Lemma (Weakening). Let Γ, Δ be finite sets of sentences. If $\Gamma \vdash A$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash A$.

Proof: Given a proof of A from the sentences in Γ , we can construct a proof of A from the sentences in Δ by inserting the appropriate assumptions, and then using &I and &E repeatedly.

Definition: For each valuation v and sentence A, let A^v be A if v(A) = T, and let A^v be -A if v(A) = F.

Definition: For each valuation v and wff A, let

 $\Gamma(v, A) = \{ B^v : B \text{ is an atomic sentence occurring in } A \}.$

Lemma. For each wff A, and valuation v, we have $\Gamma(v, A) \vdash A^v$.

Proof: We need to show that for every wff A,

$$(v)[\Gamma(v,A) \vdash A^v]. \tag{1}$$

We prove this by induction on the construction of wffs.

<u>Base Case (Atomic Sentence)</u>: We need to show that if A is an atomic sentence then Formula (1) holds for A. But if A is an atomic sentence then $\Gamma(v, A) = \{A^v\}$, and we have $\{A^v\} \vdash A^v$ by the Rule of Assumptions.

<u>Inductive Case (-)</u>: We must establish the following conditional: If Formula (1) holds for A then it also holds for -A.

Suppose that Formula (1) holds for A. Let v be an arbitrary valuation. If v(-A) = T then v(A) = F and the induction hypothesis yields $\Gamma(v, A) \vdash -A$. But $\Gamma(v, -A) = \Gamma(v, A)$, and so $\Gamma(v, -A) \vdash (-A)^v$. If v(-A) = F then v(A) = T and the induction hypothesis yields $\Gamma(v, A) \vdash A$. Applying the inference rule DN, we obtain $\Gamma(v, A) \vdash -A$, and so $\Gamma(v, -A) \vdash (-A)^v$.

<u>Inductive Case (&)</u>: We must establish the following conditional: If Formula (1) holds for A and B, then it also holds for A&B. For this, note that $\Gamma(v, A\&B) = \Gamma(v, A) \cup \Gamma(v, B)$.

Suppose that Formula (1) holds for A and B. Let v be a valuation. Then either v(A&B) = T or v(A&B) = F. We consider these two cases in turn. If v(A&B) = T then v(A) = T =

v(B), and so $A^v = A$, $B^v = B$, and $(A\&B)^v = A\&B$. Since Formula (1) holds for A and B, we have

 $\Gamma(v, A) \vdash A, \qquad \Gamma(v, B) \vdash B.$

By &-Introduction, we obtain

 $\Gamma(v, A) \cup \Gamma(v, B) \vdash A\&B,$

and replacing with equalities, we obtain

 $\Gamma(v, A\&B) \vdash (A\&B)^v.$

If v(A&B) = F, then either v(A) = F or v(B) = F. If v(A) = F, then $A^v = -A$, and since Formula (1) holds for A we have

 $\Gamma(v, A) \vdash -A.$

Then \lor -Introduction gives

$$\Gamma(v,A) \vdash -A \lor -B,$$

and SI(De Morgan's) gives

 $\Gamma(v, A) \vdash -(A\&B).$

By Weakening, $\Gamma(v, A\&B) \vdash (A\&B)^v$. A similar argument shows that if v(B) = F then $\Gamma(v, A\&B) \vdash (A\&B)^v$. Therefore, in both cases [when v(A&B) = T and when v(A&B) = F], $\Gamma(v, A\&B) \vdash (A\&B)^v$, i.e. Formula (1) holds for A&B.

<u>Inductive Case (\lor)</u>: We need to establish the conditional: If Formula (1) holds for A, B, then it also holds for $A \lor B$.

Let v be a valuation. Then either $v(A \lor B) = T$ or $v(A \lor B) = F$. In the former case, either v(A) = T or v(B) = T. If v(A) = T, then the inductive hypothesis yields

 $\Gamma(v, A) \vdash A,$

weakening yields

 $\Gamma(v, A \lor B) \vdash A,$

and \lor -Introduction yields

 $\Gamma(v, A \lor B) \vdash A \lor B.$

A similar argument shows that if v(B) = T, then

 $\Gamma(v, A \lor B) \vdash A \lor B.$

If $v(A \vee B) = F$ then v(A) = F and v(B) = F. The inductive hypothesis then yields

 $\Gamma(v, A) \vdash -A, \qquad \Gamma(v, B) \vdash -B.$

By &-Introduction, we obtain

 $\Gamma(v, A) \cup \Gamma(v, B) \vdash -A\& -B,$

and by SI(De Morgan's), we obtain

 $\Gamma(v, A) \cup \Gamma(v, B) \vdash -(A \lor B).$

Since $\Gamma(v, A \lor B) = \Gamma(v, A) \cup \Gamma(v, B)$ and $v(A \lor B) = F$, we have

$$\Gamma(v, A \lor B) \vdash (A \lor B)^v$$

<u>Inductive Case (\rightarrow) </u>: We need to establish the conditional: If Formula (1) holds for A and B then it also holds for $A \rightarrow B$.

Suppose that Formula (1) holds for A and B. Let v be a valuation. If $v(A \to B) = T$ then either v(A) = F or v(B) = T. If v(A) = F then the induction hypothesis yields $\Gamma(v, A) \vdash -A$, SI(Negative Paradox) yields $\Gamma(v, A) \vdash A \to B$, and the Weakening Lemma yields $\Gamma(v, A \to B) \vdash A \to B$. If v(B) = T then the induction hypothesis yields $\Gamma(v, B) \vdash B$, SI(Positive Paradox) yields $\Gamma(v, B) \vdash A \to B$, and the Weakening Lemma yields $\Gamma(v, A \to B) \vdash A \to B$.

If $v(A \to B) = F$ then v(A) = T and v(B) = F. Then the induction hypothesis yields

 $\Gamma(v, A) \vdash A, \qquad \Gamma(v, B) \vdash -B,$

and &-Introduction yields

 $\Gamma(v, A \to B) \vdash A\& - B.$

By SI(Material Implication),

 $\Gamma(v, A \to B) \vdash -(A \to B).$

Definition: If v is a valuation and A is a wff, we let C(v, A) denote the conjunction of all sentences in $\Gamma(v, A)$.

For example, if $A = P \rightarrow (-Q \lor R)$ and v is the valuation such that v(P) = v(Q) = T and v(R) = F, then

$$C(v, A) = P\&Q\& - R.$$

Note that a previous lemma shows that

$$\Gamma(v,A) \vdash A^v,$$

for any valuation v, and wff A. Using &-Elimination, it follows that

 $C(v, A) \vdash A^v$,

for any valuation v, and wff A.

Theorem (Weak Completeness). If A is a tautology then $\vdash A$.

Proof. Let P_1, \ldots, P_n be the atomic sentences that occur in A. We show first, using induction on n, that the sentence

$$(P_1\&\cdots\&P_n)\lor(P_1\&\cdots\&-P_n)\lor\cdots\lor(-P_1\&\cdots\&-P_n)$$
(2)

can be proven without any dependencies.

<u>Base Case (n = 1)</u>: This is just the tautology $P_1 \vee -P_1$.

<u>Inductive Case</u>: We show that if the result is true for n, then it is true for n + 1. So, suppose that a proof is given of Sentence (2). Now we know that we can obtain a proof of $P_{n+1} \vee -P_{n+1}$. So, using &-Introduction, we have a proof

$$[(P_1\&\cdots\&P_n)\lor(P_1\&\cdots\&-P_n)\lor\cdots\lor(-P_1\&\cdots\&-P_n)]\&(P_{n+1}\lor-P_{n+1}).$$

Using SI(Distribution), we obtain the result.

Let A be an arbitrary tautology, and let v be a valuation. Then $A^v = A$, and by Lemma, $\Gamma(v, A) \vdash A$. Using &-Elimination if necessary, it follows that $C(v, A) \vdash A$. By Lemma X,

$$\vdash C(v_1, A) \lor \cdots \lor C(v_{2^n}, A).$$

Thus, by \lor -Elimination, $\vdash A$.

Theorem (Completeness). If $A_1, \ldots, A_n \models B$ then $A_1, \ldots, A_n \vdash B$.

Proof: Suppose that $A_1, \ldots, A_n \models B$. By truth tables, $\models (A_1 \& \cdots \& A_n) \to B$. By Weak Completeness, $\vdash (A_1 \& \cdots \& A_n) \to B$. Thus, if A_1, \ldots, A_n occur as assumptions on lines 1 through n, then &-Introduction yields $A_1 \& \cdots \& A_n$ depending on $1, \ldots, n$. By SI, we can insert $(A_1 \& \cdots \& A_n) \to B$ with no dependencies, and then MPP yields B, depending on $1, \ldots, n$. That is, $A_1, \ldots, A_n \vdash B$.