
Review Session: Proofs and Counterexamples, Problems 3 and 4

3a. Give a proof that shows that  ‘(x)(y)[Qxy ↔  (z)(Rzx →  Rzy)]’
implies ‘(x)Qxx’.

1 (1) (x)(y)[Qxy ↔ (z)(Rzx → Rzy)] A
1 (2) (y)[Qay ↔ (z)(Rza → Rzy)] 1 UE
1 (3) Qaa ↔ (z)(Rza → Rza) 2 UE
1 (4) [Qaa → (z)(Rza → Rza)] & [(z)(Rza → Rza) → Qaa] 3 def. ↔
1 (5) (z)(Rza → Rza) → Qaa 4 &E
6 (6) Rba A
∅ (7) Rba → Rba 6,6 CP
∅ (8) (z)(Rza → Rza) 7 UI
1 (9) Qaa 5,8 MPP
1 (10) (x)Qxx 9 UI



3b. Give an interpretation that shows that
‘(x)(y)[Qxy ↔ (z)(Rzx → Rzy)]’ does not imply
‘(x)(y)(Qxy → Qyx)’.

We need to find an interpretation that makes the first sentence true but the second sentence false.
Here is a straightforward way to make the second sentence false:

Q: 1    2

R: 1    2

If this were our entire interpretation, it would make the second sentence false.

However, our interpretation also has to make the first sentence true if it is to show that the first
sentence doesn’t imply the second. And, thinking back to the previous problem, we’ve seen that
if the first sentence is true, then the sentence ‘(x)Qxx’ must also be true. This suggests that the
interpretation above won’t work, and that we should consider the following interpretation, which
does make ‘(x)Qxx’ true:

Q:   1   2

R:   1   2

However, this interpretation doesn’t work either. The problem is that the first sentence is still
false relative to this interpretation. To see why, consider the assignment x=2, y=1; under that
assignment, the following is false relative to the interpretation above:

Qxy ↔ (z)(Rzx → Rzy)

(Because, if x=2 and y=1, then ‘Qxy’ is false but ‘(z)(Rzx → Rzy’ is true.)

But if the sentence ‘(x)(y)[Qxy ↔ (z)(Rzx → Rzy)]’ is to be true relative to our interpretation,
then the sentence ‘Qxy ↔ (z)(Rzx → Rzy)’ has to be true on all assignments of x and y.

Here is an interpretation that resolves this problem:



Q:   1   2

R:   1   2

DoQ = {1,2}
Ext(Qxy) = {<1,1>, <1,2>, <2,2>}
Ext(Rxy) = {<2,2>}

This interpretation works: it makes the first sentence true, but the second sentence false—and
this shows that the first sentence doesn’t imply the second.



3c. The sentence ‘(x)(y)[Qxy ↔ (z)(Rzx →  Rzy)]’ implies one of (i)
and (ii) but not the other; give a proof to show the implication in the one
case, and give an interpretation to show the lack of implication in the
other:

(i) (∃y)(x)Rxy → (∃y)(x)Qxy
(ii)  (∃y)(x)Qxy → (∃y)(x)Rxy

Here is a proof that shows that the sentence implies (i):

     Goal: (∃y)(x)Qxy

1 (1) (x)(y)[Qxy ↔ (z)(Rzx → Rzy)] A
2 (2) (∃y)(x)Rxy A for CP
3 (3) (x)Rxa A for EE
1 (4) (y)[Qby ↔ (z)(Rzb → Rzy)] 1 UE
1 (5) Qba ↔ (z)(Rzb → Rza)] 4 UE
1 (6) [Qba → (z)(Rzb → Rza)] & [(z)(Rzb → Rza) → Qba] 5 def. ↔
1 (7) (z)(Rzb → Rza) → Qba 6 &E
8 (8) Rcb A for CP
3 (9) Rca 3 UE
3 (10) Rcb → Rca 8,9 CP
3 (11) (z)(Rzb → Rza) 10 UI
1,3 (12) Qba 7,11 MPP
1,3 (13) (x)Qxa 12 UI
1,3 (14) (∃y)(x)Qxy 13 EI
1,2 (15) (∃y)(x)Qxy 2,3,14 EE
1 (16) (∃y)(x)Rxy → (∃y)(x)Qxy 2,15 CP



Here is an interpretation that shows that ‘(x)(y)[Qxy ↔  (z)(Rzx →  Rzy)]’ does not imply
‘(∃y)(x)Qxy → (∃y)(x)Rxy’:

Q: 1 2         3

R: 1 2 3

DoQ = {1,2,3}
Ext(Qxy) = {<1,1>, <1,2>, <1,3>, <2,1>, <2,2>, <2,3>, <3,1>, <3,2>, <3,3>}
Ext(Rxy) = ∅

Relative to this interpretation, the first sentence is true but the second is false.



4. Use some reliable method to determine whether or not the
following argument is valid. If the argument is invalid, provide a
counterexample interpretation. If the argument is valid, explain
how you know that there can be no counterexample.

(∃x)Gx ∨ ~(x)Fx ,   ~(x)~Fx → ~(x)Fx   —   (∃x)Fx → (∃x)Gx

Let’s begin with a ‘low-tech’ way of trying to find a counterexample.

We want all the premises to be true but the conclusion false relative to our interpretation; thus:

(∃x)Gx ∨ ~(x)Fx ,   ~(x)~Fx → ~(x)Fx   —   (∃x)Fx → (∃x)Gx
T T     F

If the conclusion is to be false, then ‘(∃x)Fx’ must be true, but ‘(∃x)Gx’ false; this forces us to
assign truth values as follows (note that ‘~(x)~Fx’ is equivalent to ‘(∃x)Fx’):

(∃x)Gx ∨ ~(x)Fx ,   ~(x)~Fx → ~(x)Fx   —   (∃x)Fx → (∃x)Gx
  F        T          T T      T     F   F

Now, given what we have here, ‘~(x)Fx’ must be true if the premises are to both be true; thus:

(∃x)Gx ∨ ~(x)Fx ,   ~(x)~Fx → ~(x)Fx   —   (∃x)Fx → (∃x)Gx
  F        T  T          T            T  T      T     F   F

And this tells us that we want an interpretation that assigns truth-values as follows:

v((∃x)Gx) = F
v(~(x)Fx) = T
v((∃x)Fx) = T

So, in our interpretation there can’t be anything in the extension of G, it can’t be the case that
everything is in the extension of F, but something must be in the extension of F.

This suggests the following interpretation:

DoQ = {1,2}
Ext(Gx) = ∅
Ext(Fx) = {1}

Relative to this interpretation, all the premises of the argument are true but the conclusion is
false, and this shows that the argument is invalid.



Now let’s use the small domain method to find a counterexample to the argument. Here is the
argument again:

(∃x)Gx ∨ ~(x)Fx ,   ~(x)~Fx → ~(x)Fx   —   (∃x)Fx → (∃x)Gx

We want to see whether the conjunction of the premises and the negation of the conclusion is
consistent; if it is, then the argument is invalid, since that means that there is an interpretation
that makes all the premises true but the conclusion false.

Here is the conjunction of the premises and the negation of the conclusion:

[(∃x)Gx ∨ ~(x)Fx] & [~(x)~Fx → ~(x)Fx] & ~[(∃x)Fx → (∃x)Gx]

Now, let’s turn this into a sentence that will be easier to deal with. To do that, we note that
‘~(x)~Fx’ is equivalent to ‘(∃x)Fx’, and that ‘~(x)Fx’ is equivalent to ‘(∃x)~Fx’. Thus, we get
the following:

[(∃x)Gx ∨ (∃x)~Fx] & [(∃x)Fx → (∃x)~Fx] & ~[(∃x)Fx → (∃x)Gx]

Next, we find a quantifier-free sentence that is equivalent to the one above relative to a domain
of one object, and then test that sentence for consistency (see handout). Here is the resulting
sentence:

[Ga ∨ ~Fa] & [Fa → ~Fa] & ~[Fa → Ga]

This sentence is inconsistent (as a truth-table test reveals).

Given that the equivalent sentence relative to a domain of one object is inconsistent, we next find
a quantifier-free sentence that is equivalent relative to a domain of two objects, and then test that
sentence for consistency. Here is the resulting sentence:

[(Ga ∨ Gb) ∨ (~Fa ∨ ~Fb)] & [(Fa ∨ Fb) → (~Fa ∨ ~Fb)] & ~[(Fa ∨ Fb) → (Ga ∨ Gb)]

This sentence is consistent, as the following truth-assignment (discoverable by truth-tables)
shows: v(Ga) = F, v(Gb) = F, v(Fa) = T, v(Fb) = F. And this tells us that the following
interpretation is a counterexample to the argument (see handout on Algorithm A):

DoQ = {1,2}
Ext(Gx) = ∅
Ext(Fx) = {1}

And this is the same interpretation we arrived at by the low-tech method.



Finally, let’s use Algorithm C to find a counterexample to the argument. Here is the argument
again:

(∃x)Gx ∨ ~(x)Fx ,   ~(x)~Fx → ~(x)Fx   —   (∃x)Fx → (∃x)Gx

Again, we want to see whether the conjunction of the premises and the negation of the
conclusion is consistent; if it is, then the argument is invalid, since that means that there is an
interpretation that makes all the premises true but the conclusion false.

Here again is the conjunction of the premises and the negation of the conclusion:

[(∃x)Gx ∨ ~(x)Fx] & [~(x)~Fx → ~(x)Fx] & ~[(∃x)Fx → (∃x)Gx]

Now, let’s again turn this into a sentence that will be easier to deal with. To do that, we note that
‘~(x)~Fx’ is equivalent to ‘(∃x)Fx’, and that ‘~(x)Fx’ is equivalent to ‘(∃x)~Fx’. Thus, we get
the following:

[(∃x)Gx ∨ (∃x)~Fx] & [(∃x)Fx → (∃x)~Fx] & ~[(∃x)Fx → (∃x)Gx]

The next step is to put this sentence into ‘disjunctive normal form’. (See Lemmon pp. 190-5).
You can follow along as I transform this into DNF (no easy task).

[(∃x)Gx ∨ (∃x)~Fx] & [~(∃x)Fx ∨ (∃x)~Fx] & [(∃x)Fx & ~(∃x)Gx]

(In the last step I used the fact that ‘A → B’ is equivalent to ‘~A ∨ B’, and DeMorgan’s Law.)

[(∃x)Gx ∨ (∃x)~Fx] & {[(∃x)Fx & ~(∃x)Gx & ~(∃x)Fx] ∨ [(∃x)Fx & ~(∃x)Gx & (∃x)~Fx]}

(In the last step I used the fact that ‘A & (B ∨ C)’ is equivalent to ‘(A & B) ∨ (A & C)’.)

{(∃x)Fx & ~(∃x)Gx & ~(∃x)Fx & [(∃x)Gx ∨ (∃x)~Fx]} ∨ {(∃x)Fx & ~(∃x)Gx &
(∃x)~Fx & [(∃x)Gx ∨ (∃x)~Fx]}

(In the last step I used the fact that ‘A & (B ∨ C)’ is equivalent to ‘(A & B) ∨ (A & C)’.)

{(∃x)Fx & ~(∃x)Gx & ([~(∃x)Fx & (∃x)Gx] ∨ [~(∃x)Fx & (∃x)~Fx])} ∨ {(∃x)Fx & ~(∃x)Gx &
([(∃x)~Fx & (∃x)Gx] ∨ (∃x)~Fx)}

(In the last step I used the fact that ‘A & (B ∨ C)’ is equivalent to ‘(A & B) ∨ (A & C)’, and the
fact that ‘A & A’ is equivalent to ‘A’.)

{(∃x)Fx & ([~(∃x)Gx & ~(∃x)Fx & (∃x)Gx] ∨ [~(∃x)Gx & ~(∃x)Fx & (∃x)~Fx])} ∨ {(∃x)Fx &
([~(∃x)Gx & (∃x)~Fx & (∃x)Gx] ∨ [~(∃x)Gx & (∃x)~Fx])}

(In the last step I used the fact that ‘A & (B ∨ C)’ is equivalent to ‘(A & B) ∨ (A & C)’.)



[(∃x)Fx & ~(∃x)Gx & ~(∃x)Fx & (∃x)Gx] ∨ [(∃x)Fx & ~(∃x)Gx & ~(∃x)Fx & (∃x)~Fx] ∨
[(∃x)Fx & ~(∃x)Gx & (∃x)~Fx & (∃x)Gx] ∨ [(∃x)Fx & ~(∃x)Gx & (∃x)~Fx]

(In the last step I used the fact that ‘A & (B ∨ C)’ is equivalent to ‘(A & B) ∨ (A & C)’.)

Now that we have a DNF, the next step is to change each negated simple monadic sentence
within each disjunct into an equivalent simple monadic sentence using the quantifier-negation
rules so that we can test each disjunct for consistency using Algorithm B. However, I’m only
going to do this for the last disjunct, since it is already clear that the other disjuncts are
inconsistent, since they contain contradictions. Here then is the relevant sentence that is
equivalent to the last disjunct:

(∃x)Fx & (∃x)~Fx & (x)~Gx

Now we use Algorithm B, which in turn tells us to put the following sentence into Algorithm A
(see handout):

Fa & ~Fb & ~Ga & ~Gb

This sentence is consistent, as the following truth-assignment (discoverable by truth-tables)
shows: v(Fa) = T, v(Fb) = F, v(Ga) = F, v(Gb) = F. And this tells us that the following
interpretation is a counterexample to the argument (see handout):

DoQ = {1,2}
Ext(Fx) = {1}
Ext(Gx) = ∅

And this is the same interpretation we arrived at by the low-tech method and the small domain
method.


