
value relative to every interpretation.

PHI 201, Introductory Logic p. 7 of 16



Example. (x)(Fx∨−Fx) is tautologous, because in any interpretation, each
object in the domain is either in Ext(Fx), or is in the complement of Ext(Fx).
Example. (∃x)(Fx & − Fx) → Gm is tautologous, because (∃x)(Fx & − Fx)
is inconsistent.

4 Semantic Problems and Answers

An answer to a problem requiring the presentation of an interpretation
is best seen as having two parts, as follows: (1) state the domain of your
proposed interpretation, and present (using one of the above methods)
the interpretation of the names and predicate symbols; (2) state the truth
values of the various sentences, defend your claim that they have those
truth values, and (most importantly) be explicit as to how this information
solves the problem you began with. Let’s consider a couple of examples
of solved problems.

Problem. Show that (∃x)Fx → (x)Fx is not tautologous.

Solution:

1. Let X = {1, 2}, and let Ext(Fx) = {1}.

2. The sentence is false relative to this interpretation: Since 1 is in Ext(Fx),
(∃x)Fx is true relative to this interpretation. However, since 2 is not
in Ext(Fx), (x)Fx is false relative to this interpretation. Therefore (by
truth tables) (∃x)Fx → (x)Fx is false relative to this interpretation.
Since the sentence is false relative to some interpretation, it is not tau-
tologous. �

Problem. Show that the sentence from the previous problem is consistent
(true relative to some interpretation).

Solution:

1. Let X = {1}, and let Ext(Fx) = {1}.

2. Since Ext(Fx) = X, it follows that (x)Fx is true relative to this in-
terpretation, and therefore (by truth tables) (∃x)Fx → (x)Fx is true
relative to this interpretation. Since the sentence is true relative to
some interpretation, it is consistent.

PHI 201, Introductory Logic p. 8 of 16



5 Systematic Searches for Interpretations

Solving a semantic problem (e.g. “is the argument with premises Γ and
conclusion φ valid?”) requires one to check all possible interpretations.
Now in propositional logic, there are only finitely many interpretations of
a finite set of sentences (namely, 2n interpretations, where n is the num-
ber of propositional variables). But in predicate logic, there are infinitely
many interpretations of any sentence. So, it is simply impossible to search
through all interpretations of a predicate logic sentence.

In fact, it has been proven that the task of deciding if a predicate logic
argument is valid cannot be “automated” — i.e. there is no algorithm for
solving the validity problem for predicate logic arguments. (This interest-
ing result would be discussed in detail in a more advanced logic course,
such as PHI 312 or PHI 321.) However, in the special case of sentences
containing only predicates with a single variable (i.e. no relation symbols),
there are algorithms for solving the validity problem. These algorithms are
the topic of the current section.

We will consider three successively stronger algorithms for testing the
consistency of a finite set of sentences. If you feed a finite set ∆ of sentences
into the algorithm then either it will return the verdict “Inconsistent”, or it
will return an interpretation that makes all the sentences true. Of course,
if we can solve the consistency problem then we can solve the validity
problem. So, these algorithms solve the validity problem for arguments
with certain types of sentences.

5.1 Algorithm A

The first algorithm works for sentences that contain no quantifiers.

1. Perform a truth table test on the sentences in ∆. If there is no truth
assignment that makes them all true, then return “Inconsistent.” If
there is a truth assignment j that makes them all true, then proceed
to Step 2.

2. Put the names that occur in the sentences in ∆ in a list. Let the DoQ be
{1, . . . , n} where n is the number of names. For each predicate letter
F, and for each i = 1, . . . , n, let i ∈ Ext(Fx) just in case j(Fai) = T,
where ai is the i-th item on the list of names.

PHI 201, Introductory Logic p. 9 of 16



5.2 Algorithm B

The second algorithm works for simple quantified sentences.

Definition. A simple monadic sentence is one that contains no relation sym-
bols, and a single quantifier whose scope is the entire sentence.

For example, (x)((Fx & Gx) → −Hx) is a simple monadic sentence.

Definition. If φ is a simple monadic sentence, we let φa denote the instance
of φ that is obtained by taking off the initial quantifier and replacing all
instances of the variable with the name a.

For example, if φ is the sentence (∃x)(Fx & Gx) then φa is the sentence
Fa & Ga.

We now show how to determine if a collection φ1, . . . , φn of simple
monadic sentences is consistent.

1. Reorder the sentences if necessary so that the first m sentences be-
gin with an existential quantifier, and the remaining sentences be-
gin with a universal quantifier.

2. If none of the sentences begins with an existential quantifier, then
choose one arbitrary name a. Now put the sentences φa

1, . . . , φa
n

into Algorithm A.

3. If there is at least one sentence beginning with an existential quan-
tifier, then choose m arbitrary names a1, . . . , am (one per existential
sentence). Now put the following sentences into Algorithm A:

φa1
1 , . . . , φam

m (instances of existential sentences)

φa1
m+1 , . . . , φam

m+1
... (instances of universal sentences)
φa1

n , . . . , φam
n

That last step could use some explanation: for each distinct existential
sentence φi, we choose a distinct name ai and construct the corresponding

PHI 201, Introductory Logic p. 10 of 16



instance φ
ai
i . Then for each universal sentence φj, we construct m instances

φa1
j , . . . , φam

j , one for each name that was introduced for an existential sen-
tence.

5.3 Algorithm C

Before you read this section, you need to know how to transform a sen-
tence into an equivalent sentence in disjunctive normal form. For this, see
Appendix A of Lemmon’s book.

The third algorithm is a simple extension of Algorithm B; it works for
truth functional combinations of simple monadic sentences.

Definition. A pure monadic sentence is a sentence that is a truth-functional
combination of simple monadic sentences.

For example,

(∃x)Fx & (y)(Gy → Fy),

is a pure monadic sentence. On the other hand,

(x)(Fx → (∃y)Fy)

is not simple monadic, since it has nested quantifiers.

1. Transform φ1 & · · · & φn into disjunctive normal form. The result
will be of the form ψ1 ∨ · · · ∨ ψm, where each ψi is a conjunction of
simple monadic sentences and negated simple monadic sentences.

2. Within each disjunct ψ1, . . . , ψn, change each negated simple
monadic sentence into an equivalent simple monadic sentence us-
ing the quantifier-negation equivalences.

3. For i = 1, . . . , n put the modified conjuncts in ψi into Algorithm
B. If Algorithm B yields an interpretation, then output this inter-
pretation. If Algorithm B says Inconsistent, then repeat this step
until all disjuncts have been checked, and if all disjuncts fail the
test, output Inconsistent.

PHI 201, Introductory Logic p. 11 of 16



5.4 The small domain method

Although Algorithm C always gives the correct answer, it has the draw-
back that it does not match the way that we normally reason when we
try to decide if some sentences are consistent. The method in this section
is perhaps less “clean” than Algorithm C (e.g. it might be more difficult
to implement it in a computer program), but it might be somewhat more
intuitive.

The “small domain method” is based on the following fact that has
been proven by paid logicians:

Fact: If a pure monadic sentence is consistent, then it is true rel-
ative to some “small” domain. (In fact, the size of the domain
needed is a function of the number of predicates and variables
in the sentences.)

Thus, to test a pure monadic sentence for consistency, do the following:
Find a quantifier-free sentence that is equivalent to the original sentence
relative to a domain with one object; test this resulting sentence for con-
sistency using ordinary truth tables. If the resulting sentence is consistent,
you are done — the original sentence is true in that domain. If the re-
sulting sentence is inconsistent, then start over again with a domain with
two individuals. If the resulting sentence is consistent, you are done —
the original sentence is true in that domain. If the resulting sentence is in-
consistent, then repeat the procedure in a domain with three individuals,
etc., until either you find an interpretation relative to which the sentence
is true, or you conclude that there is no such interpretation. For when you
are entitled to draw the latter conclusion, see the last section.

5.4.1 Finding equivalent quantifier-free sentences

Suppose that the domain X has only three objects 1, 2, 3. In this case, the
universal statement “(x)Fx” is equivalent to a conjunction: “1 is an F, 2 is
an F, and 3 is an F.” Similarly, the existential statement “Something is a F”
is equivalent to the disjunction “Either 1 is an F, or 2 is an F, or 3 is an F.”
In sum, when there are only finitely many things, we can (by naming each
object) translate every simple monadic sentence into a sentence without
quantifiers.

PHI 201, Introductory Logic p. 12 of 16



The same sort of equivalences also hold for truth-functional combina-
tions of simple monadic sentences (i.e., pure monadic sentences). For ex-
ample, if we take the standard association of names with numbers:

Ref(a) = 1 Ref(b) = 2 Ref(c) = 3,

then (x)Fx → (∃x)Fx is equivalent to:

(Fa & Fb & Fc) → (Fa ∨ Fb ∨ Fc).

Generally, in order to obtain a quantifier-free sentence that is equivalent
(relative to some finite domain) to a sentence φ, you should do the follow-
ing:

1. Disassemble φ into truth-functionally simple components;

2. If any of these components are quantified statements, expand
them into equivalent conjunctions or disjunctions;

3. Put the expanded statements back together again using the origi-
nal truth-functional connectives.

Problem. Find a quantifier-free sentence that is equivalent in a domain
with three objects to (x)(Fx → Gx) ∨ (∃x)(Hx & Mx).

Solution: Since the main operator is a disjunction “∨”, we separate the
original sentence into (x)(Fx → Gx) and (∃x)(Hx & Mx). Since these two
statements are quantified statements, we expand them as follows:

(x)(Fx → Gx) ≡ (Fa → Ga) & (Fb → Gb) & (Fc → Gc)
(∃x)(Hx & Mx) ≡ (Ha & Ma) ∨ (Hb & Mb) ∨ (Hc & Mc)

Finally, we put these back together again using ∨ to obtain:

[(Fa → Ga) & (Fb → Gb) & (Fc → Gc)]
∨ [(Ha & Ma) ∨ (Hb & Mb) ∨ (Hc & Mc)].

�

PHI 201, Introductory Logic p. 13 of 16



Problem. For each of the sentences (x)Fx, (∃x)Fx → (∃x)Gx, (x)(Gx ∨
Fx), find a quantifier-free sentence that is equivalent relative to a domain
containing two individuals.

Solution:

(x)Fx ≡ Fa & Fb
(∃x)Fx → (∃x)Gx ≡ (Fa ∨ Fb) → (Ga ∨ Gb)

(x)(Gx ∨ Fx) ≡ (Ga ∨ Fa) & (Gb ∨ Fb)

5.4.2 Testing for consistency

Relative to domains with a finite number of individuals, we can test the
consistency of a sentence of monadic PC using ordinary truth tables: Just
translate the sentence into an equivalent quantifier-free sentence.

Problem. Could (∃x)Fx & (∃x)− Fx be true relative to a domain with only
one object?

Solution: If there were only one thing in the universe, then (∃x)Fx & (∃x)−
Fx would be equivalent to Fa & − Fa, which is a contradiction. So, no; this
sentence cannot be true if there is only one object in the domain. �

Problem. Could (∃x)Fx & (∃x)− Fx be true if there were exactly two ob-
jects in the domain?

Solution: In this case (∃x)Fx & (∃x)− Fx would be equivalent to:

(Fa ∨ Fb) & (−Fa ∨ −Fb).

A truth table test shows that this sentence is consistent, e.g. the truth as-
signment j such that j(Fa) = T and j(Fb) = F. So, yes; (∃x)Fx & (∃x)− Fx
could be true if there were two things in the domain. �

5.4.3 Putting it all together

Problem. Use the small domain method to show that (x)(Fx → −Fx) is
consistent.

Solution: In a domain with one individual, the original statement becomes
Fa → −Fa. This is true when Fa is false. So, (x)(Fx → −Fx) can be true

PHI 201, Introductory Logic p. 14 of 16



in a domain with one individual. In particular, here is an interpretation
which shows explicitly that (x)(Fx → −Fx) is consistent:

X = {1}, Ext(Fx) = ∅.

�

Problem. Use the small domain method to determine if the following ar-
gument is valid:

1. (∃x)Hx → (x)(Fx → Gx)

2. (∃x)Fx // (∃x)Hx → (x)Gx

Solution: Relative to a domain with one member, we get the argument:

1. Ha → (Fa → Ga)

2. Fa // Ha → Ga

A truth table test shows that if the two premises are true, then the con-
clusion must also be true. So, we now try a domain with two members.
Relative to a domain with two members, we get the argument:

1. (Ha ∨ Hb) → ((Fa → Ga) & (Fb → Gb))

2. Fa ∨ Fb // (Ha ∨ Hb) → (Ga & Gb)

A truth table test shows that the premises can be true while the conclusion
is false. For example, we could choose the truth-assignment:

j(Ha) = T j(Hb) = F

j(Ga) = T j(Gb) = F

j(Fa) = T j(Fb) = F

Therefore, the original argument is invalid. �

PHI 201, Introductory Logic p. 15 of 16



5.4.4 Decision procedures

Suppose that you need to determine whether a sentence φ is consistent.
You check a domain with one individual, and φ is false. You check a do-
main with two individuals and φ is false. You check a domain with three
individuals and φ is false. Surely you cannot check domains of all sizes!
When, if ever, are you entitled to conclude that there is no interpretation
relative to which φ is true? Amazingly, it has been shown that:

Suppose that φ is a pure monadic sentence with n predicate letters. If
φ is consistent, then there is an interpretation I whose domain has
less than or equal to 2n elements, and φ is true relative to I .1

So, to take a specific case, if φ has two predicate letters, then for φ to be
consistent, it must be true in some domain with at most 4 objects! It fol-
lows that the small domain method is a “decision procedure” for the con-
sistency of pure monadic sentences: it will answer any question you have
about consistency in a finite amount of time.

1Compare with Boolos and Jeffrey, Computability and Logic, p. 250.

PHI 201, Introductory Logic p. 16 of 16


