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Preface to the .PDF Edition

With a view to the increasing academic importance of
digital media this electronic edition was created by
Nousoul Digital Publishers. Thanks to the diligent work
and expertise of Brandon P. Hopkins this edition has fea-
tures that no book could have in the year of its original
publication: searchable text and hyperlinked notes.

The text itself remains essentially unchanged, but in
addition to typographical corrections there are also some
substantive corrections. Apart from the change in the
solution to exercise 5.4 of Chapter 3, none comprise more
than a few words or symbols. However, as different as
digital media are from print media, so too is digital for-
matting different from print formatting. Thus there are
significant formatting differences from the earlier edition.
The font and page dimensions differ, as well as the page
numbering, which is made to accord with the pagina-
tion automatically assigned to multi-paged documents by
most standard document-readers.

Bas van Fraassen
2016
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Preface

This book is based on my lectures in advanced and in-
termediate logic courses at Yale University 1966–1968,
Indiana University 1969–1970. These courses were in-
tended specifically for philosophy students with one pre-
vious course in formal logic.

The general aim of this book is to provide a broad
framework in which both classical and nonclassical logics
may be studied and appraised. The semantic approach
adopted here was first systematically developed by Alfred
Tarski; its development over the past forty years can
only be very partially documented in our bibliographi-
cal notes.

After a preliminary chapter presenting the fairly ele-
mentary techniques to be utilized, Chapters 2 and 3 pro-
vide the general concepts and methods of formal seman-
tics of logic. These chapters are illustrated throughout
by the propositional calculus, the most familiar logical
system we have. Chapters 4 and 5 are devoted to appli-
cations to quantificational logic and to various nonclassi-
cal logics, respectively. In Chapter 4 we develop first the
usual semantics for quantificational logic. We then add
a brief introduction to model theory, and a discussion of
several forms of the Löwenheim-Skolem theorem. More
than half of this chapter is devoted to standard material:
for example, Lindenbaum’s theorem concerning charac-
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teristic matrices, and the usual Kripke-style semantics
for modal logic.

But in view of the increasing influence of formal se-
mantics on contemporary philosophical discussion, the
emphasis is everywhere on applications to nonclassical
logics and nonclassical interpretations of classical logic.
In the Introduction I sketch a view of the nature of logic
that is meant to to accommodate the existence and im-
portance of nonclassical logics. In Chapter 2 the syntac-
tic and semantic concepts used are purposely presented
in a manner so general that they apply to languages of
arbitrary structure. The calculus of systems as developed
there and the problems of axiomatizability that are con-
sidered pertain to deductive systems formulated in any
kind of formal language. The concept of compactness
is dissected into a family of concepts, equivalent in the
classical case but not elsewhere. Proof-theoretic methods
are entirely avoided in this chapter, and the methods of
proving compactness studied do not involve reference to
any logical system.

Chapter 3 is devoted to the semantic appraisal of
logical systems. As in the case for Chapter 2, the con-
cepts and methods introduced are illustrated throughout
with reference to the most familiar logical system, clas-
sical propositional logic. Three kinds of interpretations
of this system are considered: the usual one, interpreta-
tions through matrices, and interpretations through su-
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pervaluations. In Chapter 4, concerned with applications
to quantificational logic, we only consider one unusual
interpretation of the familiar logic: what Ruth Barcan
Marcus calls the substitution interpretation. In Chapter
5, devoted to nonclassical logics, there are also sections
dealing with subjects that have so far been discussed only
in the journals: transformation semantics for modal logic,
supervaluations, and presuppositions. This chapter ends
with an analysis of the concept of truth, in which it is
argued that Tarski’s theory of truth does not carry over
unchanged to nonclassical cases.

In conclusion I would like to acknowledge gratefully
my many debts to teachers, colleagues, and students:
especially my teachers Karel Lambert and Nuel D.
Belnap, Jr., but also Alan Anderson, Nino Cocchiarella,
J. Michael Dunn, Frederic Fitch, Hugues Leblanc, Robert
Meyer (who read an earlier draft of this book and made
many valuable suggestions), Nicholas Rescher, Richmond
H. Thomason, and many others. Whatever shortcomings
this work has, it has in spite of what I learned from them.

Bas C. van Fraassen
1971
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Introduction:
Aim and Structure of
Logical Theory

Logical studies comprise today both logic proper and
metalogic. We distinguish these subjects by their aims:
the aim of logic proper is to develop methods for the logi-
cal appraisal of reasoning,1 and the aim of metalogic is to
develop methods for the appraisal of logical methods. In
pursuing the aims of logic, it has been fruitful to proceed
systematically, that is, to construct formal axiomatic sys-
tems of various kinds. These logical systems provide the
immediate subject matter for metalogical investigation.

Metalogic can in turn be roughly divided into two
parts: proof theory and formal semantics.2 In proof the-
ory, the logical systems are treated as abstract math-
ematical systems, and the questions dealt with relate

12



directly to the specific set of axioms and rules used to
formulate the system.3 In formal semantics, the logical
systems are studied from the point of view of their pos-
sible interpretations—with special reference to their in-
tended interpretation, if such there be. This has led to
a profound analysis of the structure of language, which
has proved to be of importance for many philosophical
discussions. While it is not possible to proceed with the
semantic analysis of a logical system without due atten-
tion to some proof-theoretical results, it is important to
emphasize their relative independence. This is nowhere
clearer than with respect to the compactness problem,
a central problem studied in this book. For the usual
procedure in logic texts is to use proof-theoretic results
concerning a system to establish a certain semantic result
(strong completeness of the system) and then to deduce
compactness as a corollary. But the statement of the
compactness theorem involves no reference whatever to
the logical system; it concerns only the language under
discussion. (The system in question happens to pertain
to that language, but there is no essential connection be-
tween a given language and any axiomatic system, as we
understand those terms.) In such cases it seems impor-
tant to attempt purely semantic proofs, without recourse
to proof theory.

A certain amount of philosophical sound and fury has
been raised by the question:4 Which logic is the right
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logic? This question would not have made sense be-
fore alternative logics had been devised, but with the
advent of intuitionistic, many-valued, and quantum log-
ics it became important. The question clearly has a
presupposition—that there is a unique right logic—which
stands itself in need of philosophical scrutiny. Here the
semantic point of view may help to clarify the issue.

In formal semantics, we deal with a class of structures
called (formal) languages ; they are called languages be-
cause they are believed to provide rational reconstruc-
tions of (parts of) natural languages and, indeed, ade-
quate reconstructions relative to certain purposes. A log-
ical system is considered correct for a language if it pro-
vides a catalogue of the valid inferences in that language.
So the question “Which is the right logic?” may perhaps
be rephrased as: Assuming that natural language is ade-
quately represented by a certain formal language L, what
logic is correct for L from the semantic point of view?

One task we now have is to clarify such notions as
“valid inference in a language” and “correct for a lan-
guage.” These are basic concerns of formal semantics.
But if the question raised above has a right answer, it
would seem that in formal semantics we ought to consider
only languages of a certain type: those which adequately
represent natural language.

But the assumption that natural language is ade-
quately represented, as a whole and for all relevant pur-
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poses, by a single known formal language no longer seems
a very plausible assumption. This assumption was clearly
made by ideal language philosophers, from Bertrand
Russell, via the early Wittgenstein, to the Logical Posi-
tivists. It was thought that natural language has a cer-
tain discoverable skeleton, obscured at present only by
the grammatical vagaries and idiotismes that grew in the
mouths of the vulgar. Indeed, it was apparently thought
that this hidden ideal language had an adequate recon-
struction in Principia Mathematica, with minor additions
needed to take care of nonmathematical subjects. The
poet T. S. Eliot reports the enthusiasm with which this
idea was received by young philosophers:

Those students of philosophy who had not come to
philosophy from mathematics did their best (at least,
in the university in which my studies were conducted)
to try to become imitation mathematicians—at least
to the extent of acquainting themselves with the para-
phernalia of symbolic logic. (I remember one enthu-
siastic contemporary who devised a Symbolic Ethics,
for which he had to invent several symbols not found
in the Principia Mathematica.)5

Enthusiasm may still be found, but the ideal language
paradigm has suffered somewhat in the intervening
decades.
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To the ideal language view we may oppose the view
of the later Wittgenstein, that natural language provides
us with the resources for playing a variety of language
games of divergent structure. Ordinary language is then
the collection of such games that are actually played,
and it becomes a reasonable aim to provide rational re-
construction for some of these games. So different formal
languages may represent different language games, and
different logical systems may specify the valid rules of
inference within different language games.

The use of the term “game” should not be taken to
imply that the correct rules of inference are arbitrary.
From the semantic point of view, the correct logic is al-
ways derivative: It is found by examining semantic re-
lations (defined in terms of truth, reference, and so on)
among statements. Thus, if what the intuitionist means
by his statements is understood, it can then be seen that
intuitionistic logic is the correct logic for his language.

Since we have now denied that there is a unique right
logic we must face the charge of a self-defeating rela-
tivism. For what logical system shall govern the appraisal
of our own reasoning in semantic inquiry? Our answer
to this is fairly straightforward: In Metalogic we use a
part of natural language commonly known as “mathe-
matical English,” in which we describe and discuss only
mathematical (that is, set-theoretic) objects. When this
language is understood it can be seen that classical logic
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(the theory of truth functions, quantifiers, and identity
as taught in elementary logic courses today) is the cor-
rect logic for that language. To understand this language
may involve understanding our beliefs concerning what
sets are like and what sets exist—and some of these be-
liefs are rather audacious.6 It may turn out that some of
these beliefs are untenable; that is, they may have some
implications that are inconsistent by our own logical stan-
dards. But as an abstract possibility, this danger always
exists—we cannot demonstrate the absolute consistency
of our own logic without circularity. Nor is it necessary
to counsel anyone to live dangerously; we do.

To sum up then, we accept classical logic as correct
within a certain (perhaps rather limited) domain; and
the language used in this book is within that domain.
But we use this language to study and describe other
languages and other logical systems, as well as our own.
For our aim is to provide a framework for the appraisal
of logical systems in general, classical and nonclassical.

Notes

1. For an exposition of this view of logic, see P. F. Strawson, An
Introduction to Logical Theory (London: Methuen, 1952).

2. The division is not exact; many questions have been dealt
with from both points of view, and some proof-theoretic
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methods and results are indispensable in semantics.

3. The term “proof theory” was introduced by Hilbert; for sur-
veys of recent work, see G. Kreisel, “Mathematical Logic,”
in Lectures on Modern Mathematics, Vol. III, T. L. Saaty,
ed. (New York: Wiley, 1965) pp. 85–195, and “A Survey of
Proof Theory,” Journal of Symbolic Logic, 33 (Sept. 1968),
pp. 321–388.

4. See, for example, P. Banks (apparently a pseudonym), “On
the Philosophical Interpretation of Logic: An Aristotelian
Dialogue,” in Logico-Philosophical Studies, A. Menne, ed.
(Dordrecht, Holland: Reidel, 1962), pp. 1–14; E. Beth,
“Banks ab omni naevo vindicatus,” Contributions to Logic
and Methodology in Honor of J. M. Bochenski, A. Tymie-
niecka, ed. (Amsterdam: North-Holland, 1965), pp. 98–106;
N. Rescher, Many-Valued Logic (New York: McGraw-Hill,
1969), chap. 3.

5. T. S. Eliot, Introduction to J. Pieper, Leisure: The Basis of
Culture, A. Dru, trans. (New York: New American Library,
1963), p. 12.

6. We are deliberately speaking of mathematical objects in the
idiom of naive platonism; the reader is asked not to infer that
this is our position in philosophy of mathematics. After all,
any philosophy of mathematics must eventually make sense
of the common language of mathematical mankind.
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Chapter 1

Mathematical
Preliminaries

1.1 Intuitive Logic and

Set Theory

The language to be used in this book is part of natu-
ral language, and in this section we wish to make a few
preliminary remarks on the conventions to be followed.

First, we shall use the common logical connectives
in their truth-functional sense: “if . . . then” is the con-
nective of material implication, and so on. Second, we
shall use variables; if we say, for example, “For all sen-
tences A of formal language L, . . . A . . .,” then the letter
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A is used as a bound variable and the letter L as a free
(substitutive) variable. The logic taught in elementary
logic courses is the correct logic for the appraisal of our
arguments involving these locutions.

The objects referred to (sentences, sets of sentences,
formal languages, logical systems) always are or can be
construed as mathematical objects. All mathematical
objects are sets, and our main tool will be elementary
set theory. Our use of this theory will be almost en-
tirely intuitive, and many of our arguments concerning
sets will be valid by the principles of logic alone. The
reader need not have studied set theory per se to follow
our arguments; if he knows quantificational logic, the re-
mainder of this chapter should provide him with all the
mathematical tools he will need.1

We shall read a sentence of the form A ∈ B as “A is
a member of B”; when this is true, B is a set. (We write
A /∈ B for the negation of A ∈ B.) There is, in addition,
a set that has no members, Λ, the null set. Synony-
mously with “set” we shall also use “class” and “family,”
and synonymously with “is a member of” we use “is in”
or “belongs to,” just to relieve the monotony of our al-
ready poverty-stricken jargon. When Fx is a sentence,
possibly containing the variable x, then {x : Fx} is a sin-
gular term, the name of the set of values of x such that
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Fx holds. That is, we accept the principle

(Abs.) For all y, y ∈ {x : Fx} iff Fy,

where “iff” abbreviates “if and only if.” Let us hasten
to add that “for all y” is to be taken as redundantly
equivalent to “for all existent y,” and that {x : Fx} need
not exist (in that case it is now sometimes called a virtual
class, although “nonexistent class” would do just as well).
For example, the Russell class

R = {x : x /∈ x}

does not exist; for if it did, the principle (Abs.) would
yield the contradiction

R ∈ R iff R /∈ R.

What sets do exist then? This question is answered, al-
though not completely, by the axioms of set theory. For
the time being the reader need only keep in mind that
these axioms mean to guarantee the existence of any set
seriously discussed in mathematics.

Using the class-abstract notation we have just intro-
duced, and the notions of ordinary logic, we may char-
acterize some of the common set-theoretic notions as fol-
lows:

21



null set: Λ = {x : x 6= x}.
inclusion: X ⊆ Y iff every member of X

is a member of Y .

complement: X = {x : x /∈ X}.
intersection: X ∩ Y = {x : x ∈ X and x ∈ Y }.
union: X ∪ Y = {x : x ∈ X or x ∈ Y }.
difference: X − Y = {x : x ∈ X and x /∈ Y }.

(If X ⊆ Y we call X a subset of Y and Y a superset
of X.) We read x = y as “x is identical with y” and
x 6= x means not(x = x). Many arguments about sets
can be appraised simply by translating out these sym-
bols using ordinary logic, the principle (Abs.) and the
extensionality principle

(Ext.) X = Y iff X ⊆ Y and Y ⊆ X,

that is, iff X and Y have all members in common (where
the variables X and Y range over sets). Venn diagrams
are also a well-known aid for such appraisal.

Intersection and union have infinite counterparts. For
example, if F is a family of sets, we may talk about the
intersection of all the members of F :⋂

F = {x : x ∈ X for everyX ∈ F},

and about the union of all its members:⋃
F = {x : x ∈ X for someX ∈ F}.
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This notation may be abbreviated in various ways. If F
is a finite family with as members exactly A1, . . . , An,
we write

F = {A1, . . . , An},⋂
F =

n⋂
i=1

Ai,

and so on. There are further obvious abbreviations; for
example, if F is {X : X = Y for some Y ∈ G}, we also
write F as {Y : Y ∈ G} and

⋂
F as

⋂
Y ∈G Y ; similarly for

other cases. The principles that govern infinite union and
intersection are in general just the obvious analogues of
their finitary counterparts; in any case, we can translate
into more primitive notation when we wish to check this.

1.2 Mathematical Structures

We shall now introduce certain technical terms, such as
“sequence,” “relation,” “function,” and “operation,” and
explain the conventions that we adopt concerning their
usage. Using these notions, we will be able to explain the
general concept of a mathematical structure.

We denote by {x1, . . . , xn} the set whose members
are x1, . . . , xn. The order in which these members are
listed is of course irrelevant. But besides this set, there is
also the sequence 〈x1, . . . , xn〉; sometimes this is called
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the ordered set whose members are x1, . . . , xn, to sig-
nify that here the order or listing is relevant. If the se-
quence has n members listed (not necessarily all distinct,
of course), we also call it an n-tuple. A 2-tuple is also
called a couple or ordered pair ; a 3-tuple a triple, and so
on.

A binary relation is a relation that holds between two
objects, and we write “Rxy” or “xRy” for “x bears R to
y.” Similarly, an n-ary relation may be ascribed in a
sentence of the form Rx1, . . . , xn; as in “x is the person
sitting between y and z” or “points x and y separate point
z from w.” With an n-ary relation R we can associate
the set of n-tuples that forms the extension of R,

{〈x1, . . . , xn〉 : Rx1, . . . , xn},

and in set theory it is customary to identify the relation
R with that set:

R = {〈x1, . . . , xn〉 : Rx1, . . . , xn}.

Hence an n-ary relation is a set of n-tuples.
The set of all n-tuples taken from a given set X is

denoted as Xn (the nth Cartesian power of X). The set
of n-tuples of which the ith member is taken from Xi

is denoted as X1 × X2 · · ·Xn (the Cartesian product of
X1, . . . , Xn). So

R ⊆ X2
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means that R is a binary relation on X, and

R ⊆ X × Y

means that R is a binary relation borne by members of X
to members of Y . Happily the intuitive notion of relation
is a good guide to its use in proofs; very seldom do we
have to remember that R is to be identified with the set of
ordered pairs 〈x, y〉 such that x bears R to y. The notions
of sequence and Cartesian product also have infinitary
analogues (denoted as 〈x1, x2, . . .〉 and X1 ×X2 × · · · ),
of course.

A function is a relation; an n-ary function f being an
(n+ 1)-ary relation R satisfying the condition

If Rx1 · · ·xnxn+1 and Rx1 · · ·xny, then xn+1 = y,

in which case we write

f(x1, . . . , xn) = xn+1.

Unary functions are most important; we say that f maps
X into Y iff f ⊆ X×Y and f(x) exists for every x ∈ X.
Also, f maps X onto Y iff, in addition, Y has no proper
subset Z such that f ⊆ X × Z (“every member of Y
is the f -image of some member of X”). Finally, f is a
one-to-one mapping of X into Y iff f maps X into Y and

If f(x) = f(y), then x = y, for all x, y ∈ X.
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When f maps Xn into X, we call it an operation on
X. We sometimes use “transformation” or “mapping”
instead of “function” and “operator” instead of “opera-
tion”; usage is not uniform here.2

We must now address ourselves to the rather elusive
notion of a mathematical structure or mathematical sys-
tem. Let us begin with a simple example. A group is a
system that comprises a set of elements, a binary oper-
ation of “group multiplication,” and a unary operation,
the “inverse”. Using ∧ and −1 to denote these two op-
erations, respectively, the peculiar properties of a group
are given by the axioms

1. (x ∧ y) ∧ z = x ∧ (y ∧ z).

2. There is an element e such that

(a) x ∧ e = x;
(b) x ∧ x−1 = e.

What we have just given is an informal definition, be-
cause it uses the notions of “system” and “comprises,”
which are not defined.

A formal definition of the notion of “group” is the
following:

A group is a triple 〈E, ∧, −1〉, where E is a nonempty
set (the elements), ∧ is a binary operation on E, and
−1 is a unary operation on E, and such that axioms 1
and 2 hold for all members x, y, and z of E.
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This pattern of definition is today in common use. It
leads to the following general notion of mathematical
structure:

A mathematical structure (or system) is a sequence
〈E1, E2, . . . ; R1, R2, . . . ; f1, f2, . . . ; o1, o2, . . . 〉,
where E1, E2, . . . are sets; R1, R2, . . . are zero or
more relations included in E1 × E2 × · · · ; f1, f2, . . .
are zero or more functions included in E1 ×E2 × · · · ;
and o1, o2, . . . are zero or more objects included in
E1 ∪ E2 ∪ · · · .

It is easy to see that by these definitions, a group is indeed
a mathematical structure or system.

But this pattern of definition also has some draw-
backs. For example, if 〈E, ∧, −1〉 is a group, why isn’t
〈∧, E, −1〉? Second, let us note that a semigroup is often
defined as a system comprising a set of elements and a
binary operation ∧ such that axiom 1 holds. By the in-
formal definitions, every group is also a semigroup. But
by the formal pattern of definition, a semigroup is an or-
dered couple, and a group is a triple, so no group is a
semigroup.

In other words, the formal pattern of definition pro-
vides us only with “typical representatives” of the in-
tuitively constructed systems. Too much attention to
these niceties would be pedantic, however. In our intu-
itive commentary we shall avail ourselves of the broader,
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intuitive notion, and in our formal theory of the formal
pattern of definition.

There is one more topic that we must briefly consider
here: the cardinality, or number of members, of a set.
When a system comprises exactly one set, plus relations
and operations on that set, we also talk of the cardinality
of the system, meaning the cardinality of that set. What
is that cardinality? Well, we shall make this notion partly
intuitive and partly formal. The formal part is given by
the principle

X has the same cardinality as Y iff there is a one-to-
one mapping of X onto Y .

Because of this we can talk of X as having the cardinality
of the set {1, . . . , n}—which is just to say that X has n
members, or that X’s cardinality is n. We can also talk
of X as having the cardinality of the (set of all) natural
numbers. In the first case we say that X is finite, in
the second case that it is denumerable or countable or
countably infinite. Cantor showed that the set of real
numbers is not finite or denumerable; hence it is said to
be nondenumerable or uncountable.

The cardinality of a set X is denoted as |X|; thus
|X| = 3 if and only if there is a one-to-one mapping of X
onto {1, 2, 3}. The cardinality of the natural numbers
is denoted as ℵ0 (aleph null), so |X| = ℵ0 if and only if
X can be mapped one-to-one onto the natural numbers.
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A set X is uncountable exactly when |X| > ℵ0, that is,
if the set of natural numbers can be mapped one-to-one
onto a proper subset of X but not onto X itself. Some
principles of this generalized arithmetic are:

(a) If X ⊆ Y , then |X| ≤ |Y |.
(b) The union of denumerably many countable sets is

countable.

(c) If |X| = ℵ0 then |Xn| = ℵ0, but then the set of
countable sequences of members of X is not count-
able.

(d) |{X : X ⊆ Y }| > |Y |

Principle (d) is a famous result of Cantor’s. The proofs
of (a)–(d) we relegate to the exercises.

1.3 Partial Order and Trees

There is one set-theoretic axiom that we must mention,
because of its strength and because of the amount of
philosophical discussion it has generated. This is the Ax-
iom of Choice. We shall not have too much occasion to
use it, and when we do use it, one of its equivalents (such
as Zorn’s Lemma and the Well-ordering Principle) may
be more convenient.
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Axiom of Choice. Given any nonempty family of mu-
tually disjoint nonempty sets Ai there is a set B that
contains exactly one member of each set Ai.

To state some of its equivalents, we must define the no-
tion of partial order.

Definition. A relation ≤ is a partial ordering of a set X
iff

(a) ≤ is reflexive (x ≤ x for x ∈ X);

(b) ≤ is transitive (if x ≤ y and y ≤ z, then x ≤ z);

(c) ≤ is antisymmetric (if x ≤ y and y ≤ x, then
x = y).

The most important example of a partial ordering is ⊆,
which partially orders any family of sets. We call 〈X, ≤〉
a partially ordered system when ≤ is a partial ordering
of X. A chain in a partially ordered system 〈X, ≤〉 is
a nonempty subset Y of X such that if x, y ∈ Y , then
x ≤ y or y ≤ x. In addition, we define two special kinds
of elements in a partially ordered system 〈X, ≤〉: An
upper bound of a chain Y in this system is a member x of
X such that y ≤ x for all y in Y , and second, a maximal
element of the system is a member x of X such that if
x ≤ y, then x = y, for all y in X.

Now finally, we can state Zorn’s lemma.
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Zorn’s Lemma. If every chain in a partially ordered
system 〈X, ≤〉 has an upper bound in X, then 〈X, ≤〉
has a maximal element.

A well-ordering is a particular kind of partial order-
ing. By the following definitions, any chain is linearly
ordered.

Definition. A relation ≤ is a linear ordering of a set X
iff ≤ is a partial ordering of X and for any x, y in X,
x ≤ y or y ≤ x.

Definition. A relation ≤ is a well-ordering of a set X iff
≤ is a linear ordering of X and any nonempty subset Y
of X contains a least element, that is, an element y such
that y ≤ x for every x in Y , and y is in Y .

For example, when we give ≤ its usual meaning, the set
of natural numbers is well-ordered but the set of real
numbers is not well-ordered. Yet we accept the following
equivalent of the axiom of choice.

Well-ordering Principle. For any nonempty set X
there exists a well-ordering of X.

We are now going to prove a theorem on the subject of
trees, in which we will use the axiom of choice. Trees are
a kind of partially ordered system: intuitively, the kind
that can be represented by a treelike diagram (except
that the tree might be infinite); see Figure 1 (next page).
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z

FIGURE 1: x ≤ y, yRx, zRy

The relation ≤ holds between two elements of the tree
(called nodes and represented by dots) if you can get
from the one to the other by following a path down the
tree (branch). That we think of the trees as growing
down rather than up is of course only an idiosyncrasy.
Genealogical trees are usually drawn this way.

In a tree there is an immediate descendant relation
R: xRy if y ≤ x and there is no z distinct from x and y
such that y ≤ z and z ≤ x. Now trees are most easily
defined by using the relation R. (After the definition has
been given the reader can define ≤ in terms of R.)

Definition. A tree is a class T of elements (nodes) on
which is defined a binary relation R; one node is singled
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out as the origin O, and each node has associated with
it one natural number (its rank) satisfying

(a) the rank of O alone is 1;

(b) the nodes of rank k are those which bear R to ex-
actly one node of rank k − 1, where k > 1.

Condition (b) rules out circular paths, and also means
that each node besides O bears R to something or other.
We denote such a tree as 〈T, R, O〉. We say that a tree
〈T, R, O〉 has the finite branching property iff for every
natural number k, there are at most finitely many nodes
of rank k.

Definition. A sequence 〈n1, . . . , nk, . . . 〉 is a branch of
〈T, R, O〉 iff

(a) n1 = 0

(b) niRni−1 for i = 2, 3, . . . ;

(c) if there is an x such that xRni, then the sequence
has an (i+ 1)th element.

If the branch is finite it has a last element, called an end
point. If all the branches of a tree are finite, and the
tree has the finite branching property, then the tree as
a whole is finite (has finitely many nodes). This is not
obvious, because one might have branches of any finite
length—the question is whether if you have arbitrarily
long finite branches, it follows that you also have at least
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one infinite branch present. That this is so is stated by
Koenig’s lemma.3

Koenig’s Lemma. If a tree with the finite branching
property has infinitely many nodes, then it has an infinite
branch.

Proof: Let B = 〈T, R, O〉 be such a tree. For any
node x, we define T (x) to be the class of nodes that
lie on some branch passing through x. Now let T ∗ =
{x : T (x) is infinite}. Clearly O belongs to T ∗, and if
y ∈ T ∗, and yRx, then x ∈ T ∗. So B∗ = 〈T ∗, R, O〉.

Suppose that x ∈ T ∗. Could it be an end point of
B? The answer is no, for then T (x) would just contain
the finite branch 〈n1, . . . , nk〉 with n1 = O, nk = x (k
being the rank of x)—so then x would not belong to T ∗.
Could x nevertheless be an end point of B∗? Then x,
of rank k, would have infinitely many elements below it,
but none of its descendants of rank k+ 1 would be such.
That would mean that x has infinitely many descendants
of rank k + 1. But that contradicts our assumption that
B has the finite branching property.

So B∗ has no end points; each of its branches is infi-
nite. And each of its branches is (part of) a branch of B.
Now B∗ has at least one branch 〈n1, n2, n3, . . . 〉, for O
is in B∗; so let n1 = O, and O is not an end point; so we
can choose n2 in B∗, which is not an end point; so we can
choose n3 in B∗, which is not an end point; and so on.
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(Notice that we are making infinitely many choices, one
from each rank in B∗; that the branch in question exists
follows from the axiom of choice.) So B has at least one
infinite branch.

1.4 Mathematical Induction

Natural numbers are a very important kind of mathemat-
ical object. The class of natural numbers may be defined
on the basis of the notions zero and successor, as follows:

Definition. (a) Zero is a natural number.

(b) If x is a natural number, so is the successor of x.

(c) Nothing is a natural number except in virtue of
clauses (a) and (b).

This is a very special type of definition (recursive defini-
tion) not being of the more familiar form “x is a . . . iff
. . ..” Yet it defines, in some sense, the property of being
a natural number, and hence the class of natural num-
bers. A further puzzling feature is the use of “in virtue
of,” which is not a notion it would be easy to define in
general. Using the resources of set theory, we can replace
the above recursive definition by one in a more familiar
form:

Definition. The class of natural numbers is the smallest
class N such that
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(a) 0 ∈ N ;

(b) if x ∈ N , then the successor of x is in N .

Here “smallest class N such that . . . N . . .” means “class
included in every class X such that . . . X . . ..” The use
of this notion of smallest class takes over the function of
clause (c).

Many other classes are recursively defined; for exam-
ple, the class F of formulas of the language of the propo-
sitional calculus:

Definition. (a) p, q, r, p′, q′, r′, p′′, . . . are in F .

(b) If A ∈ F , so is ¬A.

(c) If A, B ∈ F , so are (A&B), (A∨B), and (A ⊃ B).

Note that here are four ways of generating new elements
(not just one way, by the successor function). This defi-
nition can now be concluded by adding a “nothing else”
clause, or by saying that F is the smallest class satisfying
these conditions.

In all the above definitions, clause (a) is a basis clause;
the elements it introduces are the basis elements of the
defined class. In each case, clause (b) introduces a mode
of generation of further elements. For any recursively
defined class, the following kind of argument is valid.

1. Each basis element has property P .

2. Each mode of generation preserves property P .
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3. Therefore every element of the class has property
P .

This proof technique is called mathematical induction.
It has two variants: the one just described is natural
induction; in addition there is strong induction, which
we shall describe presently. First, let us give the schema
for natural induction for the cases of natural numbers
and formulas:

1. 0 has property P .

2. If k has P , then
the successor of k
has P .

3. Therefore, every
natural number
has P .

1. Each atomic formula
(p, q, . . . ) has property
P .

2. If A has P , so does ¬A.
If A, B have P , so do
(A & B), (A ∨ B), and
(A ⊃ B).

3. Therefore, each formula
has P .

Usually the hard part of the proof lies in establishing 2
(the inductive step).

In the case of strong induction, we also think of each
generated element coming after the elements from which
it is generated, but for each element we consider the
whole class of elements after which it comes (instead of
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merely its immediate predecessor). In the case of natural
numbers, the ordering relation is just < of course.

1. 0 has the property P .

2. If every natural number i < k has P , then k has P .

3. Therefore, every natural number has P .

In the case of formulas, we count the number of sym-
bols of which they are built up, calling this number their
length; then they are ordered by the relation “is of length
less than”:

1. Each atomic formula has property P .

2. If all formulas of length less than A have P , so does
A.

3. Therefore, each formula has P .

When 2 is being proved, “All formulas of length less than
A have P” is called the hypothesis of induction. It is then
generally necessary to consider each possible case (A is
¬B for some formula B; A is (B & C) for some formulas
B, C; and so on) separately. Clause 1 is usually proved
as part of clause 2.

1.5 Algorithms

In the recursive definition of the class of natural numbers
we think of that class as generated by a simple transfor-
mation procedure: we start with zero, and each element
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at which we arrive is transformed into its successor. This
is a very simple case, and much more complicated trans-
formation procedures may be used. When the procedure
is still purely mechanical, and is applied only to expres-
sions in some language, it is called an algorithm.

A venerable example of an algorithm is the Euclidean
algorithm. This is a procedure that can be used to find
the greatest common divisor of two natural numbers.
More precisely, this algorithm is applicable to expressions
of the form

(m, n),

where m, n are nonnegative integers. It has the following
procedural rules:

R1. Arrange (m, n) so that the smaller number is on
the right of the comma.

R2. If n 6= 0, divide m by n and write (n, r), where r
is the remainder.

R3. If n = 0, change (m, n) into (m).

Starting with (m, n) and transforming the expression
successively by these rules we finally arrive at an expres-
sion (k). The number k is then the greatest common
divisor of m and n.
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Example:

(4, 15)
(15, 4) by R1
(4, 3) by R2, because 15 = (3× 4) + 3
(3, 1) by R2, because 4 = (1× 3) + 1
(1, 0) by R2, because 3 = (3× 1) + 0

(1) by R3

We now turn to a more general account.4

An algorithm is a specification of an effective process
that transforms an expression E1 successively into ex-
pressions E2, E3, . . . , Ek, . . . . This series may be finite
or infinite. If it is finite, it may be because at some point
the algorithm is “blocked” (not applicable), or because
one of the rules is to stop at a certain point. The rules
are called commands, and we write the ith command Ci
in the form

Ci : Ai → Bi

Sometimes Bi is not another expression, but a dot:

Ck : Ak → ···

That is a stop command, which terminates the process.
It says: Erase Ak; then stop.

The command Ci is applicable to an expression E if
E contains a part of the form Ai. To apply Ci to E is to
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replace the leftmost occurrence of Ai in E by an occur-
rence of Bi. Thus if E is (×Ai×Ai), the application of Ci
to E consists in replacing E by (×Bi×Ai). When carry-
ing out an algorithm, the computing agent is to proceed
as follows:

Step 1. Search for the first applicable command, and ap-
ply it (if found).

Step 2. If a command applied was a stop command, the
resultant was the final expression, and the pro-
cess terminates.

Step 3. If a command applied was not a stop command,
begin again with step 1.

Step 4. If no applicable command can be found, write
“blocked” and stop.

The Euclidean algorithm was stated very informally; we
can roughly put it in the pattern described above by stat-
ing it as follows:

C1. (m, n)→ (p, q), where

p =

{
m if m > n

n if n > m
and q =

{
m if p = n

n if p = m

C2. , 0→ ···
C3. (m, n)→ (n, r), where r is the remainder of divi-

sion of m by n.

41



Note that C3 is never applied to an expression of form
(m, 0), because if (m, 0) occurs, C2 is the first applica-
ble command. Then C2 erases the comma and the zero,
yielding the expression (m), and the process stops.

An algorithm sometimes uses auxiliary letters, foreign
to the initial expressions to which it is meant to apply. An
example is the duplication algorithm, which transforms
an initial expression E into EE.

Duplication Algorithm. Auxiliary symbols α, β. The
symbols x, y, z stand for letters of the alphabet of the
initial expression.

C1. αx→ xβxα

C2. βxy → yβx

C3. β →
C4. α→ ···
C5. → α

Here C5 is the starting command. It says: Write α to
the left of the whole expression. C3 and C4 are used to
get rid of the α and the β’s when they have done their
job. C1 duplicates each letter, and C2 carries the dupli-
cate to the right location. As an example we apply the
algorithm to the expression abb. Note that x and y stand
for a and b, so C1, for example, is really short for
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C1a. αa→ aβaα

C1b. αb→ bβbα

and so on for the other commands.

Example of the duplication procedure:

abb
αabb C5
aβaαbb C1 (C1a)
aβabβbαb C1 (C1b)
aβabβbbβbα C1 (C1b)
abβaβbbβbα C2
abβabβbβbα C2
abbβaβbβbα C2
abbaβbβbα C3
abbabβbα C3
abbabbα C3
abbabb C4

When an algorithm is described with this degree of pre-
cision, it is easy to see that the procedure is purely me-
chanical. When we need to use algorithms later, we shall
not aim for this degree of precision. We shall be content
to describe the algorithm approximately as precisely as
we described the Euclidean algorithm.
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Notes

1. We shall ignore the use/mention distinction except where
that could cause confusion; we will, however, say more about
this distinction at the beginning of Chapter 2.

2. Thus “transformation” is sometimes used synonymously with
“function” or “mapping,” for example, by C. G. Cullen, Ma-
trices and Linear Transformations (Reading, Mass.: Addison-
Wesley, 1967) p. 78; but other authors use “transformation”
as synonymous with “one-to-one onto operation.”

3. Cf. E. W. Beth, The Foundations of Mathematics (Amster-
dam: North-Holland, 1965), sec. 69, pp. 194–196.

4. Cf. H. B. Curry, Foundations of Mathematical Logic (New
York: McGraw-Hill, 1963), sec. 2E, pp. 70–80.
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Chapter 2

Structure of
Formal Languages

2.1 Logical Grammar

Throughout its history, the study of logic begins with a
certain general grammatical analysis of language. The
division of Ockham’s Summa:

I. Terms

II. Propositions

III. Arguments

represents the pattern of almost every medieval and mod-
ern logic text.1 The first division contains a logical anal-
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ysis of terms (kinds of terms, logical relations among
terms), the second of propositions (kinds of propositions,
logical relations among propositions); only after such anal-
ysis is it fruitful to turn to the logical appraisal of argu-
mentation. In the modern period, this was usually pre-
sented by means of a parallel, psychological analysis of
acts of the mind; thus in Kant’s logic text2 we find

Part One. General Doctrine of Elements

I. Of Conceptions

II. Of Judgements

III. Of Syllogisms

But it was immediately added that concepts are expressed
by terms, judgements by declarative sentences, and so on.

A more contemporary analysis,3 developed by
Ajdukiewicz and Curry, but parallel to many grammat-
ical analyses of language found in the history of logic,
divides expressions into three categories :

1. nouns (n)

2. sentences (s)

3. functors

A noun is an expression that can be the grammatical
subject of a sentence; a functor is any expression that
is neither a noun nor a sentence. However, the use of a
functor in combination with other functors and/or some
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nouns and/or sentences will yield a noun or sentence.
There are clearly many kinds of functors; here are some
important ones:

Type Input (one or more) Output Example

Connector s s . . . and. . .

Predicator n s . . . is white

Operator n n . . .+ . . .

Subnector s n that. . .

These are all called first-order functors, because their
“input” does not include functors.

When we describe an artificial language, we do so in a
natural language (say, English). The latter is called the

language in use.4 It is also, in that context, the meta-
language with respect to the artificial language being de-
scribed. But we may formalize the description of a given
artificial language. Then we have an artificial language
L1, and another artificial language L2, which functions
as a metalanguage with respect to L1. In the meanwhile,
the language in use functions as a metalanguage with
respect to L2, or perhaps with respect to both L1 and
L2.

When describing an artificial language, it is seldom
useful to display its symbols. Much more useful is the
course of adding certain symbols and technical terms to

47



the language in use, to refer to the symbols of the lan-
guage described. This helps to avoid confusions of use
and mention. But it also introduces new temptations: if
u is introduced to refer to a symbol of L, we have often
the temptation to use u as if it were the symbol that
it designates, and sometimes the temptation to use u to
refer to itself. As with many temptations, however, the
most pleasant course is not to resist them too much, and
giving in to them seldom does as much harm as one might
fear.

2.2 Syntactic Systems

A syntactic system comprises a vocabulary and a gram-
mar. The latter is a specification of how the nouns and
sentences are to be constructed from the vocabulary. We
shall now make this somewhat more precise by using set-
theoretical notions.

The vocabulary of a syntactic system is a nonempty
set of elements called words. An expression is any finite
sequence of words; the restriction to finite sequences is,
however, only a convenience adopted by us for didactic
purposes. In addition, we shall assume that there are at
most denumerably many words, again for convenience;
it follows then that there are exactly denumerably many
expressions in the language.
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If A is the expression 〈e1, . . . , en〉 we shall simply
write it as e1 . . . en. In addition, we define the operation
of concatenation: the concatenation AB of two expres-
sions A and B is defined by

〈e1, . . . , em〉 〈em+1, . . . , en〉 = 〈e1, . . . , em,
em+1, . . . , en〉.

With any syntactic system there is associated a well-
ordering of the expressions, called the alphabetical order.

The grammar of the system consists in the division of
the set of expressions into the class of nouns, the class of
sentences, classes of functors of various kinds (and pos-
sibly a remainder of expressions that have no significant
role at all). When a noun or sentence belongs to the
vocabulary itself, it is generally called atomic; expres-
sions that are not words are called molecular. When the
system is defined, the grammatical division of the vo-
cabulary may be given at once, and used to define the
molecular nouns and sentences.

As an example, we take the language of the proposi-
tional calculus.

Definition. A propositional syntactic system (PCS) is a
triple 〈A , L, S〉, where

(a) A is a set, at most denumerable (the atomic sen-
tences);
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(b) L is a set of four distinct elements {&, ¬, ), (} (log-
ical signs), disjoint from A ;

(c) S (the set of sentences) is the smallest set including
A and such that if A, B are in S, so are (¬A) and
(A&B).

We have here taken & and ¬ as primitive; the other fa-
miliar connectives may be defined in terms of them as
usual. It is to be noted that here the vocabulary con-
sists of A and L, and the grammar of the definition of
S. Parentheses will be omitted where convenient.

A syntactic transformation is a mapping of (sets of)
expressions into expressions. In the case of a PCS, we
would only be interested in transformations that preserve
the property of being a sentence. An example of such a
transformation would be

f : f(A) = ¬A,

which transforms each sentence into its contradictory.
Less trivial examples are the substitution transforma-
tions. There are several kinds; a well known one is that
of substitution of sentences A for atomic sentences p in
a PCS:

Definition. SAp (B) =

(a) B if B is an atomic sentence other than p;

(b) A if B is p;
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(c) (¬SAp (C)) if B is ¬C;

(d) (SAp (C) & SAp (D)) if B is (C &D).

Another kind of substitution replaces all the atomic sen-
tences by (other) sentences all at once:

Definition. If s is a mapping of atomic sentences into sen-
tences and E is the expression e1 · · · en (ei, i = 1, . . . , n
belonging to the vocabulary), then Ss(E) = e∗1 · · · e∗n,
where e∗i = s(ei) if ei is an atomic sentence, and e∗i = ei
otherwise.

In both cases the transformation preserves the property
of being a sentence; this can be shown by an easy induc-
tive argument.

We shall call the operation SAp unary substitution, and
Ss infinitary substitution. Note that infinitary substitu-
tion is a notion defined for any syntactic system with a
class of atomic sentences, while unary substitution has
been defined only for a PCS.

A generalization of unary substitution is simultaneous
substitution, which can be characterized informally by

SB1···Bn
p1··· pn (A) is the expression that differs from A only

in having Bi, where A has pi, i = 1, . . . , n; where
pi 6= pj if i 6= j.

This cannot be defined simply as an iteration of unary
substitutions, since some of the pi may occur in some of
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the Bi. For example, we cannot transform (p & q) into
(q & p) by first substituting q for p [to get the result
(q & q)], and then substituting p for q—the final result
would be (p & p). This difficulty is avoided by first re-
placing the atomic sentences in question by entirely new
atomic sentences.

Definition. SB1···Bn
p1··· pn (A) = SB1

q1
· · ·SBn

qn S
q1
p1
· · ·Sqnpn(A),

where q1, . . . , qn are alphabetically the first n atomic sen-
tences not to occur in Bi, pi, or A (i = 1, . . . , n) and
pi 6= pj if i 6= j.

Unary substitution is a special case of simultaneous sub-
stitution; and any case of simultaneous substitution can
be defined in terms of unary substitution. We now add
that unary substitution can be defined in terms of infini-
tary substitution.

Theorem. SBp (A) = Ss(A), where for any atomic sen-
tence q, s(q) = q if q 6= p, and s(p) = B.

Proof: Since unary substitution has a recursive defini-
tion, we can prove this by mathematical induction.

Hypothesis of Induction. If C is of length less than
A, SBp (C) = Ss(C).

Case 1. A is p. Then SBp (A) = B = Ss(A).
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Case 2. A is an atomic sentence q 6= p. Then SBp (A) =
q = Ss(A).

Case 3. A is (¬C). Then SBp (A) = (¬SBp (C)). By

hypothesis, this is (¬Ss(C)) = Ss(A).

Case 4. A is (C&D). Then SBp (A) = (SBp (C) &SBp (D)).

By hypothesis, this is (Ss(C) & Ss(D)) =

Ss(C &D).

2.3 Semantic Concepts

A valuation of a syntactic system is a function that as-
signs T (true) to some of its sentences, and/or F (false)
to some of its sentences. We do not rule out that not
all sentences are assigned T or F, nor that no sentence
is assigned T (respectively, F), nor that some sentences
are assigned something else. Precisely, a valuation maps
a nonempty subset of the set of sentences into the set
{T, F}. We call a valuation bivalent iff it maps all the
sentences into {T, F}.

In general, some of the symbols have an intended
meaning, and this leads to a distinction between admis-
sible and inadmissible valuations. A language comprises
exactly a syntactic system (its syntax ) and nonempty
class of valuations of that syntactic system (its admissi-
ble valuations). The expressions of the syntax of L are
also called expressions of L. As an example we consider

53



again the propositional calculus. In that subject, one is
generally concerned with a kind of language that we shall
call a bivalent propositional language.

Definition. L is a bivalent propositional language iff its
syntax is a PCS and its admissible valuations are the
functions v such that for all sentences A, B of L,

(a) v(A) ∈ {T, F};
(b) v(¬A) = T iff v(A) = F;

(c) v(A&B) = T iff v(A) = v(B) = T.

In terms of valuations we can define semantic properties
of sentences and sets of sentences, and semantic relations
among these.

The most important concept is that of satisfaction.
A set X of sentences of L is satisfied by an admissible
valuation v of L iff v(A) = T for every member A of X.
We shall also say “v satisfies A” when v satisfies {A},
and “X (respectively, A) is satisfiable (in L)” when some
admissible valuation of L satisfies X (respectively, A).

Definition. A is a valid sentence (in symbols, 
A) in L
iff every admissible valuation of L satisfies A.

Definition. X is an unassailable set of sentences of L iff
X is (a set of sentences of L) such that every admissible
valuation of L satisfies some member of X.
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Thus A is valid iff {A} is unassailable; unassailability is
a generalization of validity. Note that “X is unassail-
able” is not the same as “no admissible valuation assigns
F to every member of X” unless all the admissible valu-
ations are bivalent. (This is why we could not use “not
falsifiable” instead of the contrived term “unassailable.”)

Definition. X semantically entails A (X 
 A) in L iff
every admissible valuation of L that satisfies X also sat-
isfies A.

We write “A 
 B” for “{A} 
 B”; 
 is called the (dou-
ble) turnstile. It is fairly easy to see that 
A in L if and
only if Λ 
 A in L, because all admissible valuations of
L satisfy all sentences in the empty set, vacuously.

Syntactic transformations may preserve certain se-
mantic properties. We call a mapping f of sets of sen-
tences to sentences truth-preserving in language L when

if v satisfies X, then v satisfies f(X)

holds for all arguments X of f and all admissible valua-
tions v of L. Similarly, we say that f preserves validity
in L when

if 
A for all sentences A in X, then

f(X), and if 
B, then 
f(B).
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holds for all arguments X, B of f and all admissible valu-
ations v of L. The first part of the following theorem says
that a truth-preserving transformation also preserves va-
lidity.

Theorem. (a) If X 
 f(X) for every argument X of
f , then f preserves validity.

(b) If A ∈ X, then X 
 A.

(c) If X ⊆ Y , and X 
 A, then Y 
 A.

(d) If X 
 A for every A ∈ Y , and Y 
 B, then
X 
 B.

The proof of this theorem is an elementary exercise in
logic. For example, to prove clause (a) it suffices to show
that a statement of the form

(x)(Fx ⊃ Gx) ⊃ ··· (x)(Fx) ⊃ (x)(Gx)

is a theorem of quantification theory. [Let Fx stand for
“x satisfies X,” and Gx for “x satisfies f(X),” inter-
preting x to be a variable ranging over the admissible
valuations of the language.] It is advisable, of course,
to keep the proofs informal enough not to become exces-
sively long.

The simplest kind of syntactic system is that whose
vocabulary is exactly the set of sentences. The semantics
of a language that has this kind of syntax can there-
fore hardly go far beyond a discussion of its valuations.
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The only complication possible here seems to be that the
set of admissible valuations might be defined in terms of
something else, for example, in terms of mappings of the
sentences into some mathematical structure (a “logical
matrix,” for example). Be that as it may, a discussion of
valuations is apparently the most general kind of concern
within semantics. While we shall remain at this level of
generality in this chapter, we wish to make some remarks
about the semantic structure of languages with a more
complex syntax.

We have not ruled out, in our definition of a valua-
tion v of a syntactic system S, that v may be defined for
expressions of S that are not sentences. Thus v might
assign denotations to nouns; that is, there may be a do-
main of discourse D such that v maps the nouns of S
into D. In addition, v might assign relations or functions
to functors of S. And finally, the mapping v of sentences
into truth values might be partly or entirely determined
by what v assigns to the elements of the vocabulary of S.
In such a case it is more usual to call v an interpretation
of S rather than a valuation of S; but as long as v maps
some sentences into truth values, it is still a valuation by
our definition.5
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2.4 Valuation Space of a

Language

The role of geometric imagination in logic is no doubt
best exemplified in the use of Venn diagrams. But it
has many other instances; witness, for example, the spa-
tial metaphor in such expressions as “the predicate is
contained in the subject” or even “the extension of the
predicate.” In metalogic, too, geometry provides inspira-
tion; especially influential here has been topology, a sub-
ject that deals with spaces, and relations on and among
spaces, in a very abstract fashion. The concepts and
methods introduced in this and some later sections repre-
sent, in effect, an application of topology to logic. We do
not require the reader to be already familiar with topol-
ogy; on the other hand, we shall not attempt to carry
through too exact an analogy with the actual topological
notions.

Let L be a language and V L the set of its admissible
valuations. We shall think of the members of V L as the
points in an abstract space, the “valuation space” of L.
Regions in that space are just sets of these points, that
is, subsets of V L. An important kind of region is that
usually designated as “elementary class.”

Definition. If A is a sentence of L and V L the set of ad-
missible valuations of L, H(A) = {v ∈ V L : v(A) = T};
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and a set of X ⊆ V L is an elementary class iff there is a
sentence A such that X = H(A).

H(A) may be called the truth set of A; if we were to
discuss several languages at once, we would obviously
use expressions such as “H(A) in L.”

Definition. The valuation space of L is

H = 〈V L, {H(A) : A a sentence of L}〉.

We call the members of V L the points in H, and write
x ∈ H when x is such a point, orX ⊆ H whenX is a class
of such points (region). So the valuation space consists of
a set of points, plus a family of regions that are singled
out for special consideration. These regions, which we
call the elementary classes, are also called “arithmetical
classes” or “axiomatic model classes.”6 Sometimes infi-
nite intersections

H(X) =
⋂
A∈X

H(A)

= the set of all admissible valuations
that satisfy X

are also called elementary classes. We shall accept this
shorthand notation, but we shall not extend the term
“elementary class” in this way [Note that H(Λ) = H by
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the above definition, and restricting the range of our vari-
ables to H.]

Before going on, let us take as an example a bivalent
propositional language with just two atomic sentences, p
and q. This language has just four admissible valuations,
which are partially depicted by the following truth table:

p q ¬p ¬q (p& q) (p& ¬p) . . .

v1 T T F F T F . . .

v2 T F F T F F . . .

v3 F T T F F F . . .

v4 F F T T F F . . .

Here
H(p) = {v1, v2}

H(¬p) = {v3, v4}
H(q) = {v1, v3}

H(¬q) = {v2, v4}
H(p& q) = {v1}

H(p& ¬p) = Λ

We also say that H = {v1, v2, v3, v4}—although this is
clearly an inaccurate way of speaking—hence H and Λ
function as the universal and null set here. Note that just
as Λ is the elementary class defined by a contradiction,
so H is the elementary class defined by a tautology.
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The basic semantic concepts are easily expressed in
terms of the valuation space:

(a) A is a valid sentence iff H(A) = H.

(b) X is unassailable iff
⋃
A∈X H(A) = H.

(c) X is satisfiable iff
⋂
A∈X H(A) 6= Λ.

(d) B semantically entails A iff H(B) ⊆ H(A).

(e) X semantically entails A iff H(X) ⊆ H(A).

This is proved by inspecting the definitions.
A term that metalogic has taken over directly from

topology is “compactness.” In both subjects, the term
has several definitions, which are equivalent relative to
the usual assumptions. Because we shall not make all
the usual assumptions, these definitions correspond to
distinct concepts for us; we shall then investigate the
conditions under which the equivalence obtains.

Definition. The language L (and its valuation space H)
is I-compact iff for any set of sentences X of L,⋂
A∈X H(A) = Λ only if

⋂
A∈Y H(A) = Λ for some finite

subset Y of X.

This condition is clearly equivalent to: Any nonsatisfiable
set has a finite nonsatisfiable subset; or a set of sentences
is satisfiable iff all its finite subsets are satisfiable. (The
I stands for “intersection.”)
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Definition. The language L (and its valuation space H)
is U-compact iff for any set of sentences X of L,⋃
A∈X H(A) = H only if

⋃
A∈Y H(A) = H for some finite

subset Y of X.

This condition amounts to: Any unassailable set has a
finite unassailable subset. A family of elementary classes
whose union equals H is also said to cover H, or to be
an elementary cover of H. Hence the condition for U-
compactness can also be stated as: Any elementary cover
of H contains a finite subcover of H. We shall call a
language L (and its valuation space H) compact iff it is

both I-compact and U-compact.7

We add finally a property of languages that is very
similar to compactness; the relations between these no-
tions are explored below.

Definition. A language L has finitary semantic entail-
ment iff for any set of sentences X of L, and sentence
A of L, H(X) ⊆ H(A) only if H(Y ) ⊆ H(A) for some
finite subset Y of X.

The condition amounts to: X 
 A only if some finite
subset of X entails A.

In classical logic one is concerned only with languages
that have both compactness and finitary entailment. But
suppose we have a language containing the numerals 1, 2,
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3, . . . and in which (x)Fx is to mean that all positive
integers have the property F . Then the entailment

{F (1), F (2), F (3), . . . } 
 (x)Fx

shows that this language does not have finitary entail-
ment.

If, in addition, this language has the usual kind of
negation, then the unassailability of

{(x)Fx, ¬F (1), ¬F (2), . . . }

shows that it is not U-compact, and the unsatisfiability
of

{¬(x)Fx, F (1), F (2), . . . }
shows that it is not I-compact. We shall now explore this
subject in a more general way, beginning with a familiar
case.

We say that a language L has exclusion negation iff
for every sentence A of L there is a sentence A′ of L
such that H(A′) = H −H(A) in L. Clearly, a bivalent
propositional language has exclusion negation, as has the
language of quantification theory.8

Theorem. For a language L with exclusion negation, the
following conditions are equivalent:

(a) L is I-compact.

(b) L is U-compact.
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(c) L is compact.

(d) L has finitary semantic entailment.

Proof: Since (c) is equivalent to the conjunction of (a)
and (b), it suffices to show that (a) implies (b), (b) im-
plies (d), and (d) implies (a).

First suppose that L is I-compact, and let X be such
that

1.
⋃
A∈X H(A) = H; hence

2. H −
⋃
A∈X H(A) = Λ.

By the generalized laws of de Morgan and distribution,
this yields

3.
⋂
A∈X(H −H(A)) = Λ.

Using A′ for the exclusion negation of A, this means that

4.
⋂
A∈X H(A′) = Λ,

which by I-compactness, has the consequence

5.
⋂
A∈Y H(A′) = Λ for a finite subset Y of X.

Retracing our steps via de Morgan’s laws, that implies
that

6.
⋃
A∈Y H(A) = H for a finite subset Y of X.
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Hence I-compactness implies U-compactness.
Now suppose that L is U-compact and that X 
 A.

Then

7.
⋂
B∈X H(B) ⊆ H(A),

which, as one may check by Venn diagram, implies

8.
⋂
B∈X H(B) ∪H(A) = H,

where we use K for H −K (“relative complement”). By
de Morgan’s laws, that is equivalent to

9. (
⋃
B∈X H(B)) ∪H(A) = H, or

10. (
⋃
B∈X H(B′)) ∪H(A) = H.

By U-compactness this elementary cover has a finite sub-
cover:

11. (
⋃
B∈Y H(B′))∪H(A) = H for a finite subset Y of

X.

Retracing our steps once more, we conclude that

12.
⋂
B∈Y H(B) ⊆ H(A) for a finite subset Y of X.

Hence U-compactness implies finitary entailment in this
case.

Finally, suppose that semantic entailment is finitary,
and also that X is not satisfiable. Let A be any sentence
in X (X cannot be nonempty; why?). Then we have
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13.
⋂
B∈X H(B) = Λ; hence

14. H(X − {A}) ∩H(A) = Λ; hence

15. H(X − {A}) ⊆ H(A′); that is,

16. X − {A} 
 A′.

By the finitary character of 
 we deduce that there is a
finite subset Y of X − {A} such that

17. Y 
 A′.

18.
⋂
{H(B) : B ∈ Y } ∩H(A) = Λ.

19.
⋂
{H(B) : B ∈ Y ∪ {A}} = Λ.

Therefore, X has a finite subset Y ∪ {A} that is not sat-
isfiable.

While compactness and finitary semantic entailment
are thus equivalent in most familiar cases, it is important
to note that they are not equivalent in general.

Theorem. There is a language L that is compact and
does not have finitary entailment.

Proof: We prove this by constructing an example. Let L
have denumerably many sentences q, p1, p2, p3, . . . , and
let the admissible valuations of L be the mappings v of
all the sentences into {T, F} such that

v(q) = T iff v(pi) = T for i = 1, 2, 3, . . . .
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It is easy to see that L does not have finitary entail-
ment, because {p1, p2, p3, . . . } 
 q in L, but for any n,
{p1, . . . , pn} does not semantically entail q because the
valuation

v : v(pi) = T iff i ≤ n; v(q) = F

is admissible. Hence no finite subset of {p1, p2, p3, . . . }
semantically entails q in L. But L is compact, as we can
show in two steps.

First, the valuation

v1 : v1(q) = F, v1(pi) = F for i = 1, 2, 3, . . .

is an admissible valuation of L. Since v1 does not satisfy
any set of sentences, it follows that no set of sentences is
unassailable; hence L is U-compact. Second, the valua-
tion

v2 : v2(q) = T, v2(pi) = T for i = 1, 2, 3, . . .

is also admissible; hence no set of sentences of L is un-
satisfiable, so L is I-compact.

We shall also prove that I-compactness and U-com-
pactness are not equivalent in general and that finitary
entailment does not imply compactness, after we have
introduced the notion of a filter.
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2.5 Semantic Entailment and

Axiomatizability

The familiar notion of a deductive theory is that a theory
is given by specifying the language in which it is formu-
lated, its axioms, and the rules whereby the complete
set of theorems may be derived from the axioms. The
rules are here required to be such that any valid argu-
ment whose premises are theorems must have a theorem
as conclusion. In the terminology of formal semantics,
this means that the set of theorems is a system (“deduc-
tive system” and “theory” are also used).

Definition. A system in a language L is a set X of sen-
tences of L such that any sentence A of L semantically
entailed by X in L belongs to X.

If X is a system, then we may call Y a set of axioms
for X—or say that Y axiomatizes X—if all the members
of X are semantically entailed by Y . Of special interest
here is the case in which Y is finite, and in the remainder
of this section we shall study this case.

We say that two sets of sentences of L, X and Y ,
are semantically equivalent in L if they are satisfied by
exactly the same admissible valuations of L. It is easily
shown then that X and Y are semantically equivalent in
L if and only if for any sentence A of L, X 
 A iff Y 
 A
in L.
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Definition. A set X of sentences is finitely axiomatizable
in L iff X is semantically equivalent to some finite set of
sentences in L.

To prove our first theorem, we need the notion of a
chain of sets of sentences in a language. A class of sets
Y1, . . . , Yk, . . . is called a chain of increasing strength
in L if Yi ⊆ Yi+1 but Yi+1 has a member not semanti-
cally entailed by Yi in L (that is, H(Yi) * H(Yi+1)), for
i = 1, . . . , k, . . . .

Theorem. If a set X of sentences of L is not finitely ax-
iomatizable, then X is the union of a chain of increasing
strength in L.

Proof: Suppose that X is not finitely axiomatizable.
Since we have assumed from the beginning that a lan-
guage has at most denumerably many sentences, the mem-
bers of X can be arranged in a series

A1, A2, A3, . . . .

And X is the union of sets Xk = {A1, . . . , Ak} for the
positive integers k. Let us now define the sets Yi as fol-
lows:

Y1 = X1,

Ym+1 = the smallest set Xn containing a member
not semantically entailed by Ym.
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Since the sets Xn form a chain, Ym+1 is uniquely defined
if Ym does not axiomatize X. Since none of the sets
Xn axiomatizes X, there will be for each set Yi a next set
Yi+1, and these sets Yi form a chain of increasing strength
whose union is X.

Theorem. If X is a system in L, and X is the union of
a chain of increasing strength in L, then X is not finitely
axiomatizable.

Proof: If X is a system, then it is axiomatizable only
by one of its own subsets.

Suppose that X is axiomatizable by its finite sub-
set {A1, . . . , An}, and is the union of the infinite chain
Y1, Y2, . . . . Then for each Aj there is a set Ykj in the
chain that contains Aj. Let m be the highest of these sub-
scripts kj. Then Ym contains all the sentences A1, . . . , An
and therefore semantically entails every member of X—
including every member of Ym+1. Thus the chain is not
one of increasing strength.

We can also use the assumptions of finitary semantic
entailment to strengthen this result of finite axiomatiz-
ability.9

Theorem. If L has finitary semantic entailment, and
the set X of sentences of L is semantically equivalent to
an infinite chain of increasing strength in L, then X is
not finitely axiomatizable.
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Proof: Let X be semantically equivalent to the union U
of a chain Y1, Y2, . . . . Suppose that X is axiomatizable
by the finite set {A1, . . . , An}. Then X, and hence U ,
semantically entails Ai, for i = 1, . . . , n. Given that L
has finitary entailment, we conclude that for each i there
is an integer ki such that Yki 
 Ai. Let k be the largest
of these integers. Then Yk 
 Ai for each i; hence Yk 
 A
for each sentence A in X. But then Yk 
 A for each
A in Yk+1, so the sequence Y1, Y2, . . . is not a chain of
increasing strength.

It is important to see how this theorem strengthens
the earlier one: The difference is that here we do not
require thatX be a system, and we no longer requireX to
be the union of some infinite chain of increasing strength
but only to be equivalent to such a union. But this makes
it necessary to suppose semantic entailment to be finitary.
An example of a language in which 
 is not finitary is one
that has a name for every natural number and in which
the quantifiers ranger over the natural numbers. There
the set

X = {F (0), F (1), F (2), . . . }

is semantically equivalent to the set

Y = {(n)F (n)}.

Thus X is finitely axiomatizable; so, therefore, is the
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system
Z = {A : X 
 A}.

Yet Z is equivalent to X, which is the union of the infinite
chain of increasing strength:

{F (0)}, {F (0), F (1)}, {F (0), F (1), F (2)}, . . . .

But X is not closed under 
, so the previous theorem
does not apply to X. Z is not itself the union of such a
chain [because if Ym contains (n)F (n), then Ym axiom-
atizes Z], so the previous theorem does not apply to it.
Finally, 
 is here not finitary, so the present theorem
does not apply to X or Z.

2.6 Theory of Deductive Systems

The study of semantic entailment is of special importance
in connection with the subject of deductive theories. The
most obvious way to conceive of a theory is as a system-
atic body of assertions: The theory provides us with a
list of sentences (theorems) asserted to be true. This is of
course equivalent to: To hold a theory is to hold that the
actual situation is correctly represented by some admis-
sible valuation that satisfies all its theorems. So one can
alternatively conceive of the theory as specifying a set
of valuations, and the single assertion that one of these
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valuations is the correct one. If we call the theory K, we
can choose to discuss either the set of K-theorems or the
set of K-valuations, with the correspondence:

K-theorem = sentence satisfied by all K-valuations

K-valuation = valuation that satisfies all Ktheorems

From this correspondence we see at once that the set of
K-theorems is closed under semantic entailment, that is,
a system. We shall now study the general relationships
that obtain among systems.

Theorem. For all systems X, Y , X ⊆ Y iff H(Y ) ⊆
H(X).

Proof: Suppose X ⊆ Y . Then Y 
 A for all A ∈ X.
Hence H(Y ) ⊆ H(A) for all A in X, and so H(Y ) ⊆
H(X). Suppose second, that H(Y ) ⊆ H(X). If A ∈ X,
H(X) ⊆ H(A), so then H(Y ) ⊆ H(A); that is, Y 
 A
for all A in X. But Y is a system; therefore, it follows
that A ∈ Y for A in X; that is, X ⊆ Y .

Theorem. For all systems X, Y , X ∩Y is a system and
H(X) ∪H(Y ) ⊆ H(X ∩ Y ).

Proof: If X ∩ Y 
 A, then X 
 A and Y 
 A, because
X and Y are supersets of X ∩ Y . But then A ∈ X and
A ∈ Y , so A ∈ X ∩ Y . This establishes that X ∩ Y is a
system.
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Second, X∩Y ⊆ X, so H(X) ⊆ H(X∩Y ) by the pre-
ceding theorem. Similarly, H(Y ) ⊆ H(X∩Y ). Therefore
H(X) ∪H(Y ) ⊆ H(X ∩ Y ).

Corollary. For all systems X, Y ,

X ∩ Y = {A : X 
 A and Y 
 A}
= {A : X ∩ Y 
 A}
= {A : H(X ∩ Y ) ⊆ H(A)}
= {A : H(X) ∪H(Y ) ⊆ H(A)}.

Proof: Only the last equality is not obvious, since we
know that H(X ∩ Y ) ⊆ H(X)∪H(Y ) but that the con-
verse does not generally hold. However, suppose that
H(X) ∪ H(Y ) ⊆ H(A). Then certainly H(X) ⊆ H(A)
and H(Y ) ⊆ H(A). But then A belongs to both X and
Y , and hence to X ∩ Y .

These obvious results for intersection do not all hold
for union (why?), but one may introduce an operation
on sets of sentences that is like union and does preserve
the property of being a system. This leads to a calculus
of systems, the study of which was begun by Tarski.10

To begin we note that the intersection
⋂
F of a family

of systems F is again a system: for
⋂
F is part of every

system in F , so that if
⋂
F 
 A, then A is a member of

every system in F—and hence a member of
⋂
F . Thus it
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makes sense to speak of the smallest system that contains
both of two given systems.

Definition. If X and Y are sets of sentences of L, the
system union X ∪̇Y of X and Y is the smallest system
containing both X and Y .

As usual, “smallest” does not mean of least cardinality: it
means, in effect, the intersection of all systems containing
both X and Y .

Theorem. For all systems X, Y ,

(a) X ∪̇Y = {A : X ∪ Y 
 A} = {A : H(X ∪ Y ) ⊆
H(A)};

(b) H(X ∪̇Y ) = H(X) ∩H(Y ).

Proof: (a) That {A : X ∪ Y 
 A} contains both X and
Y is clear. That it is a system follows from the transi-
tivity of semantic entailment (see the theorem at the end
of Section 3). Moreover, it is the smallest system con-
taining both X and Y , for any such system must contain
whatever is semantically entailed by X ∪ Y .

(b) Let v satisfy X ∪̇Y ; then it satisfies X and also Y ,
which are subsets ofX ∪̇Y . Hence v ∈ H(X)∩H(Y ). On
the other hand, if v satisfies X and also Y , it satisfies all
the sentences in X and also those in Y , hence all those in
X ∪Y , and hence all those in {A : X ∪Y 
 A} = X ∪̇Y .
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If L is a language, let us denote as “SYST(L)” the
family of systems in L. Then SYST(L) is partially or-
dered by the set-inclusion relation, the intersection of X
and Y in SYST(L) is the largest system in SYST(L) in-
cluded in both X and Y , and the system union of X and
Y in SYST(L) is the smallest system in SYST(L) that
includes both X and Y . That is, the following principles
hold for all X, Y , and Z in SYST(L).

(a) X ⊆ Y .

(b) If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

(c) If X ⊆ Y and Y ⊆ X, then X = Y .

(d) X ∩ Y ⊆ X; X ∩ Y ⊆ Y .

(e) If Z ⊆ X and Z ⊆ Y , then Z ⊆ X ∩ Y .

(f) X ⊆ X ∪̇Y ; Y ⊆ X ∪̇Y .

(g) If X ⊆ Z and Y ⊆ Z, then X ∪̇Y ⊆ Z.

This can be summed up by saying that the calculus of
systems in any given language is a lattice (under the
relation ⊆ and operations ∩ and ∪̇ ). The question is
now whether the set of principles (a)–(g) is complete or
whether there are additional principles that can be ex-
pressed in terms of ⊆, ∩, and ∪̇ that characterize every
calculus of systems. That the set (a)–(g) is complete in
this sense is proved in Appendix A.
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2.7 System Complementation

and Axiomatizability

It is quite possible, of course, to define operations on a
system other than intersection and system union, and
the most obvious candidate would be some analogue of
complementation. This is, in fact, an interesting case, for
it will allow us to formulate some conditions related to
finite axiomatizability.

To introduce an analogue to complementation, we
must single out for special consideration the smallest sys-
tem and the largest system, the system O included in all
other systems, and the system I, which contains all other
systems. It is clear that these exist, and are, respectively,
the set of all valid sentences and the set of all sentences
(of the language in question).

The main condition we place on the system comple-
ment is analogous to the law of noncontradiction:

(g) X ∩ Ẋ = O

It is not easy to see what other conditions should be put
on this operation, just because different logics disagree
so much on the properties of negation, beyond the law of
noncontradiction. However, there is one case where we
can have little doubt, and that is when we have exclu-

sion negation ¬, and X = {A : B 
 A}. Then Ẋ should
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be {A : ¬B 
 A}. In that case Ẋ = {A : H −H(B) ⊆
H(A)}; and we generalize this to:

Definition. The system complement Ẋ of X is the set
{A : H −H(X) ⊆ H(A)}.

There is, of course, in general no set Y such that (H −
H(X)) = H(Y ), so this definition cannot be further
simplified. For example, it is not generally true that

H(Ẋ) = H −H(X), although H −H(X) ⊆ H(Ẋ).

Theorem. For all systems X, Y ,

(a) H(X) ∪H(Ẋ) = H;

(b) X ∩ Ẋ = O;

(c) If X ⊆ Y , then Ẏ ⊆ Ẋ.

Proof: (a) If v /∈ H(X), then v ∈ H − H(X), so v
satisfies every sentence A such that H −H(X) ⊆ H(A).

Therefore, v ∈ H(X) or v ∈ H(Ẋ), for every point v on
H.

(b) Now suppose that A ∈ X ∩ Ẋ. Then X 
 A

and Ẋ 
 A, so H(X) ⊆ H(A) and H(Ẋ) ∈ H(A), and

therefore H(X) ∪ H(Ẋ) ⊆ H(A). By the first part of
this theorem, H ⊆ H(A), so A is valid; that is, A ∈ O.

(c) Suppose that X ⊆ Y . Then H(Y ) ⊆ H(X), so

H −H(X) ⊆ H −H(Y ). Therefore, if A ∈ Ẏ , then H−
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H(Y ) ⊆ H(A); hence H−H(X) ⊆ H(A), and so A ∈ Ẋ.

Generalizing on this, we conclude that Ẏ ⊆ Ẋ.

The next theorem uses system complementation to
exhibit a relation between intersection and system union.

Theorem.
˙̇

X ∪ Y = Ẋ ∩ Ẏ .

Proof:

˙̇
X ∪ Y = {A : H −H(X ∪̇Y ) ⊆ H(A)}

= {A : H − [H(X) ∩H(Y )] ⊆ H(A)}
= {A : [H −H(X)] ∪ [H −H(Y )] ⊆ H(A)}
= {A : H −H(X) ⊆ H(A) and

H −H(Y ) ⊆ H(A)}
= {A : H −H(X) ⊆ H(A)}∩
{H −H(Y ) ⊆ H(A)}

= Ẋ ∩ Ẏ

These are familiar properties that make it appropri-
ate to regard the operation as a kind of complementation.
But we must be very careful not to assume that other fa-
miliar principles about complementation carry over. For

example, might some valuation satisfy both X and Ẋ?
The answer is yes if the language is unusual enough. For
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example, if v satisfied all sentences, it would certainly

satisfy both X and Ẋ. Also, Ẋ might be O.

Let La have the sentences p1, p2, p3, . . . and let its ad-
missible valuations be the mappings v : v(A) ∈ {T, F}
for all sentences A. Let the system X be {A : p1 
 A}.
Because all the sentences in this language are logically in-
dependent, X = {p1}, and there are no valid sentences.
Moreover, no sentence is such that it is satisfied by every

member of {v : v(p1) = F}. Hence Ẋ = Λ. By similar

reasoning, Y = {p2} is also a system and Ẏ = Λ.

This shows two curious features of system complementa-
tion:

˙̇
X = X and X ∪̇ Ẋ = I

do not hold in general. For example, in the above lan-
guage La,

Ẋ = Λ = Ẏ but X 6= Y ; X ∪̇ Ẋ = X 6= I.

These features are characteristic of intuitionistic nega-
tion.

In some cases, X ∪̇ Ẋ = I does hold: This is related
to the question of whether X is finitely axiomatizable.
We prove two theorems concerning this case.
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Theorem. If L is a bivalent propositional language, and

X is a finitely axiomatizable system in L, then X ∪̇ Ẋ =
I.

Proof: Let X be axiomatized by {A1, . . . , An}; then X
is also axiomatized by the sentence B, which is the con-
junction of A1, . . . , An. There is now a unique sentence
satisfied exactly by all members of H − H(B), namely,

¬B. Hence {¬B} axiomatizes Ẋ. Thus X ∪̇ Ẋ is equiv-
alent to {B, ¬B}, which is equivalent to I. And when
two systems are semantically equivalent, they are identi-

cal. Hence X ∪̇ Ẋ = I.

Theorem. If L has exclusion negation and finitary se-
mantic entailment, then X is a finitely axiomatizable sys-

tem in L if X ∪̇ Ẋ = I.

Proof: We shall use A′ for the exclusion negation of a
sentence A, and assume that L has exclusion negation,
finitary semantic entailment, and that system X is such

that X ∪̇ Ẋ = I in L.
Now suppose, per absurdum, that X is not finitely

axiomatizable. Then, by a preceding theorem, X is the
union of an infinite chain

Y1 ⊆ Y2 ⊆ Y3 ⊆ · · ·

of increasing strength in L. Concerning Ẋ there are now
two possibilities: It may be empty or nonempty.
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If Ẋ is empty, then X = I−Λ = I; therefore, both A
and A′ are in X (for arbitrary A). By finitary entailment,
Ym 
 A and Yn 
 A′ for certain m and n. The larger
of the two sets Ym and Yn semantically entails both A
and A′. But then it is not satisfiable, hence entails all
sentences in I: That is, it axiomatizes X.

On the other hand, if Ẋ is not empty, let it be the

set {B1, B2, . . . }—where Bn+m = Bn for all m if Ẋ has
only n sentences. We now form the chain

Y1 ∪ {B1}, Y2 ∪ {B1, B2}, . . . ,
Ym ∪ {B1, . . . , Bm}, . . . .

The union of this chain equals I; hence it contains both
A and A′ (for arbitrary sentence A). By the finitary
character of semantic entailment, we find an integer n
such that

Zn = Yn ∪ {B1, . . . , Bn}
semantically entails both A and A′, as before. Now this
set Zn is not satisfiable.

H(Zn) = H(Yn ∪ {B1, . . . , Bn})
= Λ

= H(Yn) ∩H({B1, . . . , Bn}).

But on the other hand, every valuation satisfies either
Yn or {B1, . . . , Bn}. For suppose v does not satisfy Yn.
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Then clearly it does not satisfy X (since Yn ⊆ X); there-

fore, v ∈ H − H(X), and so satisfies Ẋ. Succinctly
phrased:

H(Yn) ∩

(
n⋂
i=1

H(Bi)

)
= Λ,

H(Yn) ∪

(
n⋂
i=1

H(Bi)

)
= H.

From this we deduce that

H(Yn) = H −
n⋂
i=1

H(Bi)

=
n⋃
i=1

(H −H(Bi))

=
n⋃
i=1

H(B′i).

Moreover, this holds for all numbers r ≥ n, since once
we get a contradiction in the chain, every subsequent
member is self-contradictory. Looking specifically at r
and r + 1 we notice that we have the relations shown in
Figure 2 (next page). Hence we deduce that all four sets
are equal.

This means that, in particular, Yn is semantically equiv-
alent with Yr for all r ≥ n. Hence Yn axiomatizes X, the
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⋂
B∈Yr+1

H(B) = H −
r+1⋂
i=1

H(Bi)

⊆ ⊇⋂
B∈Yr

H(B) = H −
r⋂
i=1

H(Bi)

FIGURE 2: for all r ≥ n

union of these sets Yr (since 
 is finitary). By reductio

ad absurdum we conclude that if X ∪̇ Ẋ = I, then X is
finitely axiomatizable.

This proof was quite lengthy, so an example may
be helpful. If L is a bivalent propositional language,
then if X is axiomatized by the set of atomic sentences

{p1, p2, p3, . . . , pn}, Ẋ is axiomatized by

{¬(p1 & · · · & pn)}.

But if X is axiomatized by {p1, p2, p3, . . . }—and hence
is not finitely axiomatizable—then the valuations that

satisfy Ẋ are all those belonging to

∞⋃
i=1

H(¬pi).
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It is easy to see that ¬p1 does not belong to either X or

Ẋ, since a valuation v such that v(p1) = T, v(p2) = F
belongs to the infinite union indicated.

2.8 Filters and the

Compactness Problem

The use of compactness theorems is mainly in proofs that
semantic entailment is finitary. All their significant ap-
plications in metalogic appear to be via the connections
with finitary entailment that we have shown in Section 4.
Thus the emphasis in metalogic on compactness is partly
due to the fact that classical logic has exclusion negation.
It is also partly due, however, to the early translation of
the compactness problem into a topological problem. We
shall now develop methods for proving compactness and
finitary semantic entailment.11

The basic notion that we shall need is the notion of
a filter on a set X. In our applications in this section, X
will be the valuation space of some language, but this is
not essential to the notion of a filter.

Definition. A filter on a set X is a nonempty family F
of subsets of X such that

(a) Λ /∈ F ;

(b) if Y ∈ F and Y ⊆ Z ⊆ X, then Z ∈ F ;
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(c) if Y ∈ F and Z ∈ F , then Y ∩ Z ∈ F .

[Some authors omit clause (a), and then call a filter
proper if it does not contain the null set, improper oth-
erwise.] It is clear from clause (b) that X belongs to
every filter on X. [For motivation, suppose F is a filter
on valuation space H on language L. Then if L(F ) =
{A : H(A) ∈ F} we find that if A1, . . . , An ∈ L(F ),
and {A1, . . . , An} 
 B in L, then B ∈ L(F ). So if L
has finitary entailment, then L(F ) is a system.]

Definition. A filter base on X is a nonempty family
B of subsets of X such that if Y1, . . . , Yn ∈ B, then⋂
{Y1, . . . , Yn} 6= Λ.

Lemma 1. Every filter base is contained in a filter.

(One may also express this as “every filter base can be
extended into a filter”; the smallest such filter is called
the filter “generated by” the base.)

Proof: Let B be a filter base, and let B∗ be the family
of intersections of finite subfamilies of B:

B∗ =
{⋂

B′ : B′ ⊆ B and B′ is finite
}
.

Furthermore, let

F = {Y : Z ⊆ Y for some Z ∈ B∗}.
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Then we maintain that F is a filter (in fact, the filter
generated by B).

For suppose that Λ ∈ F . Then there is a member Z
of B∗ such that Z ⊆ Λ; that is, Z = Λ. But then there
is a finite subfamily of B that has an empty intersection.

Second, suppose that Y and Y ′ belong to F . Then
there are Z, Z ′ ∈ B∗ such that Z ⊆ Y, Z ′ ⊆ Y ′, so

Z ∩ Z ′ ⊆ Y ∩ Y ′.

But then Z =
⋂
{Z1, . . . , Zn}, Z ′ =

⋂
{Zn+1, . . . , Zn+m}

for members Zi(i = 1, . . . , n+m) of B. Hence

Z ∩ Z ′ =
⋂
{Z1, . . . , Zn, Zn+1, . . . , Zn+m}

and also a member of B∗. Hence Y ∩ Y ′ ∈ F . Finally
that F is closed under superset formation is obvious.

As an example, consider (as in Section 4) the bi-
valent propositional language that has p and q as only
atomic sentences. The space H has only four members—
v1, v2, v3, v4—hence only 24 = 16 subsets. As it happens,
each of these subsets is an elementary class (why?). An
example of a filter base would be

B = {{v1}, {v1, v2}} = {H(p& q), H(p)}.

(This is a filter base just because {p& q, p} is a satisfiable
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set.) B generates the filter

F (B) = {{v1}, {v1, v2}, {v1, v3}, {v1, v4},
{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4},
{v1, v2, v3, v4}},

which is equivalently the family

F (B) = {H(p& q), H(p), H(q),

H(p& q ··· ∨ ··· ¬p& ¬q), H(¬(¬p& ¬q)),
H(¬(¬p& q)), H(¬(p& ¬q)), H(p ∨ ¬p)}

where ∨ is defined in terms of & and ¬ as usual. In the
case of a bivalent language with infinitely many atomic
sentences, not every subset of H would be an elementary
class. For example, let v then assign T to all atomic
sentences; then {v} is not an elementary class because we
do not have infinite conjunctions (we do not then have
a sentence A that is true if and only if all the infinitely
many atomic sentences are true).

The following definition is easily illustrated with ref-
erence to the above example.

Definition. A filter F onX is an ultrafilter on X iff there
is no filter F ′ on X such that F ⊆ F ′ and F 6= F .

The filter F (B) above is of course an ultrafilter. The
following is not an ultrafilter:

G = {{v1, v2}, {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v3, v4}}.
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However, G is a filter, and is contained in an ultrafilter,
F (B).

Lemma 2. The following conditions are equivalent if F
is a filter on X:

(a) F is an ultrafilter on X.

(b) Y ∪Z ∈ F iff Y ∈ F or Z ∈ F , for all Y, Z ⊆ X.

(c) For every Y ⊆ X, either Y ∈ F or (X − Y ) ∈ F .

Proof: To establish this we should prove that (a) implies
(b), (b) implies (c), and (c) implies (a). We shall do two
of these and leave the other as exercise.

(a) implies (b): Let F be a filter, and suppose that
Z ∪ Y ∈ F , but Z /∈ F and Y /∈ F . We define:

G = {Z ′ : Z ∪ Z ′ ∈ F}.

We are going to show that G is a filter, which contains
F as a proper part.

First, since Z∪Y ∈ F , Y ∈ G ; hence G is nonempty.
Second, F does not contain Z, hence not Z ∪ Λ; so G
does not contain Λ. Third, if Z ∪ Z ′ ∈ F , and Z ′ ⊆ Z ′′,
then Z ∪ Z ′′ is in F ; hence G is closed under superset
formation. Finally, if Z ∪ Z ′ and Z ∪ Z ′′ are in F ,

(Z ∪ Z ′) ∩ (Z ∪ Z ′′) = Z ∪ (Z ′ ∩ Z ′′)

belongs to F , so G is also closed under intersection. Thus
G is a filter. Also F ⊆ G , because if Z ′ ∈ F , then
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Z ∪ Z ′ ∈ F (since Z ′ ⊆ Z ∪ Z ′), so Z ′ ∈ G . But Y ∈ G ,
and not in F , so F 6= G . Thus F is not an ultrafilter.

(c) implies (a): Suppose that F is properly contained
in a filter G ; let Y /∈ F but Y ∈ G . Suppose, per
absurdum, that (c) holds. Then X−Y ∈ F . Hence both
Y and X−Y belong to G : G then contains Y ∩(X−Y ) =
Λ, which is not possible.

Probably the most important theorem about filters is
the following:

Theorem. Every filter on a set Z is contained in an
ultrafilter on Z.

Proof: The crucial point to notice is that ultrafilters
are maximal elements among the filters. And we have a
theorem concerning the existence of maximal elements:
Zorn’s lemma (Chapter 1, Section 3). This provides the
strategy for our proof.

The partially ordered set under consideration is the
family Σ of all filters on Z that contain a given filter F .
This family Σ is partially ordered by the relation ⊆; if
we can show it to have a maximal element, it will be a
filter G containing F , and it will also be an ultrafilter.
For if G were included in G ′, then G ′ contains F also,
hence belongs to Σ—and that means that either G = G ′

or G is not maximal in Σ.
By Zorn’s lemma, that Σ has a maximal element will

follow if we can show that every chain in Σ has an up-
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per bound in Σ. Let C be such a chain, and G =
⋃

C.
Since every member of C contains F , so does its union
G . Since no member of C contains the empty set, neither
does G . Since each member of C contains the supersets
of all its members, G contains the supersets of all the
members of G . Finally, suppose X and Y belong to G .
Let F1 and F2 be members of C to which X and Y
belong, respectively. Since C is a chain, F1 ⊆ F2 or
F2 ⊆ F1. In either case, X and Y both belong to the
larger, and so does their intersection. Therefore, X ∩ Y
belongs to G . This establishes that G is a filter which
contains F . Therefore, G belongs to Σ; that is, each
chain in Σ has an upper bound in Σ—its own union.

With these basic results concerning filters and ultra-
filters, it is now fruitful to approach the subject of com-
pactness by studying the filters on the valuation space.

Definition. If F is a filter on a valuation space H, then
F is

(a) U-convergent to v (in H) iff every elementary class
containing v belongs to F ;

(b) I-convergent to v iff every elementary class in F
contains v;

(c) convergent to v iff an elementary class belongs to
F if and only if it contains v.
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We also say that F converges or is convergent if it is
convergent to some point on H, and so on. It is to be
noted that convergence is not the conjunction of I- and
U-convergence; prima facie, F might I-converge to one
point, and U-converge to another.

Theorem. If every ultrafilter on a valuation space H
is I-convergent (U-convergent), then H is I-compact (U-
compact).

Proof: Suppose first that H is not I-compact, so that
there is a family of sentences X such that H(X) = Λ
and H(Y ) 6= Λ for any finite subset Y of X. This shows
that the family

B = {H(B) : B ∈ X}

forms a filter base; B generates a filter that is in turn
contained in an ultrafilter F . Now if F is I-convergent
to a valuation v, then v ∈

⋂
{H(B) : H(B) ∈ F}. Since

B ⊆ F , it follows that if B ∈ X, then H(B) ∈ F , so

v ∈

( ⋂
B∈X

H(B)

)
= H(X),

but that intersection is empty. We conclude that F is
not I-convergent.
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Suppose, second, that H is not U-compact, so that
there is a family X of sentences such that⋃

B∈X

H(B) = H;
⋃
B∈Y

H(B) 6= H

for any finite Y ⊆ X. If we now consider the relative
complements H −H(B) of these elementary classes, we
obtain⋂

B∈X

(H −H(B)) = Λ;
⋂
B∈Y

(H −H(B)) 6= Λ

for any finite Y ⊆ X. So these complements form a filter
base

B = {H −H(B) : B ∈ X}

which is contained in an ultrafilter F . If F were U-
convergent to a valuation v, we would have

for all sentences A, if v ∈ H(A), then H(A) ∈ F .

Since the family X provides a cover for H, there is a
sentence B such that

B ∈ X and v ∈ H(B);

hence also H(B) ∈ F . But since B ∈ X, H − H(B) is
in B and hence in F . Now we have deduced that if F
is U-convergent, F contains both H −H(B) and H(B),
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and hence their intersection Λ, which is impossible. So
if H is not U-compact, then not every ultrafilter on H is
U-convergent.

Before considering the subject of finitary semantic en-
tailment, we shall use the preceding result to show that
I-compactness and U-compactness are not equivalent in
general.

Theorem. There is a language that has finitary entail-
ment and is U-compact but is not I-compact.

Proof: Let L have as sentences exactly the set {q, p1, p2,
p3, . . . } and as admissible valuations the functions v such
that

v(q) = T iff v(pi) 6= T for some i = 1, 2, 3, . . . ;

v(A) ∈ {T, F} for all sentences A.

We note that, for each i, H −H(pi) ⊆ H(q).
(a) L is not I-compact. For the set K = {q, p1, p2,

p3, . . . } is not satisfiable, but any finite subset K ′ of K is
satisfiable, namely by the bivalent valuation v such that
v(q) = T, v(pi) = T iff pi ∈ K ′.

(b) L is U-compact. For let F be an ultrafilter on
the valuation space H of L. Define

L(F ) = {A : H(A) ∈ F}.

There are two possibilities.
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1. pi ∈ L(F ) for each i = 1, 2, 3, . . . . Then the valu-
ation v such that v(pi) = T for each i = 1, 2, 3, . . .
and v(q) = F is admissible, and F U-converges to
v, because H(pi) for each i = 1, 2, 3, . . . belong to
F . [Note that H(q) may belong to F also.]

2. pi /∈ L(F ) for some index i. Then H(pi) /∈ F ,
and F is an ultrafilter, so H − H(pi) ∈ F . But
H −H(pi) ⊆ H(q); hence H(q) ∈ F , and q ∈
L(F ). Therefore, the valuation v such that v(A) =
T iff A ∈ L(F ) and v(A) = F otherwise is admis-
sible, and F U-converges to v.

(c) L has finitary entailment. For suppose that X is
infinite and X 
 A. Then we distinguish two cases.

1. q ∈ X. Then A must be a member of X, for if A /∈
X, then A = pi for some index i, and the valuation
that maps the members of X into T and the other
sentences into F is an admissible valuation.

2. q /∈ X. Then q cannot be A because the valuation
which maps q into F and all other sentences into T
is admissible. Second, suppose that A = pi for some
index i. Then A must be in X, for the valuation
that maps pi into F and other sentences into T is
admissible.

We conclude therefore that X has a finite subset, {A},
which also semantically entails A in L.
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We shall leave it to the reader to consider the question
whether finitary entailment and/or I-compactness entails
U-compactness. For we shall now use the notion of con-
vergence of ultrafilters to provide a sufficient condition
for finitary semantic entailment.

Theorem. If every ultrafilter on a valuation space H
of a language L converges, then L has finitary semantic
entailment and is compact.

Proof: Compactness follows from a previous theorem.
Now suppose the antecedent and let X be a set of sen-
tences of L and A a sentence of L such that Xi 
 A does
not hold for any finite subset Xi of X. Then the sets

I(Xi) = H(Xi)−H(A)

are nonempty and form a filter base, because I(Xi1) ∩
· · · ∩ I(Xin) = I(Xj), where Xj = Xi1 ∪ · · · ∪Xin . This
filter base is included in an ultrafilter F converging to a
valuation v. Now if B is a member of X, then I({B}) =
H(B) − H(A) is in F , so H(B) ∈ F ; hence v satisfies
any member B of X. But H(A) /∈ F , for then H(A) ∩
(H(B)−H(A)) = Λ would be in F , which is impossible.
Therefore, v does not satisfy A. So not all valuations
that satisfy X satisfy A; that is, not X 
 A.

We can now prove theorems of compactness and fini-
tary entailment for the classical propositional calculus by
our preceding theorem and the following result.
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Theorem. If H is the valuation space of a bivalent propo-
sitional language L, then every ultrafilter on H is conver-
gent.

Proof: Let us first point out that the definition of ad-
missible valuation for L has as immediate consequences:

1. H(¬A) = H −H(A).

2. H(A&B) = H(A) ∩H(B).

The definition of ultrafilter F , on the other hand, has as
immediate consequences

3. Exactly one of H(A), H −H(A) belongs to F .

4. H(A) ∩H(B) ∈ F iff H(A) ∈ F and H(B) ∈ F .

From these four propositions it follows that

5. H(¬A) ∈ F iff H(A) /∈ F .

6. H(A&B) ∈ F iff H(A) ∈ F and H(B) ∈ F .

This suggests that all the sentences A such that H(A) ∈
F can be true together; that is, that there is an admissi-
ble valuation v that assigns T to all these sentences, and
only these sentences.

We can define this valuation in one of two ways:

D1. v is the function defined for all sentences A, such
that v(A) = T if H(A) ∈ F , and v(A) = F oth-
erwise.
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D2. v is the admissible valuation for L that assigns T
to an atomic sentence p of L iff H(p) ∈ F .

If we choose D2, we shall have to show that the defined
admissible valuation v exists and is such that v(A) = T
iff H(A) ∈ F . If we choose D1, we can see at once
that v(A) = T iff H(A) ∈ F but we need to show that
this defined function v is an admissible valuation. Let us
choose D1; the reader can explore the option of choosing
D2.

(a) v maps all sentences into {T, F};
(b) v(¬A) = T iff H(¬A) ∈ F iff H(A) /∈ F (see 5)

iff v(A) = F;

(c) v(A&B) = T iff H(A&B) ∈ F iff H(A) and H(B)
are both in F (see 6) iff v(A) = v(B) = T.

Now v belongs to an elementary class iff that class be-
longs to F ; hence F converges to v.

2.9 Ultraproducts and the

Compactness Problem

The notion of ultraproduct is of quite recent origin, but
it has already proved fruitful for many different purposes
in formal semantics.12 We shall here study it in a very
general and abstract way, hoping thereby to shed some
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light on its specific applications. We introduce the notion
of an ultraproduct of valuations (which is a generalization
of the usual notion of an ultraproduct of models) and
aim to show how this notion is related to the topological
notions of the preceding sections, and how it leads to a
method for proving that semantic entailment is finitary.

If X is a set with which we are concerned, we often
order its members in some way, and then denote the ith
member of X (by the ordering) as Ai. Here i is the index
of some member of X; each distinct member of X receives
a distinct index. The set I of all these indices is called,
very appropriately, the index set. While the index set is
usually the set of natural numbers, or one of the initial
segments (1, . . . , n) of that set, it need not be; it could
be any set whatever. When X has been indexed by I, we
often write

X = {Ai}, i ∈ I.

This notion of index set will be used in the definition of
ultraproduct.

The second notion we need is that of a valuation de-
fined in terms of a family of valuations. As an illustration
we define the direct product of a family of valuations. If
V = {vi}, i ∈ I is a family of valuations on a syntax Syn,
the direct product of V is the valuation v··· such that (1)
v ··· (A) = T iff vi(A) = T for all i ∈ I, (2) v ··· (A) = F
otherwise.
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It is easily seen that if L is a bivalent propositional
language, the direct products of its admissible valuations
are not generally admissible, whereas they are admissible
if L is like a bivalent propositional language except for
lacking negation. For let V be a family of admissible
valuations for L. Then for either assumption about L we
have

v ··· (A&B) = T iff for all v ∈ V, v(A&B) = T

iff for all v ∈ V, v(A) = v(B) = T

iff v ··· (A) = v ··· (B) = T,

which is as it should be. But in the case of negation we
find

v ··· (¬A) = T iff for all v ∈ V, v(¬A) = T

iff for all v ∈ V, v(A) = F,

while v ··· (A) = F iff for some v ∈ V, v(A) = F. So if V
contains two members v1 and v2 such that

v1(A) = T; v2(A) = F,

hence v1(¬A) = F; v2(¬A) = T,

we find that v ··· (A) = v ··· (¬A) = F.
This shows at once how a new valuation may be de-

fined in terms of a family of valuations, and why it is
necessary to prove carefully that the defined valuation is
admissible, if this be asserted.
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We turn now to the basic notion of this section:

Definition. If V = {vi}, i ∈ I is a family of valuations
on a syntax Syn, and U is an ultrafilter on I, then v is an
ultraproduct of V (generated by U ) iff for all sentences
A of Syn, v(A) = T iff {i ∈ I : vi(A) = T} ∈ U .

As an illustration we consider ultraproducts in biva-
lent propositional languages.

Theorem. If V = {vi}, i ∈ I is a family of admissible
valuations for a bivalent propositional language L, and U
an ultrafilter on I, there is an ultraproduct of V generated
by U which is an admissible valuation for L.

Proof: We define:

v(A) = T iff {i ∈ I : vi(A) = T} ∈ U

v(A) = F otherwise, for all sentences A of L.

That v is an ultraproduct of V generated by U is obvious.
To show that v is admissible, we note that

(a) v(A) ∈ {T, F} for all sentences A of L.

(b) v(A&B) = T iff {i ∈ I : vi(A&B) = T} ∈ U

iff {i ∈ I : vi(A) = T and

vi(B) = T} ∈ U
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iff {i ∈ I : vi(A) = T} ∩
{i ∈ I : vi(B) = T} ∈ U

iff {i ∈ I : vi(A) = T} and

{i ∈ I : vi(B) = T} are both
in U

iff v(A) = v(B) = T.
(c) v(¬A) = T iff {i ∈ I : vi(¬A) = T} ∈ U

iff I − {i ∈ I : vi(A) = T} ∈ U

iff {i ∈ I : vi(A) = T} /∈ U

iff v(A) = F.

From now on we use the following terminology:

Definition. A valuation space H admits all ultraproducts
iff for every subset V = {vi}, i ∈ I of H, and ultrafilter
U on I, some member of H is an ultraproduct of V
generated by U .

We shall now show how the existence of ultraproducts
can be used to demonstrate that semantic entailment is
finitary.

Theorem. If the valuation space H of a language L ad-
mits all ultraproducts, then L has finitary semantic en-
tailment.

Proof: Let A be a sentence and X a set of sentences of
L, and let us index the finite subsets of X as {Xi}, i ∈ I.
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Suppose that no finite subset Xi of X semantically entails
A. We intend to show that X 
 A does not hold then,
given that H admits all ultraproducts.

For each i ∈ I there is a valuation vi such that vi
satisfies Xi but not A; otherwise, Xi 
 A would hold.
Define, for each finite Xm ⊆ X:

Jm = {i ∈ I : vi satisfies Xm},

where V = {vi}, i ∈ I is the indicated class of valuations.
The family J = {Jm}, m ∈ I is a filter base on I,

for no member is empty, and

Jm1 ∩ · · · ∩ Jmn = Jm ∈J ,

where

Jm = {i : vi satisfies Xm1 ∪ · · · ∪Xmn}.

This filter base can be extended to an ultrafilter U on
I, J ⊆ U . If H admits all ultraproducts, then it has a
member v such that, for all sentences B,

v(B) = T iff {i : vi(B) = T} ∈ U .

If B ∈ X, there is a Jm ∈J such that

Jm = {i : vi satisfies B}, Jm ∈ U ;
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hence this ultraproduct satisfies every sentence in X. But
we chose V = {vi}, i ∈ I such that for each i ∈ I, vi(A) 6=
T. Hence

{i : vi(A) = T} = Λ /∈ U ,

so the ultraproduct v does not satisfy A. This shows that
X 
 A does not hold, as was required.

We have established along the way that in a bivalent
propositional language, semantic entailment is finitary;
however, we knew this already. We shall now connect
the existence of ultraproducts with the convergence of
ultrafilters. Note first that ultrafilters on the index set I
correspond in a one-to-one fashion to ultrafilters on the
indexed set V = {vi}, i ∈ I. The one-to-one mapping
involved is just the function that assigns a distinct index
to each member of V :

vi ↔ i

X ⊆ V ↔ {i : vi ∈ X} ⊆ I.

So to an ultrafilter U on I corresponds an ultrafilter U ′

on V defined by

X ⊆ V belongs to U ′ iff {i : vi ∈ X} ∈ U .

Suppose now that v is an ultraproduct of V generated by
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U ; then we have for any sentence A:

v(A) = T iff {i ∈ I : vi(A) = T} ∈ U ,

v(A) = T iff {vi : vi(A) = T} ∈ U ′,

v ∈ H(A) iff {vi ∈ V : vi(A) = T} ∈ U ′,

v ∈ H(A) iff h(A) ∩ V ∈ U ′.

If V is the whole of H this means simply that

For all sentences A, v ∈ H(A) iff H(A) ∈ U ′;

that is, U ′ converges to the ultraproduct v. This essen-
tially proves one part of the next theorem.

Theorem. A valuation space H admits all ultraproducts
iff every ultrafilter on H converges.

Proof: Suppose first that H admits all ultraproducts,
and let U be an ultrafilter on H. We shall first index
every member of H, so that we can write, for some I:

H = {vi}, i ∈ I.

To do this most simply, let I = H, and let the mapping
that assigns each member v of H an index i be f : f(v) =
v. That is, v = vv and H = {vv}, v ∈ H. Now U is also
an ultrafilter on I, and generates an ultraproduct v ∈ H
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such that

v ∈ H(A) iff {v ∈ I : vv(A) = T} ∈ U

iff {vv : vv(A) = T} ∈ U

iff {v : v(A) = T} ∈ U

iff H(A) ∈ U .

That is, U converges to v.
Suppose, second, that all ultrafilters of H converge,

and let V = {vi}, i ∈ I be a subset of H, U an ultrafilter
on I. We define the family B of subsets of V :

X ∈ B iff {i : vi ∈ X} ∈ U ;

clearly B is a filter base in H and can be extended to an
ultrafilter U ′ on H. We show now that for any elemen-
tary class H(A),

H(A) ∈ U ′ iff V ∩H(A) ∈ B.

From this it follows readily that if U ′ converges to v,
then v is an ultraproduct of V generated by U ; for then
v ∈ H(A) iff V ∩H(A) ∈ B, iff {i : vi(A) = T} ∈ U .

(a) Suppose V ∩ H(A) ∈ B. Then V ∩ H(A) ∈ U ′.
Hence H(A)—as well as V—belongs to U ′.

(b) Suppose H(A) ∈ U ′. Since V ∈ B, V ∈ U ′.
Hence V ∩H(A) ∈ U ′. Because U is an ultrafilter
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on I, either {i : vi ∈ V ∩H(A)} ∈ U or {i : vi /∈ V ∩
H(A)} ∈ U . Hence either V ∩H(A) or V −H(A)
belongs to B. Were V − H(A) to belong to B,
it would also belong to U ′. But then V ∩ H(A)
and V − H(A), and so V ∩ H(A) ∩ H(A) = Λ
would belong to U ′, which is impossible. It follows,
therefore, that V ∩H(A) ∈ B.

2.10 Partial Valuations and

the Compactness Problem

The methods of ultrafilters and ultraproducts for prov-
ing compactness may appropriately be called topological
methods. In this section we shall discuss a different kind
of method, introduced by Henkin for propositional logic
and adapted by Robinson to quantificational logic and
by P. Woodruff and my student Bruce Myers to many-
valued logic.13

If f is a binary function and Y a set, then we define
the restriction of f to Y to be the function f ′ defined by

f ′ = {〈x, y〉 : x ∈ Y and f(x) = y}.

In addition, we call f an extension of all its restrictions.
If L and L′ are languages such that all sentences of L′

are sentences of L, and the admissible valuations of L′
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are the restrictions of the admissible valuations of L to
the sentences of L′, we call L′ a fragment of L. The ad-
missible valuations of any fragment of L are called partial
valuations of L.

Theorem. If L is I-compact (U-compact, compact) so
are all its fragments.

For let L′ be a fragment of L, let L be I-compact and
let X be a set of sentences of L′ that is not satisfiable in
L′. Then X is not satisfiable in L, for if v satisfies X, so
does its restriction to L′. So X has a finite subset Y that
is not satisfiable in L. Then Y is not satisfiable in L′,
since if v satisfies Y , so do all its extensions. The cases
of U-compactness and compactness are similar.

Theorem. If L has finitary entailment, so do all its frag-
ments.

The proof is as for the preceding theorem: If X is
a set of sentences of L′ and A a sentence of L′, then v
satisfies X but not A iff the restriction of v to L′ does
so, and iff all the extensions of v do so, when v is an
admissible valuation for L′.

These theorems may provide an easy method for com-
pactness proofs, when one language can be shown to be a
fragment of another language for which we already have
such proofs. For example, the languages of modal logic
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can be construed as fragments of the language of quan-
tificational logic. But such construal may not be easy; in
general, compactness proofs require work, if not in one
place then in another.

Henkin showed how to use partial valuations in com-
pactness proofs without relying on previous compactness
results. Let us call a language L′ finitary iff it has only
finitely many distinct admissible valuations. Let us call
the sequence L1, L2, L3, . . . a chain of languages iff Li
is a fragment of Li+1, for i = 1, 2, 3, . . . .

Definition. L is the union of the chain L1, L2, . . . if and
only if

(a) Li is a fragment of L, for i = 1, 2, . . . ;

(b) each sentence of L is a sentence of Li for some i;

(c) if v1, v2, . . . is such that vi is an admissible valua-
tion for Li and vi ⊆ vi+1 for i = 1, 2, . . . , then the
union of this series is an admissible valuation for L.

Then we have the following general result.

Theorem. If a language L is the union of a chain of its
finitary fragments, then L has finitary semantic entail-
ment.

Proof: Let L be the union of a chain L1, L2, . . . of its
finitary fragments, and let no finite subset of X seman-
tically entail the sentence A of L. Now X is the union of
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a series of sets of sentences

X1 ⊆ X2 ⊆ X3 ⊆ · · ·

such that for i = 1, 2, . . . , Xi is the largest of these sets
whose sentences all belong to Li. Since Li is finitary, Xi

must be semantically equivalent to one of its finite sub-
sets. For if a set X = {B1, . . . , Bj, . . . } is not equivalent
to any of its finite subsets, then there must be valuations
v1, . . . , vj, . . . such that vj satisfies {B1, . . . , Bj} but
does not satisfy X. Some of these valuations may not be
distinct, but there can be no integer m such that vm = vn
for all n ≥ m, or vm would satisfy X. Thus there would
have to be infinitely many distinct valuations.

Let Vi be the set of admissible valuations of Li which
satisfy Xi but do not satisfy (or are not defined for) A, for
i = 1, 2, 3, . . . . We know that each set Vi is nonempty,
for if Li provides no counterexample to Xi 
 A, then
neither does L. Also, each set Vi is finite, because each
language Li is finitary. Now consider the relation R:

Rvv′ iff v′ ∈ Vi+1 and v ∈ Vi, and v is the restriction
of v′ to Li, for i = 1, 2, 3, . . . , or v′ belongs to V1 and
v is the set Λ.

Then for each v′ in each set Vi there is a unique v such
that Rvv′. In the case i = 1 this is obvious; in the case i >
1, suppose v′ satisfies Xi but not A; then v′ satisfies Xi−1
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but not A. Now, Xi−1 is a set of sentences of Li−1; hence
the restriction of v′ to Li−1, call it v, satisfies Xi−1 but
not A, and hence belongs to Vi−1. Moreover, restrictions
are unique.

We have now shown that we have here a finitely
branching tree, with Λ and the members of all the sets
Vi as notes, Λ as origin, and R as immediate descendant
relation. By Koenig’s lemma, this tree has an infinite
branch Λ, v1, v2, v3, . . . . This branch has as union an
admissible valuation for L, which clearly satisfies X but
not A.

The proof for I-compactness results if we simply delete
all reference to the sentence A in the above proof; the
question of U-compactness is left to the reader. As illus-
tration we prove:

Theorem. If L is a bivalent propositional language, then
L is the union of a chain of its finitary fragments.

Proof: Let the atomic sentences of L be p1, p2, p3, . . .
and let Li be the bivalent propositional language whose
only atomic sentences are p1, . . . , pi, for i = 1, 2, . . . .
Then each sentence A of L belongs to a finitary fragment
of Lj of L; that is, j is the highest index of A’s atomic
constituents. Second, let v1 ⊆ v2 ⊆ · · · be a series of
admissible valuations for L1, L2, . . . , respectively, and
let v be the union of this series. Then for any sentence
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A of Li and B of Lj, for i, j = 1, 2, 3, . . . , with j ≥ i,
we have

v(A) ∈ {T, F} because vi(A) ∈ {T, F},
v(¬A) = vi(¬A) = T iff vi(A) = F = v(A),

v(A&B) = vj(A&B) = T iff vj(A) = vj(B) = T

iff v(A) = v(B) = T.

Hence v is an admissible valuation for L.
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Chapter 3

Appraisal of
Logical Systems

In this chapter we attempt to construct a general con-
cept of logical systems and provide general criteria for
their appraisal. In addition, we consider the possibility
of diverse interpretations with respect to which a given
logical system is equally adequate. As before, classical
propositional logic provides the main illustration for the
concepts and methods developed.
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3.1 Logical Systems

The best known characterization of logical systems is
probably the one given by Carnap, which says that a
logical system is described by stating its formation rules
and its transformation rules.1 We may take this as the
starting point of our discussion.

The formation rules describe the class of expressions
that are grammatically well-formed. The transformation
rules are simply some syntactic transformations, and if
A can be produced by applying a finite sequence of these
transformations to a class of expressions X, we say that
A is deducible from X in the logical system. All trans-
formation rules preserve well-formedness.

This suggests that a logical system can be identified
with a syntactic system together with a set of syntac-
tic transformations (preserving the property of being a
sentence, and perhaps some wider syntactic property,
depending on the usage of “well-formed formula” and
“sentence”). But that is not quite accurate because a
given logical system will pertain to a variety of languages,
which need not have the same syntax. For example, the
propositional calculus can be applied in any language
with a PCS for syntax—the choice of the exact set of
expressions regarded as sentences is clearly not impor-
tant. The propositional calculus applies as well to the
language of quantification theory, of modal logic, of set
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theory, and so on. So the formation rules are not to
specify a single syntactic system, but a kind of syntactic
system.

And this is to be very general. Consider again the
propositional calculus with & and ¬ as primitive. All
that is needed for the propositional calculus to be ap-
plicable (correctly or incorrectly, of course) is that the
language L in question have some binary sentential con-
nective &L and some unary sentential connective ¬L. (L
might be the language of intuitionistic logic with → as
&L and ¬¬ as ¬L.) Only after we have explained how
we shall apply the logical system to the language can
questions of correctness even arise.

Turning now to the transformation rules, we find that
a good deal more can be said about them, too. Their first
job is to specify the class of theorems of the system. If we
insist on giving a basic role to transformations, we can
define theorems as those sentences into which any set of
sentences (or the null set) can be transformed. A more
familiar procedure is simply to list a basic set of theo-
rems, the axioms, and define the theorems as the sen-
tences deducible from the axioms. So beside the axioms,
one would have a set of theoremhood-preserving rules. We
shall write “`A” for “A is a theorem.”

The second job of the transformation rules is to spec-
ify the class of valid deductions or validated arguments.
We shall write “X ` A” for “A may be deduced from X”
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or “the argument from X to A is validated (by the system
in question).” The rules that validate arguments are not
just the theoremhood-preserving rules. For example, in
the propositional calculus substitution is one of the lat-
ter; if `A, then `SBp (A). But of course A ` SBp (A) does
not hold. So some rules simply say of a certain transfor-
mation f that X ` f(X), while others say of a certain
transformation g that if `A then `g(A). Finally there
are rules, to be found in Gentzen and natural deduction
systems, which say of some transformations f and g that
if X1 ` A1, . . . , Xk ` Ak, then f(X1, . . . , Xk, A1, . . . ,
Ak) ` g(X1, . . . , Xk, A1, . . . , Ak). An example of this
would be

X ` A X ` B
X ` A&B

.

So we would expect to find the following kinds of trans-
formation rules in a logical system:

I. If A has such and such a syntactic form, then `A.
(AXIOMS)

II. If A is gotten from X in such and such a way, and
`B for every member B of X, then `A.

III. If A is gotten from X in such and such a way, then
X ` A.

IV. If X and A are gotten from X1, . . . , Xi, . . . and
A1, . . . , Ai, . . . in such and such a way, then
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X1 ` A1; . . . ;Xi ` Ai; . . .
X ` A

.

There are actually still further kinds of transformation
rules, but these are the most common.

Turning now to metalogical appraisal, we note that
the usual intention behind constructing such a logical
system is that under the intended interpretation, ` coin-
cides with 
. That is, the theorems ought to be exactly
the valid sentences, and the validated arguments exactly
the semantic entailments. When that is not the case, one
may yet ask whether any part of this intention is fulfilled,
for example, whether at least the theorems are all valid
sentences. Or one may ask whether there be not some
(interesting) interpretation or other under which (part
of) the intention is fulfilled. The general problem is that
of finding an adequate syntactic description of a seman-
tically defined class, or of finding an adequate semantic
description of a syntactically defined class. The aim of a
logical system is to provide us with a syntactic charac-
terization of semantic notions, and the aim of metalogic
to appraise such attempts.

For convenience, we shall identify a logical system
with the ordered triple of (a) a representative syntactic
system to which it pertains, (b) the class of its theorems
in this syntactic system, and (c) the class of its validated
arguments in this syntactic system. We arrive therefore
at the following characterization:
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Definition. A logical system is a triple LS = 〈Syn, Th,
`〉, where

(a) Syn is a syntactic system (to which LS is said to
pertain);

(b) ` is a relation from sets of sentences of Syn to sen-
tences of Syn (the consequence relation);

(c) Th = {A : Λ ` A} (the set of theorems).

We shall also write `A for “Λ ` A.”
While a logical system may in principle be used to

characterize any relation from sets of sentences to sen-
tences, and may itself be specified in any way whatsoever,
there are also more restricted concepts. From the point of
view of proof theory, specifically, it would not may much
sense to call LS a logical system unless the consequence
relation or the set of theorems can be specified in a more
or less constructive manner.2 More important from our
point of view is that the main use of logical systems is to
characterize the relation of semantic entailment in some
(kind of) language. When that is the case, the conse-
quence relation must have certain properties, which we
shall now discuss.

In any language L, the relation of semantic entailment
satisfies the principles

(a) X 
 A if A ∈ X.

(b) If X 
 A for all A in Y , and Y 
 B, then X 
 B.
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(c) If X ⊆ Y and X 
 A then Y 
 A.

If the relation ` in a logical system LS pertaining to
the syntax of L is to coincide with the relation 
 in L,
it must accordingly satisfy analogous principles. This
can be stated in a convenient manner by looking at the
consequence operator of LS,

Cn(X) = {A : X ` A}.

This operator on sets of sentences is called a closure op-
erator if it satisfies

I. X ⊆ Cn(X).

II. Cn(Cn(X)) ⊆ Cn(X).

III. If X ⊆ Y , then Cn(X) ⊆ Cn(Y ).

And this must be the case if ` is to coincide with 
.
Hence we shall call a logical system normal if its conse-
quence operator is a closure operator. In the remainder
of this section we shall only be concerned with normal
systems.

The appraisal of a logical system thus concerns the
correspondence between its theorems and the set of valid
sentences of the language, and the correspondence be-
tween its consequence relation and semantic entailment.
(When the system has rules of type IV, its appraisal may
involve further criteria, but this we shall disregard for
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how; see, however, Chapter 5, Section 3.3.) The basic
concepts used in this appraisal are soundness and com-
pleteness. These must be related both to theorems and
to deductions.

Definition. LS is sound for L

(a) with respect to statements iff all theorems of LS are
valid in L;

(b) with respect to arguments iff X 
 A in L whenever
X ` A in LS.

We shall use “statement sound” for property (a), “ar-
gument sound” for property (b), and “sound” for the
conjunction of both.

Definition. LS is statement complete for L iff `A in LS
whenever 
A in L.

Definition. LS has (weak) argument completeness for L
iff X ` A in LS for every finite set X and sentence A
such that X 
 A in L.

Definition. LS has strong (argument) completeness for
L iff X ` A in LS whenever X 
 A in L.

The indicated use of “strong completeness” is common;
hence we can safely abbreviate “weak argument com-
pleteness” to “argument completeness.” We shall use
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“weak completeness” for “statement and argument com-
pleteness.” The reason for the weak/strong distinction
is partly that proofs concerning infinite sets of sentences
require more powerful methods, and partly because there
are some important cases in which a system has weak but
not strong completeness under an interesting interpreta-
tion.3

The distinctions between statement and argument
soundness and completeness also correspond to a sub-
stantial difference. The best known example of this is is
a result due to Gödel that the &-¬ fragments of classical
and intuitionistic logic are the same as far as theorems
are concerned. Since the other classical connectives are
definable in terms of & and ¬, one may state this result
in the form: All the classical theorems are intuitionisti-
cally valid. But the same does not hold for arguments;
for example, ¬¬A ` A holds in classical but not in intu-
itionistic logic.

There are, however, also a number of important re-
lations among these concepts, depending largely on the
structure of the language under discussion.

Theorem. If LS is argument sound (complete) for L,
then LS is statement sound (complete) for L.

This is so simply because 
A iff Λ 
 A and `A iff Λ ` A.
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Theorem. If L has a connector → such that A1, . . . ,
An 
 B iff A1, . . . , An−1 
 An → B, the statement
soundness (completeness) of a system LS for L implies
its argument soundness (completeness), provided, A1, . . . ,
An `B iff A1, . . . , An−1 ` An → B in LS.

Finally, we note that if L has finitary semantic entail-
ment, then argument completeness for L implies strong
completeness for L. Conversely, if the consequence re-
lation of LS is finitary, and LS is strongly complete
and argument sound for L, then L has finitary semantic
entailment. If L has exclusion negation, these connec-
tions hold for compactness as well as for finitary seman-
tic entailment. Indeed, compactness results most usu-
ally appear as corollaries to strong completeness proofs,
notwithstanding their purely semantic character, which
makes them essentially independent of the properties of
any logical system.

We shall devote the next two sections to the formu-
lation and appraisal of the most familiar logical system,
the classical propositional calculus.
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3.2 Classical Propositional Logic:

Axiomatics

The most familiar early formulations of the propositional
calculus (including the one in Whitehead and Russell’s
Principia Mathematica) consist of a set of axioms with
the rules of modus ponens and substitution. Let us to
begin take these rules to have the form

(MP) If `A and `A ⊃ B, then `B.

(Sub.) If `A, then `SBp (A).

The axioms were then formulated using specific atomic
sentences p, q, . . . ; for example,

`p ⊃ (p& p).

This was simplified by eliminating the rule Sub. and using
axiom schemes rather than axioms:

Any sentence of form A ⊃ (A& A) is a theorem,

which for brevity is just expressed by

`A ⊃ (A& A).

A complete formulation of the propositional calculus with
& and ¬ as primitive, and the other connectors defined
as usual, was first given by Sobocinski.4 Using axiom
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schemes and rule MP, it has:

A1. `A ⊃ (A& A).

A2. `(A&B) ⊃ A.

A3. `¬(A&B) ⊃ ¬(B & A).

A4. `A ⊃ B ··· ⊃ : ¬(C &B) ⊃ ¬(C & A).

A difficulty with such formulations, both from a practical
and a metalogical point of view, is that they do not pro-
vide one with a definite method of proving any particular
theorem (although they provide, in effect, a method for
churning out all theorems in the fullness of time).

For this reason, we turn to the subject of algorithms.
What we should like to have is an algorithm that, when
applied to a sentence, produces a certain kind of resultant
expression if and only if that sentence is a theorem. One
such algorithm was introduced by Beth: It transforms
the negation of a theorem into a disjunction of explicit
contradictions.5 To describe it, we must introduce some
conventions.

Conventions. (a) We use X, Y, Z to stand for con-
junctions of sentences, possibly empty, with qualifi-
cation that X is not of the form ¬¬A or ¬(A&B).

(b) We use A1 & · · · & An to stand for any sentence
resulting from this expression by replacing Ai by a
sentence (i = 1, . . . , n) and a judicious addition of
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parentheses. The expression A1 ∨ · · · ∨An abbrevi-
ates ¬(¬A1 & · · · & ¬An).

When the algorithm is applied to an expression A, it
produces a sequence of expressions B1, . . . , Bk, . . . with
B1 = ¬A. This sequence is called the tableau sequence for
A. Each expression Bi is a disjunction B1

i ∨· · ·∨Bn
i , n ≥

1; we call Bj
i a disjunctive part of Bi.

Let Bi be K ∨ B ∨ M , where K and M are them-
selves multiple disjunctions (possibly empty), and B is
the leftmost disjunctive part of Bi to which any of the
rules below are applicable; then Bi+1 is

K ∨M ∨B′,

where B′ is the result of applying the first applicable rule
to B. The rules are

(DN) X & ¬¬A& Y → X & A& Y .

(NK) X & ¬(A&B) & Y → (X & ¬A& Y )∨
(X & ¬B & Y ).

Closure Rule. If a disjunct in Bk has the form X &A&
Y & ¬A& Z or X & ¬A& Y & A& Z it is underlined.

Note that DN and NK are not applicable to underlined
expressions. An underlined expression is said to be closed.
If some member Bk of the tableau sequence consists en-
tirely of closed disjuncts, it is clearly the last member; in
this case the sequence is said to terminate.
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Theorem. The tableau sequence of a sentence A termi-
nates iff A is a theorem of the propositional calculus.

The proof is left to the reader; the reader may prefer
to leave it, too. As an example we apply the algorithm
to Peirce’s law, ` [(p ⊃ q) ⊃ p] ⊃ p. This must first
be stated with & and ¬ as only logical symbols; then ¬
must be prefixed.

B1 ¬¬{¬[¬(p& ¬q) & ¬p] & ¬p}
B2 ¬[¬(p& ¬q) & ¬p] & ¬p DN

B3 ¬¬(p& ¬q) & ¬p ··· ∨ ··· ¬¬p& ¬p NK

B4 ¬¬p& ¬p ··· ∨ ··· (p& ¬q) & ¬p DN

B5 p& ¬q & ¬p ··· ∨ ··· p& ¬p DN

B6 p& ¬p ··· ∨ ··· p& ¬q & ¬p Cl

B7 p& ¬q & ¬p ··· ∨ ··· p& ¬p Cl

This tableau sequence has the structure of a tree, if we
leave out the disjunction signs, and write the results of
applying a rule under the disjunct to which the rule was
applied, Figure 3 (next page). Thus, thinking of the dis-
junction as indicating a branching, the tableau sequence
has the structure of a tree. And this tree terminates
exactly when each of its branches ends in an explicit
contradiction (let us say then that those branches ter-
minate). The idea is that a terminating tree provides us
with a proof of the formula, but a nonterminating branch
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FIGURE 3

provides us with a counterexample to the formula. This
is the pattern of many statement soundness and com-
pleteness proofs.

In this case, our job is made easier because the tree
is always finite.

Theorem. For any sentence A, the tableau sequence for
A is finite.

Proof: Let the tableau sequence be B1, B2, B3, . . . with
B1 = ¬A. Each application of DN reduces the number of
symbols. Each application of NK replaces a disjunct Ci
by two disjuncts C1

i and C2
i , but then there is one fewer
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symbol in Cj
i than in Ci. So going down the branches we

find that the number of symbols does not increase, until
closure occurs (if it does).

Now suppose that one of the rules DN or NK is appli-
cable to a disjunct C. Then that rule will eventually be
applied. For we have insisted that the immediate result
of any application of a rule be placed at the far right so
that each disjunct is eventually considered.

So in any given branch, the number of symbols de-
creases until no further rule is applicable (perhaps be-
cause of closure). Hence for each branch Bi there is a
rank mi beyond which all its members (if any) are the
same as its member of rank mi − 1. Let us lop off all
those excess members. Then we have a tree T , with the
finite branching property, and each branch finite. So by
Koenig’s lemma, T is finite.

Let n be the maximum length of branches of T . Then
the tableau sequence has at most n members; for the al-
gorithm would not be applicable to (any part of) member
Bn. So the tableau sequence is finite.

That tableau sequences are finite means that the al-
gorithm gives us a decision procedure: for any sentence
A, we can tell in finitely many steps whether or not A is
a theorem. This feature will make the proof of complete-
ness considerably easier.

It will be clear that the algorithm, as well as the ax-
iomatic system, specifies only the class of theorems, and
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does not tell us which arguments are valid. To extend
the propositional calculus to the validation of inferences,
we add the rule

(ARG) If ` ¬(A1 & · · · & An & ¬B), then
A1, . . . , An ` B.

where we write “A1, . . . , An ` B” as short for “{A1, . . . ,
An} ` B.” The relation ` can now be defined induc-
tively: For all sentences A, A1, . . . , An, B of Syn, and
sets X, Y of sentences of Syn:

(a) If the tableau sequence of A terminates, then
〈Λ, A〉 ∈ `.

(b) If 〈Λ, ¬(A1 & · · · & An & ¬B)〉 ∈ `, then
〈{A1, . . . , An}, B〉 ∈ `.

(c) If 〈X, A〉 ∈ ` and X ⊆ Y , then 〈Y, A〉 ∈ `.

(d) Nothing belongs to ` except by virtue of clauses
(a)–(c).

Propositional logic may then be identified with a triple
〈Syn, Th, `〉 such that Syn is a PCS, ` the relation from
sets of sentences to sentences of Syn defined by clauses
(a)–(d), and Th = {A : Λ ` A}. It can be verified that
this is a normal logical system.

A good question at this point is whether the rule
(ARG) is really needed, or whether it is somehow deriv-
able from the original system. The derivation could not
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be in any sense a straightforward one, since in the orig-
inal system nothing is said about validity of arguments.
The other possibility is that one might be able to show
that the argument from A1, . . . , An to B is valid iff
` ¬(A1 & · · · & An & ¬B) is a theorem, under any in-
terpretation of the syntax for which the logical system is
statement sound and complete. In Section 1 we said that
this is not so, referring to the &-¬ fragment of intuition-
istic logic. In Section 5 we shall present other interpre-
tations, which can be used to show this. For the logical
appraisal of reasoning it is not enough to consider only
the question of which sentences are valid.

3.3 Classical Propositional Logic:

Soundness and Completeness

Everyone is, of course, already familiar with the standard
interpretation of propositional logic: the proximate sub-
ject matter of this logical system is validity in a bivalent
propositional language. Before turning to the soundness
and completeness proofs, we state a lemma.

Lemma 1. If A1, . . . , An are sentences of a bivalent
propositional language L, and v an admissible valuation
for L, then

(a) v(A1& · · · &An) = T iff v(A1) = · · · = v(An) = T.
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(b) v(A1 ∨ · · · ∨ An) = F iff v(A1) = · · · = v(An) = F.

Proof: It is important to note that this cannot be proved
at once by natural induction since the sentence denoted
as A1& · · · &An may not have the form (A1& · · · &An−1)
& An or the form A1 & (A2 & · · · & An) but the form
(A1 & · · · &Ai)&(Ai+1 & · · · &An), where 2 < i < n−1,
in which case it does not have a conjunct of (n − 1) of
the sentences in question. (It can be proved by natu-
ral induction if we first prove associativity.) We prove it
therefore by strong induction.

Hypothesis of Strong Induction. For any multiple
conjunction B1 & · · · &Bm of length less than A1 & · · · &
An, v(B1 & · · · &Bm) = T iff v(B1) = · · · = v(Bm) = T.

Case 1. A1& · · · &An does not have the form B&C; that
is, n = 1. In that case, the required conclusion
is simply v(A1) = v(A1).

Case 2. A1& · · · &An does have the form B&C; let B =
(A1& · · ·&Ai) and C = (Ai+1& · · ·&An). By the
definition of admissible valuation, v(A1 & · · · &
An) = T iff v(B) = v(C) = T. By the hypothe-
sis of induction this is the same as v(A1) = · · · =
v(Ai) = v(Ai+1) = · · · = v(An) = T.

These are all possible cases, so proposition (a) is proved.
The proof of (b) is left as an exercise.
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Theorem. (Statement soundness) If A is a sentence of
a bivalent propositional language L, and the tableau se-
quence for A terminates, then A is a valid sentence of
L.

Proof: That the tableau sequence A = B1, B2, . . . ter-
minates means that it has a last member Bk, which is a
multiple disjunction of closed expressions. We shall show
that v(Bk) = F for each admissible valuation v, and that
if v(Bi+1) = F, then v(Bi) = F for i ≥ 1. By induction it
follows that v(B1) = v(¬A) = F, hence that v(A) = T,
for each admissible valuation v.

First, let Bk = C1 ∨ · · · ∨ Cm. Then v(Bk) = F
if v(C1) = · · · = v(Cm) = F (Lemma 1). But Ci is
closed; let Ci = D1 & · · · & Dn, where Dj = ¬Dl. Then
v(Ci) = F; for if v(Ci) = T, then v(Dj) = v(Dl) = T;
that is, v(¬Dl) = v(Dl) = T, which is impossible. Hence
the value of Ci, for i = 1, . . . , m, is indeed F.

Second, let i ≥ 1 and v(Bi+1) = F. Then Bi+1 comes
from Bi by an application of Cl or DN or NK, which
replaces some disjunct of Bi by another expression. What
we need to show is that when the replacement is false,
so is the original expression—the conclusion then follows
again by Lemma 1.

There are here two important cases. The first is that
a disjunct X & ¬¬A & Y is replaced by X & A & Y . If
v(X & A & Y ) = F, then, by Lemma 1, v(X) or v(A)
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or v(Y ) equals F. Well, v(¬¬A) = v(A); hence v(X) or
v(A) or v(Y ) equals F. Hence v(X&¬¬A&Y ) = F. The
second case is that a disjunct D = (X & ¬(A& B) & Y )
is replaced by the expression

D′ = (X & ¬A& Y ) ∨ (X & ¬B & Y ).

If v(D′) = F, then v(X&¬A&Y ) = v(X&¬B&Y ) = F,
by Lemma 1. Hence either v(X) or v(Y ) or v(¬A) equals
F, and either v(X) or v(Y ) or v(¬B) equals F. If either
v(X) or v(Y ) equals F, then surely v(D) = F. If neither
v(X) nor v(Y ) equals F, then v(¬A) = v(¬B) = F.
Hence v(A) = v(B) = T; therefore, v(A & B) = T;
therefore, v(¬(A&B)) = F. So in this case also, v(D) =
F.

Theorem. (Statement completeness) If A is a valid sen-
tence of a bivalent language L, then the tableau sequence
for A terminates.

Proof: Recall from the previous section that a tableau
sequence is always finite. This means that it has a last
member Bk. If the sequence does not terminate, Bk is
a multiple disjunction C1 ∨ · · · ∨ Cm such that for some
i (1 ≤ i ≤ m), Ci is not closed. Ci is itself a multiple
conjunction of atomic sentences and negations of atomic
sentences. (For if it were not, then either DN or NK
would be applicable, contrary to our assumption that Bk

135



is the last member of our sequence.) We define an ad-
missible valuation v, by the condition that for any atomic
sentence p

v(p) = T iff p is a conjunct in Ci.

Hence if ¬p is a conjunct in Ci, v(p) = F, so v(¬p) = T.
All the conjuncts of Ci receiving the value T, it follows by
Lemma 1 that v(Ci) = T. By the other part of Lemma 1
(concerning disjunctions) it now follows that v(Bk) = T.

To complete the proof by mathematical induction we
must now show that if v(Bi+1) = T, then v(Bi) = T
for i ≥ 1. Then v(B1) = v(¬A) = T, so that v(A) = F;
and this will show that a sentence A with nonterminating
tableau sequence is not valid.

If i ≥ 1, then Bi+1 comes from Bi either by DN or by
Cl or by NK, so we have three cases.

Case 1. One of the disjuncts C of Bi+1 which is also a
disjunct of Bi is such that v(C) = T. Then
clearly v(Bi) = T.

Case 2. Bi+1 is essentially6 like Bi except for having the
disjunct C ′ = (X & A & Y ), where Bi has C =
(X & ¬¬A & Y ), and v(C ′) = T. It clearly fol-
lows that v(C) = T, hence v(Bi) = T.

Case 3. Bi+1 is essentially like Bi except for having

C ′ = (X & ¬A& Y ) ∨ (X & ¬B & Y ),
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where Bi has C = (X & ¬(A & B) & Y ), and
v(C ′) = T. Then v(X & ¬A & Y ) = T or
v(X & ¬B & Y ) = T. This means that

(a) v(X) = v(Y ) = T;
(b) v(¬A) = T or v(¬B) = T.

From (b) it follows that v(A) = F or v(B) = F,
so v(A&B) = F, so

(c) v(¬(A&B)) = T.

By Lemma 1 and (a) and (c) we deduce that
v(C) = T; hence v(Bi) = T in this case also.

Turning now to argument completeness, we recall that
A1, . . . , An ` B iff `¬(A1 & · · · & An & ¬B). We prove

Theorem. In a bivalent propositional language L, A1,
. . . , An 
 B iff 
¬(A1 & · · · & ¬B).

Proof: We first note that by Lemma 1, v(A1) = · · · =
v(An) = T iff v(A1 & · · · & An) = T. Hence the case of
more than one premise is reducible to the case of a single
premise. We must show then that

A 
 B iff 
¬(A& ¬B).

Suppose that v(¬(A&¬B)) = F. Then v(A&¬B) = T,
so v(A) = T and v(B) = F. This shows at once that if
¬(A&¬B) is not valid, A does not semantically entail B.
On the other hand, if v(¬(A& ¬B)) = T and v(A) = T,
then v(B) = T.
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Defining (A → B) as ¬(A & ¬B), we find that the
conditions of the last theorem of Section 1 are satisfied.
Since we have just proved statement soundness and com-
pleteness, we conclude

Theorem. The propositional calculus is sound and has
weak completeness for a bivalent propositional language.

Second, we may recall that a bivalent propositional
language has finitary semantic entailment. From this
and the preceding theorem we may conclude that propo-
sitional logic is strongly complete with respect to a biva-
lent propositional language.

It is worthwhile to point out here that the tableau
method may be adapted to provide a strong completeness
proof directly.7 Let X = {A1, . . . , Ai, . . . } be a consis-
tent set of sentences, and let us start the procedure of the
Beth algorithm on sentence A1, thereafter adding the ex-
pression Ai+1 on the right-hand side of each disjunct at
the (i + 1)th step, i = 1, 2, 3, . . . . The result will be a
tree with at least one nonterminating branch, and this
branch contains among its conjuncts all members of X.
The proof of our weak completeness theorem carries over
to this case and shows the satisfiability of the set X.
So every consistent set is satisfiable—and from this the
strong completeness property follows.

But to this we must add that it is crucial to this
method of proving strong completeness that there are
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only denumerably many sentences in the language. That
this is so we have assumed throughout; however, this as-
sumption plays no essential role in topological compact-
ness proofs. For this reason, a strong completeness theo-
rem deduced from a weak completeness theorem proved
by the use of tableau sequences plus a semantic compact-
ness theorem proved by the use of ultrafilters generalizes
easily to noncountable languages. There are, however,
also other methods of proving strong completeness di-
rectly which are equally capable of such a generalization.
Our most important reason for proving compactness in-
dependently of completeness theorems is, of course, our
aim to answer purely semantical questions in purely se-
mantical terms, that is, without recourse to the proper-
ties of logical systems.

3.4 Interpretations of

Logical Systems

The appraisal of logic is always with respect to a given
language. And a logical system is entirely adequate with
respect to a given language if the system is argument
sound and strongly complete with respect to that lan-
guage. We must here reckon with the possibility, how-
ever, that the system may be entirely adequate, in this
sense, with respect to more than one language.
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This possibility makes such phrases as “the language
of propositional logic” ambiguous. For if we know the
syntax of a language, and we know what arguments are
valid in that language, we cannot deduce from this the
truth conditions for the sentences of that language. And
we are going to show, by concrete examples, that it is not
even possible to decide on this basis such fundamental
questions as whether the language is or is not bivalent.

Before turning to specific examples, we shall make our
terminology somewhat more precise. We have identified
logical systems with triples, of which the first member
is a syntactic system. Now the most basic use of “in-
terpretation” is that noted in Chapter 2, Section 3: An
interpretation of a syntactic system is a function that is a
valuation of the system but is also defined for some nouns
and/or functors of the system. In a second usage, to give
the semantics of language is to interpret its syntax. For
the specification of the set of admissible valuations is to
set limits to the interpretations, in the first sense, of its
syntax. Specifically, the semantics of a bivalent proposi-
tional language consists in defining the truth conditions
for longer sentences in terms of those for shorter sen-
tences, so that any latitude in interpretation is limited to
the assignments of truth values to the atomic sentences.

We now wish to introduce a third sense of “inter-
pretation”: If LS = 〈Syn, Th, `〉, and L is a language
with syntax Syn, then the semantics of L is an interpre-
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tation of LS. (If the reader finds “the semantics of L”
too imprecise, he may read it as “the set of admissible
valuations of L.”) In other words, an interpretation in
the second sense of the syntax of LS is a candidate for
an interpretation of LS and is successful if the criteria of
soundness and completeness are met. I do not think this
is too novel a sense of “interpretation”; Lewis and Lang-
ford apparently used the word in this sense when they
talked of the extensional and intensional interpretations
of the Boole-Schröder algebra (essentially, propositional

logic).8

In the remaining sections of this chapter we shall in-
troduce two devices for constructing nonbivalent inter-
pretations of propositional logic: matrices and superval-
uations. These will themselves be investigated further
in Chapter 5, and the discussions in the present chap-
ter provide a somewhat more elementary introduction to
those subjects.

3.5 Interpretation Through

Matrices

The most familiar example of a logical matrix is the two-
valued truth table. Abstractly speaking, this consists of
a set of elements {T, F}, a subset of designated elements
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{T}, a binary and unary operation on those elements
(correlated with & and ¬). Generalizing this concept, we
obtain:

Definition. M = 〈E, D, ···, −〉 is a logical matrix iff E
is a set (the elements of M), D a nonempty subset of
E (the designated elements), ··· a binary operation on E,
and − a unary operation on E.

For convenience we shall often write “(x···y)” for “···(x, y)”
and “x” for “−x.” The limitation to two operations is
not essential.

Definition. If M = 〈E, D, ···, −〉 is a logical matrix, then
a function d is an M-assignment to a PCS iff

(a) d maps the sentences of the PCS into E;

(b) d(A&B) = d(A) ··· d(B);

(c) d(¬A) = d(A).

Definition. If M = 〈E, D, ···, −〉 is a logical matrix and
d an M -assignment to a PCS, then an M-valuation on
that PCS induced by d is any valuation v on that PCS
such that v(A) = T iff d(A) ∈ D.

Various motives induce us to let d induce a unique valua-
tion; for example, by adding v(A) = F iff d(A) /∈ D. An-
other possibility is to say that v(A) = F iff d(¬A) ∈ D, in
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which case bivalence does not generally hold. In the lat-
ter case, we must stipulate that x and x are not both des-
ignated. In the present context, however, nothing would
be affected by such a choice.

If M is a logical matrix, then L is an M-propositional
language if the syntax of L is a PCS and the admissible
valuations of L are the M -valuations on that PCS. We
call L a matrix propositional language iff L is an M -
propositional language for some logical matrix M .

The familiar truth table is a matrix, a two-element
Boolean algebra.9

Definition. A logical matrix M = 〈E, D, ···, −〉 is a two-
element Boolean algebra iff E contains exactly two ele-
ments, D contains exactly one element, and for all x, y
in E,

(a) x 6= x;

(b) (x ··· y) ∈ D iff x, y ∈ D.

Using “1” to denote the designated element and “0” for
the other element, operations of this algebra are conve-
niently defined by the operator diagrams

··· 1 0
1 1 0
0 0 0

−
1 0
0 1
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An M -assignment correlates ··· with & and − with ¬; thus
the following interpretation diagram also defines the ma-
trix:

p q p& q ¬p
1 1 1 0
1 0 0
0 1 0 1
0 0 0

If a system LS is a statement sound and complete for an
M -propositional language, we shall call M an adequate
matrix for LS. So the two-element Boolean algebra is an
adequate matrix for the classical propositional calculus.

This raises the question of what general conditions
a matrix must satisfy to be adequate for the classical
propositional logic. The following theorems provide a
partial answer.

Definition. A mapping f of E into E ′ is a homomorphism
from M = 〈E, D, ···, −〉 to M ′ = 〈E ′, D′, ∧, ∼〉 if and
only if

(a) f(b ··· c) = f(b) ∧ f(c);

(b) f(−b) = ∼f(b).

Theorem. If there is a homomorphism f from M to M ′

that maps undesignated elements of M into undesignated
elements of M ′, then all the sentences that are valid in
M ′ are valid in M .
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Proof: Suppose A is not valid in M ; let d be an M -
assignment such that d(A) is not designated. Assuming
the antecedent of the theorem, f(d(A)) is not designated
in M ′. But the function d′ such that d′(A) = f(d(A))
for all sentences A (of the PCS in question) is an M ′-
assignment when f is an homomorphism:

d′(A&B) = f(d(A&B)) = f(d(A) ··· d(B))

= f(d(A)) ∧ f(d(B)) = d′(A) ∧ d′(B),

d′(¬A) = f(d(¬A)) = f(−d(A))

= ∼f(d(A)) = ∼d′(A).

This theorem allows us to show of other matrices than
B2 that they are also sound and/or complete for the
propositional calculus. An obvious example is the four-
element Boolean algebra with two designated elements
B4 = 〈{1, b, a, 0}, {1, b}, ···, −〉 with operator diagrams

··· 1 b a 0
1 1 b a 0
b b b 0 0
a a 0 a 0
0 0 0 0 0

−
1 0
b a
a b
0 1

The mapping f from B2 into B4 defined by

f(1) = 1,

f(0) = 0
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satisfies the conditions of the previous theorem, so all
the sentences valid in B4 are valid in B2. Therefore, the
propositional calculus is statement complete for a B4-
propositional language. That it is also statement sound
for such a language follows from the fact that the func-
tion g from B4 into B2 defined below also satisfies the
conditions of the above theorem:

g(1) = 1,

g(b) = 1,

g(a) = 0,

g(0) = 0.

That g preserves the property of not being designated
is obvious, that it is a homomorphism is easily seen by
replacing b and a by 1 and 0 in the operator diagrams:

··· 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0

−
1 0
1 0
0 1
0 1

which simply yields redundant operator diagrams for B2.
Our conclusion is that B4 is also an adequate matrix for
classical propositional logic.

So far we have only talked about statement soundness
and completeness. We leave it to the reader to worry
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about whether the theorem concerning homomorphisms
extends to valid arguments as well as valid sentences.10

If the classical propositional calculus has an adequate
matrix M , but is not argument sound for an M -proposi-
tional language, M is called a nonnormal matrix.11

Clearly M is normal iff M is adequate for propositional
calculus, and when d(A) and d(A ⊃ B) are designated,
then d(B) is designated. A very simple nonnormal matrix
can be constructed with just three elements:

M3 = 〈{1, b, 0}, {1}, ···, −〉

··· 1 b 0
1 1 1 0
b 1 1 0
0 0 0 0

−
1 0
b 0
0 1

Theorem. M3 is an adequate matrix for the classical
propositional calculus, but this calculus is not argument
sound for an M3-propositional language.

Proof: Starting with the easy part, let us observe that
the argument from ¬¬A to A is not valid in an M3-
propositional language because if d(A) = b, then
d(¬¬A) = 1 also. So we do not have argument soundness.

The mapping f : f(1) = 1, f(0) = 0 is a homomor-
phism from B2 to M3, and it takes 0 into an undesignated
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element. Hence all the sentences valid in M3 are valid in
B2 by our theorem. So if a sentence is valid in M3, it is
demonstrable in classical propositional logic (statement
completeness).

Second, suppose thatA is a theorem of classical propo-
sitional logic. Then A has a terminating tableau se-
quence. Now it is easy to see that ··· is an associative
operation:

x ··· (y ··· z) = (x ··· y) ··· z for all x, y, z in {1, b, 0}.

(For in this matrix, either side equals zero if and only if
either x, or y, or z equals zero.) Second, d(B & ¬B) = 0
in all cases; thus every tip of a terminating branch has
the value 0 under every M3-assignment.

Third, when d(B) = 0, then d(¬¬B) = 0, and when
both d(¬B) = 0 and d(¬C) = 0, then neither d(B) nor
d(C) equals zero, so d(B)···d(C) = 1, so d(¬(B&C)) = 0.
Thus we see that as we go up the branches, all disjunctive
parts have the value zero; therefore, the first member of
the tableau sequence, ¬A, always has the value zero. It
follows that A is valid in M3 (statement soundness), since
A must be complex if the tableau sequence terminates.

In the exercises, the reader is asked to prove that
argument soundness and completeness does hold in the
case of another three-valued matrix M∗

3 , which is rather
like M3. The peculiarity of these matrices is that (A&B)
is true when A and B are not both false (in the sense of
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being assigned value 0). We conclude this section by
investigating the matrix M∗∗

3 in which (A & B) is true
when A and B are both true, and (¬A) is true when A

is not true12:

M∗∗
3 = 〈{1, b, 0}, {1}, ···, −〉

··· 1 b 0
1 1 0 0
b 0 0 0
0 0 0 0

−
1 0
b 1
0 1

The interpretation diagram for (A ⊃ B), that is, ¬(A&
¬B), is such that (A ⊃ B) receives the value 0 if and
only if A receives 1 and B receives 0 or b. So this is
a normal matrix. In addition, it follows that A 
 B in
an M∗∗

3 -propositional language if and only if 
A ⊃ B in
that language.

Second, the mapping f(1) = 1 and f(0) = 0 is a ho-
momorphism of B2 into M∗∗

3 , so that propositional logic
is statement complete for an M∗∗

3 -propositional logic. On
the other hand, the mapping g(1) = 1, g(b) = 0, g(0) = 0
is a homomorphism from M∗∗

3 to B2, as can be seen by
replacing b by 0 in the operator diagrams. Therefore,
we also have statement soundness: M∗∗

3 is an adequate
matrix for propositional logic.

Thus we have found that propositional logic is entirely
adequate with respect to an M∗∗

3 -propositional language
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(except that we have not proved compactness; but see
Chapter 5, Section 1.2). We must be careful, however,
not to conclude that M∗∗

3 is in some important sense “the
natural” three-valued matrix. There is first of all the
adequacy of M∗

3 . But more important is the fact that,
although & and ¬ receive an “intuitive” interpretation in
M∗∗

3 , the nonprimitive connectives do not. For example,
if ≡ is defined as usual, then (A ≡ B) is true when A
has value b and B has value 0.

3.6 Interpretation Through

Supervaluations

The original motivation for the introduction of logical
matrices seems to have been philosophical. Under the
standard interpretation, classical logic pertains to biva-
lent languages, but philosophers argued that the law of
bivalence is itself not universally valid. Matrices ap-
peared to provide an easy way to construct perfectly in-
telligible nonbivalent languages. However, the use of ma-
trices also introduces various complexities, and philoso-
phers did not rush to embrace this method with which
the logicians so agreeably provided them. This may have
been due in part, however, to the fact that it seems not to
have been widely noticed (a) that most concepts in the se-
mantic analysis of logic can be defined in terms of truth,
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without use of the notion of falsity, or (b) that there
are adequate matrices for classical propositional logic for
which it is not the case that every element or its comple-
ment is designated. Nevertheless, the use of matrices is
hardly ever intuitively motivated to any great extent.

For this reason we shall here describe the method of
supervaluations, which is intuitively very simple.13 It also
has the advantage that it can be applied independently
of the syntactic structure of the language, so that we
do not have the problem (as with matrices) of having to
start again from the beginning if the syntax is not a PCS.
We begin by supposing that in any situation, certain sen-
tences are true and others are false. If L is a language in
which these sentences occur, let us say that an admissi-
ble valuation of L reflects that situation if it assigns T to
the sentences true in that situation and F to those false
in that situation. In general, many valuations admissible
for L may reflect the same situation—but they are cor-
rect with respect to that situation at most to the extent
to which they agree upon assignments of truth and fal-
sity. (For if v and v′ both reflect a given situation, and
v(A) 6= v′(A), then A is neither true nor false in that
situation, given our usage of “reflect.”) The common as-
signment of T and F to sentences upon which they agree,
by the set of valuations reflecting the same situation, we
call a supervaluation.
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Definition. A valuation s is a supervaluation for a lan-
guage L iff there is a nonempty set K of admissible val-
uations for L such that, for all sentences A of L,
s(A) = T iff v(A) = T for all v ∈ K,
s(A) = F iff v(A) = F for all v ∈ K,
s(A) is not defined otherwise.

In general, a supervaluation for L is not an admissible
valuation for L. (We may also note that supervaluations
are rather like direct products—the difference concerns
the assignment of falsity.)

Theorem. Let L and L∗ have the same syntax, and be
such that the admissible valuations for L∗ are the super-
valuations for L; then X 
 A in L∗ iff X 
 A in L, for
all sentences A and sets of sentences X of L

Proof: Suppose X 
 A in L, and let s be a supervalua-
tion for L such that s(B) = T iff v(B) = T for all v ∈ K.
Then if s satisfies X, so does each member of K. But
then each member of K satisfies A; hence so does s.

Suppose not X 
 A in L; let v′ satisfy X but not A.
Then if s is the supervaluation such that s(B) = T iff
v(B) = T for all v ∈ {v′}, we find that s satisfies X but
not A.

Corollary. If L is a bivalent propositional language, and
L∗ is such that the syntax of L∗ is that of L, and the
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admissible valuations for L∗ are the supervaluations for
L, then the classical propositional calculus is argument
sound and strongly complete for L∗.

The proof is immediate from the preceding theorem; this
is simply an example of how the theorem can be applied.
In applications, however, one may also have reason to
take only some of the supervaluations as admissible for
the new language. In that case, the soundness results
still carry over automatically, but not the completeness
results.
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Chapter 4

Classical Quantification
and Identity Theory

In this chapter we shall study a familiar logical system,
somewhat grandiloquently called classical quantification
and identity theory; for convenience we shall also refer to
it, somewhat less precisely, as quantificational logic. This
system is an extension of classical propositional logic, and
we can give an algorithm to define the class of theorems
by extending the Beth algorithm described in Chapter 3.

The appraisal of this system will proceed with respect
to two kinds of languages, here called referential quan-
tifier languages and substitutional quantifier languages.
We shall also be interested in studying semantic aspects
of these languages, especially semantic relations invari-
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ant under certain substitution operations, compactness,
and semantic properties of deductive theories.

The referential quantifier languages are the more im-
portant since they provide the usual semantics for quan-
tificational logic. In the discussion of these languages,
the previously central notion of valuation tends to be-
come somewhat subordinate to the notion of model (just
as the notion of valuation tended to become subordinate
to that of matrix in Section 5 of Chapter 3). This is
not necessary, of course, and it is not the case in all sec-
tions in this chapter.1 But there may be some gain in
intuitive understanding if we regard referential quantifier
languages from the outset as languages for the descrip-
tion of relational structures. The substitutional quanti-
fier languages will be shown to be definable in two ways:
in terms of referential quantifier languages, and indepen-
dently. Finally, we shall discuss certain extensions of
quantificational logic to richer languages.

4.1 Syntax of Quantifier

Languages

We are now going to enrich the syntactic resources of
propositional logic in three ways: by regarding even
atomic propositions as complex (“x is F ,” “x bears R to
y”), by a special predicate for identity (which for conve-
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nience is listed among the logical signs), and by a uni-
versal quantifier. To begin, therefore, we define the req-
uisite kind of syntactic system, a quantificational syntax
(QCS).

Definition. A QCS is a quadruple 〈P, V, L , S〉 where
P is a set, nonempty and at most denumerable, (the
predicates) of which each member has associated with it
a positive integer (its degree);
V is a set, denumerable (the variables), disjoint from P;
L is a set with exactly five members (the logical signs)
denoted as &, ¬, =, ), (, disjoint of P and V ;
S is the least set (the sentences) such that

(a) if P n is a predicate of degree n and x1, . . . , xn are
variables, then P nx1, . . . , xn and x1 = x2 belong
to S.

(b) if x is a variable and A, B belong to S, so do (¬A),
A&B, and (x)(A).

We shall use P n, Qn to stand for predicates of degree n;
x, y, z for variables; A, B, C for sentences; all with or
without accents or subscripts. We shall call a sentence
A a statement if all occurrences of any variable x in A
lie within parts of A that are themselves sentences of the
form (x)B. (That is, all variables in A are bound, or
not free; note that as usual we omit parentheses in our
notation when that can cause no confusion.) Members of
S in virtue of clause (a) are called atomic sentences.

158



The terminological distinction between “sentence”
and “statement” is not uniform in the literature. Some
authors use, for example, not “sentence” but “well-formed
formula” [to be abbreviated as “wff” (pronounced “woof-
ef”) or as “wef,” depending on one’s preferred style of
barking.] In that case “closed (well-formed) formula” is
used for our “statement.” In still different usages, “for-
mula” and “sentence,” or “formula” and “statement,” are
used for our “sentence” and “statement,” respectively.2

These suggest that expressions in which variables occur
free (Quine calls them “matrices”) do not enjoy the de-
gree of grammatical significance conveyed by the term
“sentence.” And this suggestion is not altogether mis-
leading; we shall find, however, that it makes very lit-
tle difference for the appraisal of quantificational logic,
whether what we call sentences or what we call state-
ments are regarded as the sentences of the language.

There is a very important kind of syntactic trans-
formation that can be defined for a QCS: substitution
of variables for variables. This kind comprises several
(sub-)kinds. The most common kind has the following
general form:

If A is a sentence, then (x/y)A is a sentence that re-

sults from replacing each3 free occurrence of y in A by
an occurrence of x, but only after A has been rewrit-
ten so as to avoid confusion of bound variables (unary
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variable substitution).

The problem of confusion of bound variables occurs when
y occurs free in a part of A of the form (x)B. For ex-
ample, (x/y)¬(x)(x = y) cannot be ¬(x)(x = x). [Or,
(Ex)(x 6= y) cannot be transformed into (Ex)(x 6= x) by
substitution of x for y. We shall henceforth use x 6= y for
¬(x = y), (Ex)A for ¬(x)¬A, and also the usual truth-
functional connectives ∨, ≡, ⊃ with their usual (contex-
tual) definitions in terms of & and ¬.]

A particular recipe for avoiding this kind of confusion
is adopted in the following definition.

Definition. (x/y)A, the result of unary variable substi-
tution of x for y in A, is the result of replacing each free
occurrence of y by an occurrence of x in the sentence A′,
which is formed as follows: Replace each part of A of the
form (x)B in which y occurs free, by the result of replac-
ing each occurrence of x in that part by an occurrence of
a distinct variable not in A.

This is rather a complex substitution operation, but hap-
pily it can be analyzed as a sequence of simpler opera-
tions. These simpler operations we shall call proper sub-
stitution and alphabetic variance.4

First we shall call (y/x)A the result of a proper sub-
stitution of y for x in A if y does not occur free in any
part of A that has the form (x)B. Note that in this case,
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the substitution is simple replacement: No rewriting of
bound variables is necessary. So we can also characterize
the relation as follows: B comes from A by proper sub-
stitution of y for x if B is like A except for having free
occurrences of y wherever A has free occurrences of x.
The definition of alphabetic variance is somewhat more
complex.

Definition. If A has the form (x)B, then A′ is an im-
mediate alphabetic variant of A if and only if A′ has the
form (y)B′, where B′ = (y/x)B and B = (x/y)B′ and
the substitutions are proper in both cases.

Note that this cannot be the case unless y is not free in
A and x not free in A′. In fact, the same variables are
free in A as in A′.

Definition. A′ is an alphabetic variant of A if and only
if A′ differs from A only in having, for certain sentences
B1, . . . , Bn, occurrences of immediate alphabetic vari-
ants of B1, . . . , Bn, where A has occurrences B1, . . . , Bn,
respectively.

Now we can see that a unary substitution is in general
the result of an alphabetic variance followed by a proper
substitution.

The proofs of the following theorems are immediate.

Theorem. If (y/x)A is the result of a proper substitution
of y for x in A, then

161



(a) if A is ¬B, (y/x)A is ¬(y/x)B;

(b) if A is (B & C), (y/x)A is ((y/x)B & (y/x)C);

(c) if A is (x)B, (y/x)A is A;

(d) if A is (z)B, and z is not x or y, then (y/x)A is
(z)(y/x)B, provided z occurs in B.

Theorem. If B′ and C ′ are alphabetic variants of B and
C, respectively, then

(a) ¬B′ is an alphabetic variant of ¬B;

(b) (B′ & C ′) is an alphabetic variant of (B & C);

(c) (x)B′ is an alphabetic variant of (x)B.

There are no equally elegant results for unary variable
substitution in general, owing to the necessity of using a
recipe (for preceding a proper substitution by an alpha-
betic variation) that depends on which variables occur in
the expression being transformed.

We turn now to another kind of substitution, related
to the infinitary substitution described in Section 2 of
Chapter 2. Let us call a substitution function for QCS
any mapping of the set of variables of that QCS into
itself. Then if f is a substitution function for QCS and
A a sentence of that QCS, let us define

Sf (A) = e∗1 · · · e∗n, where A is the expression e1 · · · en

e∗i =

{
f(ei) if ei is a variable,

ei otherwise.
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The operation Sf we shall call an infinitary variable sub-
stitution (by the substitution function f). For brevity
and convenience we write

“f(A)” for “Sf (A), ”

“f(X)” for “{f(A) : A ∈ X}, ”

when A is a sentence and X a set of sentences of the rel-
evant QCS. It is easily seen that this kind of substitution
does not result in the confusion of bound variables if the
substitution function is one-to-one. And we also have

f((¬A)) = (¬f(A)),

f((A&B)) = (f(A) & f(B)),

f((x)A) = (f(x))(f(A)),

for any substitution function for a QCS and sentences
A, B of that QCS.

4.2 Axiomatics of

Quantificational Logic

Systems of quantificational logic can be divided into those
which concern themselves only with statements (bound
variable systems) and those which concern themselves
with all sentences (free variable systems). Each bound
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variable system LSb can be associated with a unique free
variable system LSf , and in that LSf we have

`A if and only if `(x1) · · · (xn)A,

where x1, . . . , xn are all the variables free in A (quan-
tificational closure of A). Hence it does not matter very
much, from the point of view of axiomatics, which kind
of system we consider. We choose a free variable system.
A convenient axiomatic formulation5 specifies as axioms:

A1. All sentences that are theorems of the propositional
calculus.

A2. All sentences that have the form

(a) (x)(A ⊃ B) ⊃ ··· A ⊃ (x)B, x not free in A;
(b) (x)A ⊃ (y/x)A;
(c) x = x;
(d) x = y ⊃ ··· A ⊃ (y/x)A;

and as rules of inference

R1. If A and A ⊃ B are theorems, so is B (modus po-
nens).

R2. If (y/x)A is a theorem, and y is x or y is not free
in A, then (x)A is a theorem (generalization).

[Note that in A1 we are momentarily regarding the QCS
as a PCS with all sentences not of the form (A & B) or
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(¬A) as atomic.] The reason for the restriction in rule
R2 is that in inference by generalization upon a variable
y, all free instances of y in (y/x)A should become bound
instances of x in (x)A. Thus it would be incorrect to infer
` (x)(x = y) from ` (y = y) by generalization, although
(y = y) = (y/x)(x = y), just because y is free in (x = y).

Again we can simplify many of our problems by con-
structing an algorithm for the theorems.6 To extend the
Beth algorithm to quantificational logic, we must add
three rules to be placed after the rule NK, and amend
the closure rule.

Ur. X&¬(x)A&Y → X&¬(y/x)A&Y where y is the
first variable that does not occur in X&¬(x)A&Y .

I. X & x = y & Y → (y/x)(X & Y ).

Ul. X & (x)A& Y → X & (y1/x)A& · · · & (yn/x)A&
Y & (x)A, where y1, . . . , yn are the variables free
in X & (x)A&Y ; if there are none free, then n = 1
and y1 is the first variable that does not occur free
in X & (x)A& Y .

Closure Rule. If a disjunct has any of the forms
X & A& Y & ¬A& Z,
X & ¬A& Y & A& Z,
X & (¬x = x) & Y ,
it is underlined.

All conventions for the Beth algorithm for the proposi-
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tional calculus remain in force, except that convention
(a) is amended to read: (a) We use X, Y, Z to stand for
possibly empty conjunctions of sentences, where X does
not have the form ¬¬A or ¬(A & B) or (x)A or ¬(x)A
or x = y (x and y distinct).

The following theorem follows immediately from the
construction of the algorithm and the definitions of branch
and conjunct in a branch.

Definition. Let T = D1, D2, . . . , Dk, . . . be the tableau
sequence (generated by the above algorithm) for a sen-
tence A of a QCS. Then B = C1, C2, . . . , Ck, . . . is a
branch of T iff, for i = 1, 2, . . . , k, . . . :

(a) Ci is a disjunct of Di;

(b) if in the formation of Di+1, Ci is not replaced in
accordance with a rule, then Ci = Ci+1 or Ci is the
last member of B;

(c) if in the formation of Di+1, Ci is replaced in accor-
dance with a rule by one or two disjuncts (of Di+1),
then Ci+1 is one of those disjuncts.

If B = C1, . . . , Ck, . . . is a branch of a tableau sequence
T , then we call A a conjunct in B (and in T ) iff for
some i = 1, . . . , k, . . . , Ci has the form X & A& Y .

Theorem. (Closure Property for branches) If B is a
nonterminating branch of the tableau sequence for some
sentence of a QCS, then
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(a) if ¬¬A is a conjunct in B, so is A;

(b) if ¬(A&B) is a conjunct in B, so is ¬A or ¬B;

(c) if (x)A is a conjunct in B, and y is a variable
free in some conjunct in B, then (y/x)A is a con-
junct in B; there is at least one variable y such that
(y/x)A is a conjunct in B;

(d) if ¬(x)A is a conjunct in B, then there is a variable
y such that ¬(y/x)A is a conjunct in B;

(e) if x = y is a conjunct in B, then at some point, x
is eliminated in favor of y by rule I.

The following theorem is a basic proof-theoretic result.

Theorem. The tableau sequence of a sentence A of a
QCS terminates iff A is a theorem of quantificational
logic.

This theorem is proved in part by doing the exercises for
this section and the next.

So far we have only been concerned to defined the
set of theorems rather than the relation ` as a whole.
We complete the definition of ` exactly as in Chapter
3, Section 2, essentially by adding the rule (ARG): If
`¬(A1 & · · · & An & ¬B), then A1, . . . , An ` B.

167



4.3 Referential Interpretation:

Models

The best known interpretation of the quantifiers is what
we shall call the referential interpretation, in which (x)A
is taken to be true if A is true of all members of a certain
set, the domain of discourse. Our purpose here is to state
this interpretation in a precise form.

A factual situation comprises a set of individuals bear-
ing certain relations to each other. Hence a situation can
be represented by a relational structure 〈D, R1, . . . , Ri,
. . . 〉, where D is the set of individuals in question and
R1, . . . , Ri, . . . certain relations on D. If we wish to
describe this relational structure in a language with a
quantificational syntax, we assign some member of D to
each variable as its denotation, and some n-ary relation
on D to each n-ary predicate as its extension. The func-
tion used to make the assignment to the predicates is
called an interpretation function, and the set D a do-
main of discourse. Together they make up a model for
the syntax. We can specify the model either by speci-
fying a domain D and interpretation function f , or by
specifying a domain and a sequence of relations on that
domain, the ith relation in the sequence being f(Pi), the
extension of alphabetically the ith predicate Pi. These
procedures are clearly equivalent; we begin by following
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the former.

Definition. A model for a QCS is a couple M = 〈f, D〉,
where D is a nonempty set (the domain of M); f is a
function (the interpretation function of M) defined for
each predicate of the QCS, and such that if P n is an
n-ary predicate, then f(P n) ⊆ Dn.

A mapping d of the variables of a QCS into the domain
D of the model M = 〈f, D〉 for that QCS is called an
assignment function (for M , or for D and for that QCS).

Truth of a sentence A in a model M is relative to
an assignment d of values to the variables; we shall say
that d satisfies A in M (briefly, M � A[d]), and define
this relation inductively below. We shall write M � A
for the assertion that M � A[d] holds for all assignment
functions d for M (M � A to be read as A is true in M)
and ∼M � A[d], ∼M � A for the denials of M � A[d]
and M � A, respectively.

Definition. If M = 〈f, D〉 is a model for a QCS and d
an assignment function for M , then � is the least relation
such that

(a) M � (x1 = x2)[d] iff d(x1) = d(x2);

(b) M � (P nx1 · · ·xn)[d] iff 〈d(x1), . . . , d(xn)〉 ∈ f(P n);

(c) M � (A&B)[d] iff M � A[d] and M � B[d];

(d) M � (¬A)[d] iff ∼M � A[d];
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(e) M � (x1)A[d] iff M � A[d′] for all assignments d′

for M which are like d except perhaps at x1 (sym-
bolically, d′ =x1 d)

for all sentences A, B, variables x1, . . . , xn, and n-ary
predicates P n of that QCS.

If M is a model for QCS and d an assignment function
for M , then a valuation of that QCS induced by M and
d is a valuation v of that QCS such that

v(A) ∈ {T, F},
v(A) = T iff M � A[d]

for all sentences A of that QCS (we also call v a valuation
over M).

Definition. L is a referential quantifier language iff the
syntax of L is a QCS and the admissible valuations of L
are the valuations induced by the models for that QCS
and the assignment functions for these models.

As a preliminary to our main metatheorems, we shall
prove some theorems on our substitution operations.
Each of these theorems applies to any referential quanti-
fier language L, but the reference to L will be left tacit.

Lemma. For any assignment functions d and d′ for a
model M , if d(x) = d′(x) for each variable x that occurs
(free) in sentence A, then M � A[d] iff M � A[d′].
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Proof: We prove this in the strong form, supposing only
agreement between d and d′ with respect to variables free
in A. Let this be the case for all sentences of length less
than A.

(a) A is atomic: obvious.

(b) A is ¬B, A is (B & C): obvious.

(c) A is (x)B. Suppose ∼M � A[d]. Then for some
d′′ =x d, ∼M � B[d′′]. Let d′′′ =x d

′ and d′′′(x) =
d′′(x). By hypothesis, ∼M � B[d′′′] because ∼M �
B[d′′], so ∼M � (x)B[d′]. Mutatis mutandis if
∼M � A[d′]. Therefore, M � A[d] iff M � A[d′].

Theorem (Unary Substitution Theorem). For any
variable y, sentence A, model M , and assignment func-
tion d for M , if d′ =x d and d′(x) = d(y), then M � A[d′]
iff M � (y/x)A[d].

Proof: Suppose that for all sentences B of length less
than A, and all assignments d for M = 〈f, D〉, if d′ =x d
and d′(x) = d(y), then M � B[d′] iff M � (y/x)B[d]. We
now consider the various possible cases for A.

Case 1. A is Px1 · · ·x · · ·xn. Then 〈d′(x1), . . . , d′(x), . . . ,
d′(xn)〉 ∈ f(P ) iff 〈d(x1), . . . , d(x), . . . , d(xn)〉∈
f(P ), and similarly if x has more than one oc-
currence in A.

Case 2. A is x = x′. Then d′(x) = d′(x′) iff d(y) = d(x′);
similarly for x′ = x, x′ = x′′.
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Case 3. A is ¬B; A is (B & C); obvious.

Case 4. A is (z)B. If z does not occur in B, then M �
B[d′′] iff M � (z)B[d′′], for any assignment d′′ for
M ; this follows from our lemma. If z does occur
in B, we have several subcases.

(a) If z is x, then (y/z)A is just A, so the result
follows again by our lemma.

(b) If z is neither x nor y, then (y/x)(z)B =
(z)(y/x)B. Suppose ∼M � A[d′]. There
is then an assignment d′′ =z d′ such that
∼M � B[d′′]. Let d′′′ =z d, and d′′′(z) =
d′′(z). We note that d′′ =x d

′′′, and d′′(x) =
d′′′(y), so by the hypothesis of induction,
∼M � (y/x)B[d′′′]. This shows that ∼M �
(z)(y/x)B[d].

The diagram below should help to see these re-
lations among the assignment functions.

d′ d′′ d d′′′

x 1 1 4 4
y 1 1 1 1
z 2 3 2 3

The converse can be proved similarly: sup-
pose ∼M � (z)(y/x)B[d]. Then there is a
d′′′ =z d such that ∼M � (y/x)B[d′′′]. Let
d′′(z) = d′′′(z) and d′′ =z d

′. We can see from
the next diagram that d′′ is so related to d′′′
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that the hypothesis of induction implies that
∼M � B[d′′]. But then ∼M � (z)B[d′].

d d′ d′′′ d′′

x 1 2 1 2
y 2 2 2 2
z 3 3 4 4

(c) Finally, suppose that z is not x but z is y;
then there are two subcases. (1) If x is not
free in A, the result follows by our lemma. (2)
If x is free in A, then (y/x)A is (y/x)(z′)B′,
where (z′)B′ is an alphabetic variant of (z)B
and z′ is neither y nor x; hence this reduces
to case (b).

Theorem. If A′ is an alphabetic variant of A, then M �
A′[d] iff M � A[d], for all models M and assignment
functions d for their domains.

Proof: If we can prove this for immediate alphabetic
variants, the rest will follow by an easy induction.

Suppose then that B′ = (y/x)B and B = (x/y)B′.
Then x does not occur free in B′, nor y in B. Sup-
pose now that ∼M � (y)B′[d], so that for some d′ =y d,
∼M � B′[d′]; that is, ∼M � (y/x)B[d′]. Let d′′ =x d

′,
and d′′(x) = d′(y). By the preceding theorem, M � B[d′′]
iff M � (y/x)B[d′]; therefore ∼M � B[d′′]. But d′′ is like
d except at x and y; let d′′′ =y d

′′ and d′′′(y) = d(y), so
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that d′′′ =y d
′′′ and d′′′ =x d. Since y does not occur free

in B, the value of B in M relative to d′′′ and relative
to d′′ must be the same (lemma). So ∼M � B[d′′′], and
hence ∼M � (x)B[d]. The converse follows by parity of
reasoning.

To follow this proof, the reader may find it helpful to
draw diagrams such as we used in the preceding proof.
And after seeing these proofs, it will occasion no surprise
that most authors prefer not to enquire too deeply into
substitution. But the above theorems are needed in the
soundness and completeness proofs for quantificational
logic.

4.4 Soundness and Completeness

Theorems

We can now turn to the soundness and completeness
proofs for quantificational logic under the present inter-
pretation.

Theorem. If the tableau sequence of a sentence A ter-
minates, then A is valid.

Proof: Let A have a terminating tableau sequence D1,
. . . , Dk. We prove that for an arbitrary model M =
〈f, D〉,
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(a) ∼M � Dk[d], for all d;

(b) if ∼M � Di+1[d] for all d, then ∼M � Di[d] for all
d, i > 0.

Since D1 = ¬A, this shows that A is true in all mod-
els (and hence satisfied by all admissible valuations). In
what follows we omit parts of the proof already encoun-
tered in the case of classical propositional logic, and use
some further shortcuts suggested by our experience there.

ad a. ∼M � (x 6= x)[d] for all d, and any variable x.

ad b. Here we consider each added rule.

Ul. If ∼M � (y/x)A[d], then by our theorem on
unary substitution, there is a d′ =x d such that
∼M � A[d′]. Hence ∼M � (x)A[d].

Ur. Suppose that ∼M � ¬(y/x)A[d] for any d, where
y is a new variable not in Di. Then M � (y/x)A.
A fortiori, M � (y/x)A[d′] for all d′ =y d, for any
given d. Hence M � (y)(y/x)A. But since y is a
new variable, (y)(y/x)A is an alphabetic variant
of (x)A. Hence by our theorem on alphabetic
variance, M � (x)A. Therefore, for all d,

∼M � ¬(x)A[d].

I. It will suffice to show that if M � (x = y)[d], then
M � A[d] iff M � (y/x)A[d], for any d, and any
sentence A. That this is so for atomic sentence A
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is clear. Suppose it is the case for all sentences B
of length less than A. Then if A is ¬B, it holds for
A because it holds for B and (y/x)A = ¬(y/x)B.
If A (B&C), then (y/x)A is an alphabetic variant
of ((y/x)B & (y/x)C, so it holds for A because it
holds for B and C. Finally, if A is (z)B, we have
three cases.

Case 1. z is x. Then (y/x)A = A.

Case 2. z is neither x nor y. By hypothesis, M �
B[d] iff M � (y/x)B[d] for any d such that
M � (x = y)[d]. A fortiori, this is so for
any d′ =z d, for any given d, for in that case
d′(y) = d′(x) = d(x). But then, for any such d,
M � (z)B[d] iff M � (z)(y/x)B[d]. This estab-
lishes the conclusion, for in this case, (z)(y/x)B
is (y/x)(z)B, if z occurs in B; if not, the case is
obvious.

Case 3. z is y, z is not x. Then (y/x)A is (y/x)A′, where
A′ is an alphabetic variant (z′)B′ of A, where z′

is neither y nor x. Therefore, this case reduces
to the previous one.

Theorem. If the tableau sequence of a sentence A does
not terminate, then A is not valid.

Proof: If the tableau sequence of A does not terminate,
then it has a nonterminating branch B. We now show
how to define a model M = 〈f, D〉 and assignment d such
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that M � B[d] for every conjunct B in that branch. Since
¬A is the first member of B, it follows that M � ¬A[d],
hence that A is not valid.

Before we can construct this model, we need to define
a subsidiary notion. If x = y occurs as a conjunct in the
nonterminating branch B, then one of x, y at least will
disappear at some stage, owing to an application of rule
I. For example, as the tableau is being constructed, x
may be eliminated in favor of x1, x1 in favor of x2, . . . ,
and xn−1 in favor of y, so that we see successively the
conjuncts x = y, x1 = y, x2 = y, . . . , xn = y, y = y. In
that case we call 〈x, x1, . . . , xn, y〉 an elimination string
in B. Some elimination strings are contained in others in
the sense that 〈x, x1〉 is contained in 〈x, x1, . . . , xn, y〉;
let us call an elimination string prime if it is not con-
tained in any other elimination string, and let us call
any singleton {x} also an elimination string in B. Then
every variable x belongs to exactly one prime elimination
string in B. Define ev(x) to be the first variable in the
prime elimination string to which x belongs that is free
in (some conjunct in) B.

Now we define the model M = 〈f, D〉:
1. D = {ev(x) : x is free in B}
2. f(P n) = {〈ev(x1), . . . , ev(xn)〉 : P nx1 · · ·xn is a

177



conjunct in B}

That there is exactly one model M = 〈f, D〉 that satisfies
1 and 2 is an immediate consequence of the definition of
model, and the fact that the rule Ul guarantees that at
least one variable is free in B.

3. We define the assignment function d to be the map-
ping of the variables into D such that d(y) = ev(y)
when y is free in B, and otherwise d(y) is alpha-
betically the first variable in D.

Hypothesis of Induction. If C is a conjunct in B,
then M � C[d], for all sentence C of length less than B.

We now prove that if B is a conjunct in B, then M �
B[d].

(a) If B is P ny1 · · · yn this follows from 2 and 3 above.

(b) If B is x = y, this follows from 3 above, because
then x and y belong to an elimination string in B.

(c) If B is ¬P ny1 · · · yn, this follows from 2 and 3 above,
for then 〈ev(y1), . . . , ev(yn)〉 cannot belong to
f(P n). For if two conjuncts in B, say C and ¬C ′,
are such that C ′ differs from C only in that some
variables in C are replaced by other members of
their respective elimination strings, then there will
be a member of B containing two conjuncts C ′′

and ¬C ′′ which have been formed by elimination of
variables through rule I.7
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(d) If B is ¬(x = y), this follows from 3, for then x
and y are free variables in B, so that ev(x) and
ev(y) belong to D, but x and y cannot belong to
the same elimination string, so ev(x) 6= ev(y).

(e) B is ¬C, (C & D), or ¬(C & D); these cases are
familiar from propositional logic.

(f) B is (x)C. By the closure property for branches,
(y/x)C is a conjunct of B for every variable y in D.
By hypothesis and our theorem on unary substitu-
tion, M � C[d′] for all d′ =x d. Hence M � B[d].

(g) B is ¬(x)C. Then for some y free in B, ¬(y/x)C
is a conjunct. By hypothesis, M � ¬(y/x)C[d]. By
the theorem of unary substitution it follows that
∼M � C[d′] for some d′ =x d; hence M � ¬(x)C[d].

We have now established statement soundness and
statement completeness for quantificational logic with re-
spect to referential quantifier languages. (We retain these
terms, although we are now using “statement” to refer
only to a special kind of sentence, since, as we have re-
marked, it is only convenience that let us to concentrate
on a free variable system of quantificational logic.) The
extension to argument soundness and completeness is ex-
actly as in Section 3 of Chapter 3, and similar remarks
concerning strong completeness and compactness apply.
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4.5 Compactness and Countable

Models

We shall now investigate the compactness problem for
referential quantifier languages directly. Since these lan-
guages have exclusion negation, it is sufficient to con-
sider I-compactness; the results for compactness and fini-
tary semantic entailment follow then. We shall prove I-
compactness in a strong form: If every finite subset of a
set of sentences is satisfiable, then the set is itself satis-
fiable in a model with at most countable domain. The
proof will be by the method of ultrafilters.

There is one obstacle to the proof which presents itself
immediately: No less complex sentence, or set of such, se-
mantically entails (x)Fx. Thus if U is an ultrafilter, on
the valuation space H, it may contain H((Ex)Fx) and
also H(¬Fy) for every variable y. To bypass this dif-
ficulty, we prove compactness for the space of “regular
valuations” which are such that for some specific vari-
able y, they assign T to Fy if and only if they assign T
to (x)Fx. This proof would be very uninteresting if we
could not show, by a judicious use of theorems on sub-
stitution, that the regular valuations are really all that
matter.

From Section 1 we recall the notion of a substitu-
tion function f , and the notation f(A), f(X). If M is a
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model with domain D, and d an assignment function for
M , then we use “vd” to refer to the valuation v induced
by M and d, when only the model M is referred to in the
context. From here on we consider only one-to-one sub-
stitution functions, and if only one substitution function
f is discussed in the context, we write E∗ rather than
f(E), X∗ rather than f(X).

Theorem. For any one-to-one substitution function f ,
model M , and set K of sentences, K is satisfied by a
valuation over M if and only if f(K) is satisfied by a
valuation over M .

This theorem follows from two lemmas, which follow.

Lemma 1. If d, d′ are assignment functions for the same
model and d′(y∗) = d(y) for all variables y, then M �
A[d] iff M � A∗[d′].

Proof: We prove this by strong induction on the hy-
pothesis that for any two assignment functions d1, d2 for
the same model such that d2(y

∗) = d1(y) for all vari-
ables y, if B is any sentence of length less than A, then
vd1A = vd2A

∗. Let d, d′ be as specified in the antecedent
of the theorem.

(a) A is x1 = x2 and A∗ is x∗1 = x∗2, or A is P nx1 · · · xn
and A∗ is P nx∗1 · · ·x∗n; obvious.

(b) A is ¬B or A is (B & C); obvious.
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(c) A is (x)B, and A∗ is (x∗)B∗. Suppose first that
∼M � A[d], so that we have an assignment function
d1 =x d such that ∼M � B[d1]. Now let d2(y

∗) =
d1(y) for all variables y, and let d2(z) = d′(z) for
any variable z such that z 6= y∗ for any variable
y. Then by hypothesis of induction, ∼M � B∗[d2].
But also d2 =x∗ d

′, so ∼M � (x∗)B∗[d′]. Second,
suppose ∼M � A∗[d′]. Then there is a d2 =x∗ d

′

such that ∼M � B∗d2. Define d1(y) = d2(y
∗) for

all variables y. By hypothesis, ∼M � B[d1]. But,
in addition, d1 =x d; hence ∼M � (x)B[d].

The proof of the second lemma is similar and will be
omitted.

We shall use the following notation: If d is an assign-
ment function for model M , d∗ is the assignment function
d∗(x) = d(x∗) for M , and if v = vd, then v∗ = vd∗ over
the same model.

Lemma 2. For any valuation v over M and any sentence
A, v(A∗) = v∗(A).

From now on we need consider only a single substi-
tution function f : Let f(xi) = x2i, where xj is alphabet-
ically the jth variable. Then if X is a set of sentences,
f(X) contains no odd variables (xj such that j is odd),
whether bound or free. A set of sentences in which no
odd variables occur will be called a regular set. We now
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introduce the notion of regular valuation in two steps,
modifying this device due to Beth and Hasenjaeger only
by concentrating on the odd variables.8

Definition. For each natural number m, the variable ym
associated with m is defined by:

(a) y1 is the first odd variable that does not occur in
alphabetically the first sentence that begins with a
universal quantifier;

(b) yn+1 is the first odd variable after yn that does not
occur in alphabetically the first (n + 1) sentences
that begin with a universal quantifier.

Definition. A valuation v is regular iff v((x)A) = F only
if v((yk/x)A) = F, where (x)A is alphabetically the kth
sentence that begins with a universal quantifier and yk
the variable associated with k.

The first obvious result to be proved is that, to regular
sets, only regular valuations are relevant.

Theorem. A regular set is satisfied by a valuation over a
model M if and only if it is satisfied by a regular valuation
over M .

Proof: The “if” part is obvious. To prove the “only if”
part, assume that X is a regular set and that v = vd is a
valuation that satisfies X.

Let us define a new assignment d′ as follows:
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(a) d′(x2i) = d(x2i) for all i.

(b) d′(xi) = d(xi) if i is odd, but xi is not yk for any
integer k (see the definition of “regular valuation”
above).

(c) We define d′(yk) inductively. Suppose that (x)A is
the kth universally quantified sentence, and that
d′(z) has been defined for all variables z alpha-
betically before yk. Then d′(z) is defined for ev-
ery variable z that occurs in (x)A. By the lemma
proved in Section 3, this determines the value of
(x)A in M relative to d′ (and is the same value rel-
ative to every assignment d′′ which agrees with d′

on the variables prior to yk). If that value is T, let
d′(yk) = d(yk). If that value is F, let d′(yk) = b,
where b is some element d′′(x), where d′′ is like d′

with respect to all variables prior to yk except per-
haps x, and vd′′(A) = F.

Now we maintain that vd′ is regular and satisfies X.
The latter follows from the same lemma to which we ap-
pealed above, since d and d′ agree on all variables that
occur in X. To show the former, we must show that if
vd′((x)A) = F, then vd′((yk/x)A) = F. Well, from (c) we
know that if vd′((x)A) = F, then d′(yk) = d′′(x), where d′′

is some assignment which is like d′ for all variables, except
perhaps x, prior to yk, and vd′′(A) = F. Let d′′′ =x d

′,
and d′′′(x) = d′′(x). Then by that same lemma to which
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we already appealed twice above, vd′′′(A) = vd′′(A) = F.
Moreover, d′ and d′′′ are related by d′′′ =x d

′, d′′′(x) =
d′(yk). By the unary substitution theorem it now follows
that vd′((yk/x)A) = vd′′′(A) = F.

The following diagram may help to follow the last few
steps in this proof:

d′′ d′ d′′′

agreement

x 2 1 2

agreement

yk 3 2 2

agreement

In the diagram, d′′, d′, and d′′′ all agree on all the variables
prior to yk except x; in addition, d′′′ and d′ agree on all
variables after yk.

Now let R be the set of regular valuations and H the
space of all valuations; we call

HR = 〈R, {H(B) ∩R : B a sentence of L}〉

the regular valuation space of the referential quantifier
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language L under consideration. We shall write R(B)
for H(B) ∩R.

Theorem. If HR is the regular valuation space of a ref-
erential quantifier language L, then every ultrafilter on
HR converges to a regular valuation over a model with a
domain that is at most denumerable.

Proof: Let U be an ultrafilter on HR. We define a
model M = 〈f, D〉 and assignment function d in terms
of U as follows.

First, let ev(x) be alphabetically the first variable y
such that R(x = y) ∈ U . Clearly ev(x) exists for each
variable x [since R(x = y) ∈ U ] and is unique. The
domain D of M is defined by

D = {y : y = ev(x) for some variable x}.

Since there are at most denumerably many variables, D
is denumerable.9 We define the function f by

f(P n) = {〈y1, . . . , yn〉 : R(P ny1 · · · yn) ∈ U and

y1, . . . , yn ∈ D}.

Finally, we define the assignment function d by d(x) =
ev(x).

We now define

v(A) =

{
T iff R(A) ∈ U ,

F otherwise.
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and maintain that v is the valuation induced by M and
d, and is regular. That v is regular follows at once be-
cause R(yk/x)A ⊆ R((x)A); this is immediate from the
definition of R. The following remarks show that v is the
valuation induced by M and d.

(a) v(A) ∈ {T, F}; immediate.

(b) v(x = y) = T iff R(x = y) ∈ U iff ev(x) = ev(y)
iff d(x) = d(y).

(c) v(P nx1 · · ·xn) = T iff R(P nx1 · · ·xn) ∈ U iff
R(P nev(x1) · · · ev(xn)) ∈ U (because R(x = y) ∩
R(A) ⊆ R((y/x)A)) iff 〈ev(x1), . . . , ev(xn)〉 ∈
f(P n) iff 〈d(x1), . . . , d(xn)〉 ∈ f(P n).

(d) v(A&B) = T iff R(A&B) ∈ U iff R(A)∩R(B) ∈
U iff R(A), R(B) ∈ U iff v(A) = v(B) = T.

(e) v(¬A) = T iff R(¬A) ∈ U iff R − R(A) ∈ U iff
R(A) /∈ U iff v(A) = F.

(f) If v((x)A) = T, then R((x)A) ∈ U ; but R((x)A) ⊆
R((y/x)A) for each variable y; hence v((y/x)A) =
T for each variable y. If d′ =x d, then d′(x) = y
for some variable y; but then vd((y/x)A) = vd′(A);
hence vd′(A) = T (see the theorem on unary sub-
stitution in Section 3).

On the other hand, if v((x)A) = F, then
v((yk/x)A) = F, because v is a regular valuation
(see above). But then if d′ =x d and d′(x) = d(yk),
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vd′(A) = F also (by the same unary-substitution
theorem).

Now we are in a position to prove the compactness
theorem for the referential interpretation of the quanti-
fiers.

Theorem. If every finite subset of a set X of sentences
(of a referential quantifier language) is satisfiable, then
X is satisfied by a valuation over a model with at most
denumerable domain.

Proof: Let the finite subsets of X be {Xi}, i ∈ I, and
let each be satisfiable. Then each set f(Xi), i ∈ I is
satisfiable by a regular valuation. Therefore, the family

{R(B) : B ∈ f(X)}

forms a filter base on HR and is contained in an ultra-
filter U on HR. This ultrafilter converges to a regular
valuation v over a model with at most denumerable do-
main which satisfies f(X); therefore, X is satisfied by a
valuation over the same model.

4.6 Elementary Relations

Among Models

The study of the models of, and deductive systems in,
referential quantifier languages is now known as model
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theory. In this section and the next two, we explore some
of the basic methods and results of model theory. Our
exposition is limited by our decision to consider only the
models of a single, denumerable (but otherwise arbitrary)
referential quantifier language L.

Some new notation will be convenient. When the
predicates of L are, in alphabetic order, P1, P2, . . . , and
f(P1) = R1, f(P2) = R2, . . . , then we also identify the
model M = 〈f, D〉 as

M = 〈D, R1, R2, . . . 〉.

We speak of the members of D as members of M , of
subsets of D as subsets of M , and of the cardinality of D
as the cardinality of M . If d is an assignment function
into D, it can be regarded as an infinite sequence in D
(in M) with d(xi) as its ith member. We shall call such a
sequence d (essentially) finite if for some m, its (m+ i)th
members are all the same, for all i.

If one model M = 〈D, R1, R2, . . . 〉 results from an-
other model M ′ = 〈D′, R′1, R′2, . . . 〉 by discarding some
of the elements of M ′ [that is, D ⊆ D′ and Ri = Dn∩R′i,
for i = 1, 2, . . . and n the degree of Ri], then we say
that M is a submodel of M ′, and M ′ an extension of M .
We say that M ′ is an elementary extension of M if M
is a submodel of M ′ and, for all sequences d in the do-
main of M and all sentences A, M � A[d] iff M ′ � A[d].
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Finally, we say that M and M ′ are elementarily equiva-
lent if M � A iff M ′ � A for all statements A. (Recall
that statements are sentences in which no variables occur
free.)

Theorem. If M ′ is an elementary extension of M , then
M and M ′ are elementarily equivalent.

Proof: Let A be a statement. Then for any model M ,
the following are equivalent.

(a) M � A.

(b) M � A[d] for all sequences d in M .

(c) M � A[d] for some sequence d in M .

Now suppose that M2 is an elementary extension of M1.
Then we prove, for any statement A:

1. If M2 � A, then M2 � A[d] for all sequences d
in M2. Hence M2 � A[d] for all sequences d in
M1 because sequences in M1 are also sequences in
M2. But then M1 � A[d] for all sequences d in M1.
Therefore, M1 � A.

2. If M1 � A, then M1 � A[d] for some sequence d in
M1, so M2 � A[d] for some sequence d in M1. And
since d is also a sequence in M2, M2 � A[d] for some
sequence d in M2. Hence M2 � A.
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4.7 Löwenheim–Skolem Theorem

In 1915 Löwenheim proved that any satisfiable sentence
is satisfied in some model that is at most denumerable.
A few years later, Skolem extended this result to sets
of sentences.10 An inspection of the proof of our weak
completeness theorem will show that Löwenheim’s theo-
rem was proved along the way. For let A be satisfiable;
then 
¬A does not hold, so the tableau sequence of ¬A
(the first member of which is ¬¬A) has a nonterminat-
ing branch. And we constructed there a model, with at
most countable domain, in which all the conjuncts in that
branch are satisfied. The general Löwenheim–Skolem re-
sult is an immediate corollary to our version of the com-
pactness proof. For if a set of sentences is satisfiable, so
is each of its finite subsets—hence the set is satisfiable in
a model with at most countable domain.

But these proofs are such that one might still hold
that some sets of sentences are satisfiable in countable or
finite models only if the terms in them are given a rather
peculiar interpretation. After all, in the proofs of the
above theorems, the models constructed had sets of vari-
ables as their domain. Some philosophical mileage has
been derived from this reaction in philosophy of math-
ematics. Set theory can be formulated in a quantifica-
tional syntax, with say the first binary predicate inter-
preted as the set-membership predicate. Now set the-
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ory has as one of its theorems that there are uncount-
able sets—yet the Löwenheim–Skolem theorem says that
the theory can be satisfied in a countable model. This
application of the theorem is sometimes referred to as
the Löwenheim–Skolem paradox. And one reaction to
this paradox is to say that under a countable interpreta-
tion, the set-membership predicate no longer denotes set-
membership.11 Well, in any correct interpretation (in any
model) the predicate denotes the relation of set member-
ship among elements in the domain in question. And we
shall now give a proof that takes the wind out of the sails
of the above “resolution” of the paradox: If set theory
has any models at all in which the set-membership pred-
icate denotes the set-membership relation, it has such
models with at most denumerable domains. This proof
of the Löwenheim–Skolem theorem is due to Tarski and
Vaught.12 A lemma on elementary extensions will be
useful.13

Lemma. M ′ is an elementary extension of M if and
only if (a) M ′ is an extension of M , and (b) for each
sentence A, each variable x, and each sequence d in M ,
if M ′ � ¬(x)A[d], then there is a sequence d′ =x d in M
such that M ′ � ¬A[d′].

Proof: Suppose first that M ′ is an elementary extension
of M . Then if M ′ � ¬(x)A[d], d a sequence in M , then
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M � ¬(x)A[d]. But then for some d′ =x d in M , M �
¬A[d′], and hence M ′ � ¬A[d′].

Suppose, second, that the stated conditions are met,
and let us prove that M ′ is an elementary extension of
M . Let it be the case for all sequences d in M , and
all sentences B of length less than A, that M � B[d] iff
M ′ � B[d]. By strong induction we prove this to be the
case for A. Let d range over sequences in M .

(a) A is atomic. Then M � A[d] iff M ′ � A[d]; imme-
diate.

(b) A is ¬B. Then M � B[d] iff M ′ � B[d]; hence not
M � B[d] iff not M ′ � B[d]; hence M � ¬B[d] iff
M ′ � ¬B[d].

(c) A is (B &D); equally obvious.

(d) A is (x)B. (a) M � (x)B[d]. Then M ′ � B[d′] for
all d′ =x d in M ′; hence M ′ � B[d′] for all d′ =x d
in M . By hypothesis, M � B[d′] for all d′ =x d
in M ; hence M � (x)B[d]. (b) Not M ′ � (x)B[d].
Then M ′ � ¬(x)B[d], so by the stated conditions
M ′ � ¬B[d′] for some d′ =x d in M . But then
M � ¬B[d′], by hypothesis, so not M � B[d′], so
not M � (x)B[d].

Theorem. If M is a model of cardinality higher than the
denumerable, then M has an elementary submodel that is
denumerable.
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Proof: Let M = 〈D, R1, R2, . . . 〉, and assume that D
is well-ordered in some way, so that we can always speak
of “the first member of D such that . . . .” We define a
sequence of subsets of D:

D1 is some denumerable subset of D
Dn+1 = {b ∈ D : for some sentence A, some essen-

tially finite sequence d in Dn, and some vari-
able x, b is the first element in D such that
M � A[d′], where d′ =x d, d′(x) = b}

By considering the sentence x = y for A in the definition
of Dn+1, we see that Dn ⊆ Dn+1 for all n. For let A
be x = y, let d(y) = b ∈ Dn. Then we have M � A[d′]
for d′ =x d if and only if d′(x) = d(y) = b, so that then
b ∈ Dn+1.

Second, D1 is denumerable; let us assume that Dn is
denumerable and prove that Dn+1 is denumerable. There
are only denumerably many finite sequences in Dn, only
denumerably many variables, and only denumerably many
sentences. Therefore, as the definition of Dn+1 shows, the
number of elements added to Dn in the formation of Dn1

can at most be denumerable infinity to the power three,
which is denumerable infinity. So Dn1 is also denumer-
able. By induction, each set Di is denumerable.

Now define D∞ =
⋃∞
i=1Di. Then D∞ is still only de-

numerable. Furthermore, let R′i be Ri

⋂
Dn
∞, where Ri
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has degree n, for all i. Then M ′ = 〈D∞, R′i, R′2, . . . 〉
is clearly a denumerable submodel of M . To finish the
proof, we must show that the second condition of the
preceding lemma holds, so that M ′ is an elementary sub-
model.

Let d be a sequence in M ′, and M � ¬(x)B[d]. If
xk is alphabetically the first variable that does not occur
in ¬(x)B, we may take d(xm) = d(xk) for m ≥ k, with-
out loss of generality. It follows that for some n, d is a
sequence in Dn.

Since M � ¬(x)B[d] there must be an element b of
M such that M � ¬B[d′], where d′ =x d and d′(x) = b.
Let b0 be the first such element in D. Then b0 belongs
to Dn+1, hence to M ′. Therefore, such an assignment d′

is a sequence in the submodel M ′; this is what was to be
demonstrated.

4.8 Deductive Theories

In this section we shall study systems, that is, sets closed
under semantic entailment. But it will now be convenient
to concentrate on statements rather than sentences in
general. We shall use the term “(deductive) theory” to
refer to a system of statements. So we can define a theory
either as the set of statements belonging to a given system
of sentences, or as a set of statements X such that A ∈ X
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if X � A, for all statements A (in a given referential
quantifier language L). A model of the language will be
called a model of the theory if all statements in the theory
are true in that model. In addition, we call a theory T
(negation-)complete if for each statement A, either A or
¬A belongs to T .

Lemma. A theory is complete if and only if any two of
its models are elementarily equivalent.

Proof: Note that elementary equivalence concerns only
statements.

If T is complete, M and M ′ are models of T , and A
is a statement, then either A ∈ T or ¬A ∈ T : in the first
case M � A and M ′ � A, in the second case ∼M � A
and ∼M ′ � A. Hence M � A iff M ′ � A.

If T is not complete, and A is a statement such that
neither A nor ¬A is in T , then neither T � A nor T � ¬A
holds. Hence T has models M and M ′ such that ∼M � A
and ∼M ′ � ¬A. Therefore, M � ¬A and ∼M ′ � ¬A, so
M and M ′ are not elementarily equivalent.

Definition. Models M = 〈D, R1, R2, . . . 〉 and M ′ =
〈D′, R′1, R′2, . . . 〉 are isomorphic if and only if there is a
one-to-one function g from D onto D′ such that 〈b1, . . . ,
bn〉 ∈ Ri iff 〈g(b1), . . . , g(bn)〉 ∈ R′i for all members b1,
. . . , bn of D.

196



Theorem. If two models are isomorphic, they are ele-
mentary equivalent.

Proof: Let M and M ′ be isomorphic by the one-to-one
function g, and let A be any sentence. We intend to prove
that M � A iff M ′ � A, and do so by induction on the
length of A.

Hypothesis of Induction. For all sentences B of length
less than A, M � B iff M ′ � B. Recall that any one-to-
one function has an inverse.

Case 1. A is Pix1 · · · xn. Suppose that 〈b1, . . . , bn〉 ∈
Ri; then 〈g(b1), . . . , g(bn)〉 ∈ R′i; conversely, if
〈b′1, . . . , b′n〉 ∈ R′i, then 〈g−1(b′1), . . . , g−1(b′n)〉 ∈
Ri.

Case 2. A is x = y. Then if b1 6= b2, g(b1) 6= g(b2);
conversely, if b′1 6= b′2, then g−1(b′1) 6= g−1(b′2).

Case 3. A is ¬B. Then M � B iff M ′ � B, so ∼M � B
iff ∼M ′ � B, so M � A iff M ′ � A.

Case 4. A is (B&C). The M � A iff M � B and M � C,
iff M ′ � B and M ′ � C, iff M ′ � A.

Case 5. A is (x)B. Then M � A iff M � B iff M ′ � B
iff M ′ � A.

When any two models of a theory are isomorphic, the
theory is called categorical. By the above two theorems
it follows that a theory is categorical if and only if it is
negation-complete. But the converse does not hold: if two
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models have different cardinalities, then they are not iso-
morphic, and we know from the Löwenheim–Skolem the-
orem that any theory with nondenumerable models also
has denumerable models (and is therefore not categori-
cal). It seems reasonable therefore to consider a some-
what weaker condition than categoricity.

Definition. A theory is categorical in power m if and only
if any two of its models of cardinality m are isomorphic.

The cardinal number of a denumerable set is denoted
as ℵ0 (aleph null), and the condition which we wish to
consider specifically now is that of categoricity in power
ℵ0. (The following theorem is a special case of Vaught’s

test.14)

Theorem. If T is a satisfiable theory that has only in-
finite models and is categorical in power ℵ0, then T is
(negation-)complete.

Proof: Let the antecedent of the theorem hold. If T is
not complete, then for some statement A, neither A nor
¬A belongs to T . So T has models M1 and M2 such that
M1 � ¬A and M2 � A. By the Löwenheim–Skolem theo-
rem, M1 and M2 are respectively elementarily equivalent
to certain denumerable models M ′

1 and M ′
2. Clearly M ′

1

and M ′
2 are not elementarily equivalent to each other.

By the preceding theorem, it follows that they are not
isomorphic, so T is not categorical in power ℵ0.

198



4.9 Substitution Interpretation

The intuitive idea of the substitution interpretation is
that (x)Fx is true iff Fx is true whatever name x be.15

This clearly coincides with the referential interpretation
exactly when (1) everything is designated by some name,
and (2) every name designates something. These assump-
tions are not always satisfied (not every real number has
a name; Pegasus does not designate anything). But the
coincidence can be used to ferret out exactly the logic of
the substitution interpretation, if we assume16 that the
names are meant to be the names in the language in ques-
tion: We simply treat the variables as names, and supply
them with designations (for example, themselves) solely
to determine the truth values of the atomic sentences.
Formally speaking, therefore, we begin by treating the
substitution interpretation as a restricted referential in-
terpretation. Then we shall show how it may be treated
independently of the referential interpretation.

Let L′ be a referential quantifier language and M a
model for L′. We say that d is a canonical assignment for
M iff d maps the variables onto the domain of M . (This
is, of course, possible only if M is at most denumerable.)
We call a valuation for L′ canonical iff it is induced by a
model and a canonical assignment for that model.

Definition. L is a substitutional quantifier language iff
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there is a referential quantifier language L′ such that L
has the same syntax as L′ and the admissible valuations
of L are exactly the canonical valuations of L′.

We call L and L′ corresponding languages in this case.
Canonical valuations can be defined without recourse

to models, as the following theorem shows.

Theorem. v is a canonical valuation for the referential
quantifier language L′ iff for all sentences A, B and vari-
ables x, y of L′,

(a) v(A) ∈ {T, F};
(b) if v(x = y) = T and A is atomic, then v(A) =

v((y/x)A);

(c) v(x = x) = T;

(d) v(A&B) = T iff v(A) = v(B) = T;

(e) v(¬A) = T iff v(A) = F;

(f ) v((x)A) = T iff v((y/x)A) = T for all variables y.

Proof: Let v be a canonical valuation for L′; then the
only condition not obviously satisfied is the “if” part of
(f). But suppose that v((x)A) = F, and v induced by M
and d. Then for some d′ =x d, ∼M � A[d′]. Since d is
canonical, there is a variable y such that d(y) = d′(x).
By our theorem on unary substitution, M � (y/x)A[d] iff
M � A[d′]; therefore, ∼M � (y/x)A[d]. Hence v((x)A) =
F.
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On the other hand, let v satisfy conditions (a) through
(f) and let, for each variable x, ev(x) be alphabetically
the first variable y such that v(y = x) = T. Define
M = 〈f, D〉 such that

D = {ev(x) : x a variable of L′}

and f the function mapping all n-ary predicated of L′

into Dn such that

f(P n) = {〈x1, . . . , xn〉 : x1, . . . , xn ∈ D and

v(P nx1 · · ·xn) = T}

for each n. Finally, define the assignment

d : d(x) = ev(x).

Then d is a canonical assignment, and we maintain that
v is the valuation induced my M and d. We have al-
ready shown that the canonical valuation v′ induced by
M and d satisfies conditions (a)–(f); to show that v′ =
v, it only remains to show that if A is atomic, then
v′(A) = v(A). But v′(x = y) = T iff d(x) = d(y), iff
ev(x) = ev(y), iff v(x = y) = T. And v′(P nx1 · · · xn) = T
iff 〈d(x1), . . . , d(xn)〉 ∈ f(P n) iff 〈ev(x1), . . . , ev(xn)〉 ∈
f(P n) iff v(P nev(x1) · · · ev(xn)) = T iff v(P nx1 · · ·xn) =
T. So indeed v′ = v.

This shows that the class of admissible valuations of
a substitutional quantifier language can be defined en-
tirely without recourse to models. So our reliance on the
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standard interpretation in our definition was not neces-
sary after all. It is clear that quantificational logic is
sound under the substitution interpretation; our defini-
tion makes this result immediate. But that this logic
cannot have strong completeness here follows also from
its soundness under the referential interpretation; for

{(y1/x)A, (y2/x)A, . . . } 
 (x)A

(where y1, y2, . . . are all the variables) holds in a substi-
tutional, but not in a referential, quantifier language.

It follows then that the syntactic description of the
relation of semantic entailment cannot proceed in the
present case by such elementary means as we have em-
ployed so far. We generalize the notion of a nonter-
minating branch of a tableau sequence in the following
manner.17

Definition. A set of sentences X of a QCS is a model set
iff it satisfies

(a) X does not contain both A and ¬A for any sentence
A nor x 6= x for any variable x;

(b) if ¬¬A ∈ X, so is A;

(c) if ¬(A&B) ∈ X, so is ¬A or ¬B;

(d) if (A&B) ∈ X, so are A and B;

(e) if ¬(x)A ∈ X, so is ¬(y/x)A for at least one vari-
able y;
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(f) if (x)A ∈ X, so is (y/x)A for each variable y;

(g) If x = y and A are in X, so is (y/x)A.

We wish now to show that in a substitutional language
L, X 
 A iff X ∪{¬A} is not satisfiable, iff X ∪ {¬A} is
not contained in any model set. The first equivalence is
obvious; the second is established by the following theo-
rem.

Theorem. If L is a substitutional quantifier language
and X a set of sentences of L, then X is satisfiable if
and only if X is contained in a model set.

Proof: First, if v is a canonical valuation, then

{A : v(A) = T}

is a model set; this is obvious. This shows that any sat-
isfiable set is contained in a model set.

Second, let Y be a model set of L, and define the
model M = 〈f, D〉 for the corresponding language L′ by:

(a) if x is a variable free in Y , then ev(x) is alphabet-
ically the first variable y such that y = x ∈ Y ; or
ev(x) is x;

(b) D = {y : y = ev(x) for some variable x};
(c) F (P n) = {〈x1, . . . , xn〉 : x1, . . . , xn ∈ D and

P nx1 · · ·xn ∈ Y } for each n-ary predicate P n and
each degree n.
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Define the assignment d by d(x) = ev(x) when ev(x) is
defined and d(x) is alphabetically the first variable in D
otherwise. Then d is canonical, and the canonical valua-
tion v induced by M and d satisfies Y (by an argument
parallel to that in the weak completeness proof for the
standard interpretation).

Thus the set {¬(x)A, (y1/x)A, (y2/x)A, . . . }, where
y1, y2, . . . are all the variables of L (of the corresponding
referential quantifier language L′), is not satisfiable in
L, because it is not included in a model set, but it is
satisfiable in L′.

We end by presenting the most important relation be-
tween the referential and the substitution interpretation:
their coincidence in the case of statements.18

Theorem. If X is a set of statements and A a statement
of a referential quantifier language L, then X 
 A in L
iff all canonical valuations that satisfy X also satisfy A.

Proof: The “only if” part is obvious. On the other
hand, suppose thatX 
 A does not hold. ThenX∪{¬A}
is satisfiable; by the Löwenheim–Skolem theorem, there
is an at-most-denumerable model M and assignment d
in M such that M � B[d] for all B in X ∪ {¬A}. But
all members B of this set are statements, so M � B for
all B in X ∪ {¬A}. Now since M is denumerable, there
exists a canonical assignment d′ for M , and clearly the
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valuation induced by M and d′ is a canonical valuation
that satisfies X but not A.

This theorem should not be regarded as establish-
ing an absolute asymmetry between statements and non-
statements. For we could also have implemented the sub-
stitution interpretation by singling out a subset V ′ of the
variables as names, with the truth definition: (x)A is
true iff (y/x)A is true for every member y of V ′. If V ′ is
infinite, we again would not have had compactness, and
the asymmetry established in the above theorem would
have been between sentences in which names occur free
and sentences in which no names occur free. If we had
added a special set of symbols a1, a2, . . . as names, rather
than using variables for that purpose, this point would
be clearer yet (for then the occurrences of “free” could
be deleted from the preceding assertion).

The preceding theorem and the soundness and com-
pleteness theorems of Section 4 together establish that
for any statement A, 
A in a substitutional quantifier
language iff `A in quantificational logic. The following
theorem extends this result to all sentences A, thus prov-
ing the soundness and weak completeness of quantifica-
tional logic under the substitution interpretation.

Theorem. If A is any sentence of a substitutional quan-
tifier language L, and x1, . . . , xn the variables free in A,
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then 
A in L iff 
(x1) · · · (xn)A in L.

Proof: The “if” part is obvious, for (x1) · · · (xn)A 
 A.
But if not 
 (x1) · · · (xn)A there is a canonical valuation
vd such that vd((x1) · · · (xn)A) = F. So there is an assign-
ment d′ that is like d except perhaps at x1, . . . , xn such
that vd′(A) = F. This mapping d′ is an assignment for
the same model M with an at most denumerable domain
D. Let d′′(xi) = d′(xi) for i = 1, . . . , n and let d′′ map
the other variables onto D. Then d′′ and d′ agree on all
variables free in A, so vd′′(A) = F also. In addition, vd′′
is canonical, so 
A does not hold in L.

We have now also established, in effect, that quantifi-
cational logic is adequate under the substitution inter-
pretation for all arguments with finite sets of premises,
and for all arguments whose premises and conclusion are
statements.

4.10 Extensions of

Quantificational Logic

The semantics of the referential interpretation may be ex-
tended by allowing a model to have an empty domain.19

In that case there are, of course, no assignment functions
for the model, so satisfaction of sentences that are not
statements has no obvious sense. But truth of statements
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may be defined by: (x)A is true; ¬A is true iff A is not
true; (A&B) is true iff A and B are true. There are, of
course, various ways of extending this truth definition to
sentences in general. The logic must be changed some-
what even for statements; for example, (x)¬(y)P ′y 

¬(y)P ′y does not hold anymore, nor does 
(Ex)(x = x).

We may further extend the logic by adding names
(individual constants) to the syntax. If these are all re-
garded as having a denotation in the domain of discourse,
it is necessary to add as axiom scheme

(x)A ⊃ (b/x)A,

where b is a name and (b/x)A is the result of replacing all
free occurrences of x in A by occurrences of b. If names
are allowed not to have a denotation, the axiom scheme
to be added is rather

(x)A& (Ey)(y = b) ··· ⊃ (b/x)A.

If, in addition, the variables are allowed not to have a
denotation, the axiom scheme (x)A ⊃ (y/x)A must be
dropped in favor of

(x)A& (Ez)(z = y) ··· ⊃ (y/x)A,

where z is a variable distinct from y. Such extensions
and modifications of quantificational logic are known as
free logics.20
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We can extend the syntax still further by adding func-
tion letters or a description operator; the latter makes
the former superfluous. The description operator ιforms
nouns from sentences; ( ιx)A purports to denote the one
and only individual b that satisfies A. [More precisely, the
denotation of ( ιx)A relative to assignment d for model M
is b if and only if M � A[d′] for any d′ =x d just in case
d′(x) = b.] Hence the following axiom scheme must be
added:

(FD) (y)(y = ( ιx)A ≡ ··· (x)(A ⊃ x = y) & (y/x)A),

with y a variable distinct from x. When ( ιx)A does not
have a denotation, one has various alternatives concern-
ing its semantic treatment, and this has let to a variety
of description theories.21

Finally, it is possible to add several styles of quan-
tifiers, say one with a referential interpretation and one
with a substitution interpretation, or several with ref-
erential interpretations in terms of different domains of
discourse.22

Notes

1. The semantics of quantificational logic is developed uni-
formly in terms of valuations in R. H. Thomason, Symbolic
Logic (New York: Macmillan, 1970).
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2. See D. Kalish and R. Montague, Logic Techniques of For-
mal Reasoning (New York: Harcourt, Brace & World, 1964),
pp. 86–90, for the first usage; W. V. O. Quine, Mathemat-
ical Logic, rev. ed. (Cambridge, Mass.: Harvard University
Press, 1958), p. 79, for the second usage.

3. When the language does not contain an identity predicate,
“each” is too restrictive and is replaced by “some.”

4. These terms are adopted from Kalish and Montague, Logic
Techniques, p. 99.

5. Cf. H. Leblanc, Techniques of Deductive Inference (Engle-
wood Cliffs, N.J.: Prentice-Hall, 1966), pp. 129–130.

6. See chap. 3, note 4.

7. For perspicuity, consider the case of F 1x and ¬F 1y. If x and
y alone belong to the same elimination string, then suppose
that x is eliminated in favor of y at stage r. Then F 1y is a
conjunct in every member of B beyond stage r; and ¬F 1y
must be a conjunct in every member of B beyond a certain
stage r′. Hence the branch would terminate before stage
r + r′.

8. Cf. E. W. Beth, The Foundations of Mathematics (Amster-
dam: North-Holland, 1965), pp. 264–265.

9. The theorem can be generalized to read the cardinality of the
variables where we have “denumerable” if that cardinality
is not so restricted.

10. The theorem can be generalized to the cardinality of the set
of sentences of the language; see the statement of the theo-
rem in A. Mostowski, Thirty Years of Foundational Studies
(New York: Barnes & Noble, 1966), p. 121.
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11. Cf. J. Myhill, Contribution to a symposium “On the On-
tological Significance of the Löwenheim–Skolem Theorem,”
American Philosophical Association (Eastern Division) Pro-
ceedings, 2 (1953), pp. 57–70, and M. D. Resnik, “On
Skolem’s Paradox,” Journal of Philosophy, 63 (1966), pp.
425–437.

12. A. Tarski and R. L. Vaught, “Arithmetical Extensions of
Relational Systems,” Compositio Mathematica, 13 (1957),
pp. 81–102.

13. Ibid., Theorem 1.10; A. Robinson, Introduction to Model
Theory, and to the Metamathematics of Algebra (Amster-
dam: North-Holland, 1965), sec. 3.2.1, pp. 55–56.

14. Cf., e.g., Robinson, Model Theory, sec. 4.1.2, pp. 89–90.

15. See J. M. Dunn and N. D. Belnap, Jr., “The Substitution
Interpretation of the Quantifiers,” Nous, 2 (1968), pp. 177–
185, and references therein; see also H. Leblanc, “A Simpli-
fied Account of Validity and Implication for Quantificational
Logic,” Journal of Symbolic Logic, 33 (1968), pp. 231–235.

16. In philosophical discussions especially it should not be over-
looked that this assumption is not a necessary one; see
Dunn and Belnap, Nous, 2 (1968), p. 183, and L. Henkin,
“Some Notes on Nominalism,” Journal of Symbolic Logic,
18 (1953).

17. The term “model set” was introduced by J. Hintikka.

18. Cf. Beth, Foundations, pp. 263–266.
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19. See T. Hailperin, “Quantification Theory and Empty Indi-
vidual Domains,” Journal of Symbolic Logic, 18 (1953), pp.
197–200; W. V. O. Quine, “Quantification and the Empty
Domain,” Journal of Symbolic Logic, 19 (1954), pp. 177–
179; A. Mostowski, “On the Rules of Proof in the Pure
Functional Calculus of the First Order,” Journal of Sym-
bolic Logic, 16 (1956), pp. 129–136.

20. See K. Lambert, “Existential Import Revisited,” Notre Dame
Journal of Formal Logic, 4 (1963), pp. 288–292; B. van
Fraassen, “The Completeness of Free Logic,” Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 14
(1966), pp. 219–234, and “A Topological Proof of the Löwen-
heim–Skolem Compactness and Strong Completeness The-
orems for Free Logic,” Zeitschrift für mathematische Logik
und Grundlagen der Mathematik, 14 (1968), pp. 245–254;
H. Leblanc and R. H. Thomason, “Completeness Theorems
for Some Presupposition-free Logics,” Fundamenta Mathe-
maticae, 62 (1968), pp. 125–164, and references therein.

21. See B. van Fraassen and K. Lambert, “On Free Description
Theory,” Zeitschrift für mathematische Logik und Grundla-
gen der Mathematik, 13 (1967), pp. 225–240.

22. See, e.g., N. Rescher, “On the Logic of Existence and De-
notation,” Philosophical Review, 68 (1959), pp. 157–180,
and the references therein (especially in notes 30 and 31 on
p. 175); B. van Fraassen, “Meaning Relations Among Predi-
cates,” Nous, 1 (1967), pp. 161–179; K. Lambert and B. van
Fraassen, “Meaning Relations, Possible Objects, and Possi-
ble Worlds,” in K. Lambert, ed., Philosophical Problems in
Logic (Dordrecht, Holland: Reidel, 1970), pp. 1–20.
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Chapter 5

Nonclassical Logics

There are many interesting logical systems other than
classical logic (the classical propositional calculus or quan-
tificational logic); some are extensions of classical logic,
some are fragments, and some are neither extensions nor
fragments. Some of the less radical departures from clas-
sical logic we have already discussed: logic valid for the
empty domain, free logic, description theory. Other non-
classical logics are systems of many-valued logic and sys-
tems of modal logic; these are the best known. In these
cases, one has nonclassical connectors in the language,
or at least connectors with a nonclassical interpretation.
We may also refer to the logic of presuppositions and the
logic of tautological entailment as nonclassical logics.1 In
those cases, one studies nonclassical semantic relations
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among (sets of) sentences. In this chapter we shall study
examples of both kinds of nonclassical logics. Finally, we
shall discuss the concept of truth in the light of its role
in the interpretation of nonclassical logics and formalize
some aspects of a theory of truth applicable to arbitrary
languages.

5.1 Many-Valued Logics

The terms “matrix,” “M -assignment,” “adequate ma-
trix,” “M -valuation,” “M -propositional language” are
defined in Chapter 3, Section 5; we shall need these defi-
nitions, but not the results of that section. When the set
of elements of a matrix is finite, we call the matrix finite.

5.1.1 Substitution and Lindenbaum
Algebras

In the case of the familiar truth table, there is an easy
algorithm for calculating the value (under a given as-
signment) of a complex formula, given the values of its
components. We simply follow the rules:

1. Replace the components by the names of their
values.

2. Replace (T & T) by T.
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3. Replace (X & Y ) by F.

4. Replace ¬T by F.

5. Replace ¬F by T.

where X, Y are ambiguous between T and F. (Note that
3 cannot be applied until 2 is no longer applicable.) We
generalize this algorithm as follows:

Lemma 1. If A is the expression e1e2 · · · en, and d is an
M-assignment (on the PCS to which A belongs), then
d(A) is identical with the element td(A) = td(e1) · · ·
td(en), where

td(B) = d(B) for any atomic sentence B,
td(&) = ···,
td(¬) = −,
td(ei) = ei if ei is a parenthesis.

The proof is by strong induction on the hypothesis that
d(C) = td(C) for any sentence C of length less than A:

1. A is atomic. Then td(A) = d(A).

2. A is (B & C). Then td(A) = (td(B) ··· td(C)).
By hypothesis td(B) = d(B),
td(C) = d(C).
So td(A) = d(B) ··· d(C) = d(A).

3. A is ¬C. Then td(A) = −td(C).
By hypothesis that is
−d(C) = d(A).
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This leads at once to some helpful results about sub-
stitution in M -propositional languages. It is to be re-
called that we recognize unary substitution, simultane-
ous substitution, and infinitary substitution. Each is a
special case of the next, so “substitution” used without
qualification is to be understood as “infinitary substitu-
tion.”

Theorem. In an M-propositional language, validity and
unsatisfiability of sentences is preserved under substitu-
tion.

It is sufficient to show that if Ss(A) is sometimes undes-
ignated (respectively, sometimes designated), then so is
A, for any sentence A. This follows immediately from
Lemma 1 and the following lemma (left as exercise).

Lemma 2. If d and d′ are M-assignments such that
d(p) = d′(s(p)) for all atomic sentences p, then d(A) =
d′(Ss(A)) for all sentences A.

Theorem. If A is a sentence for an M-propositional lan-
guage such that for all admissible valuations v and all
substitutions Ss, v(A) = T iff v(Ss(A)) = T, then A is
either valid or not satisfiable.

Proof: If A is neither valid nor not satisfiable, then there
are admissible valuations v and v′ such that v(A) = T,
v′(A) 6= T. This means that there are M -assignments
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d and d′ such that d(A) is designated and d′(A) is not
designated.

LetA have exactly p1, . . . , pn as its atomic constituents.
We define a new M -assignment:

d′′(qi) = d′(pi) for i = 1, . . . , n, where q1, . . . , qn are
distinct atomic sentences other than
p1, . . . , pn,

d′′(q) = d(q) when q is an atomic sentence other than
q1, . . . , qn.

It follows at once that d′′(A) = d(A); d′′(Ss(A)) = d′(A)
for s(pi) = qi; s(q) = q for an atomic sentence q other
than p1, . . . , pn. The M -valuation v′′ induced by d′′ is
such that v′′(A) = T, v′′(Ss(A)) = F. So if A is neither
valid nor not satisfiable, then there is a valuation that
assigns T to A but not to Ss(A).

Carnap called a sentence L-determinate if it was ei-
ther valid or not satisfiable. The two preceding the-
orems establish therefore an important connection be-
tween L-determinacy and invariance under substitution
transformations.2 This suggests that substitution has a
deep semantic significance and that conclusion will be
further strengthened by our next theorem. (We may
note, as an aside, that satisfiability is not preserved under
substitution in general, but is preserved under infinitary
atomic substitution by one-to-one mappings.)
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Theorem. If LS = 〈Syn, T, `〉 is a logical system and
Syn is a PCS, then there is an adequate matrix for LS
iff T is closed under unary substitution.

Proof: If M is an adequate matrix for LS, then T is
exactly the set of valid statements of the M -propositional
language with Syn as its syntax. As we have seen, that
set is closed under infinitary substitution. So if LS has an
adequate matrix, T is closed under unary substitution.

On the other hand, suppose that T is closed under
unary substitution; we now mean to construct a matrix
that is adequate for LS. First we define an equivalence
(that is, reflexive, symmetric, and transitive) relation R
on the sentences of Syn: R(A, B) iff for any sentence C
and atomic sentence p,

SAp (C) ∈ T iff SBp (C) ∈ T.

We define the equivalence class E(A) of A as

E(A) = {B : R(A, B)}.

These equivalence classes will be the elements of the ma-
trix 〈E, D, ···, −〉 = M(LS):

E = {E(A) : A is a sentence of Syn},
D = {E(A) : A is a theorem of LS},
E(A) ··· E(B) = E(A&B),

E(A) = E(¬A).

217



That all valid sentences are theorems is seen by consider-
ing the function d : d(A) = E(A). That d is an M(LS)-
assignment is clear:

d(B & C) = E(B & C) = E(B) ··· E(C) = d(B) ··· d(C),

d(¬B) = E(¬B) = E(B) = d(B).

If A is valid, d(A) is designated; that is, E(A) belongs to
D. But then A is a theorem, by the definition of D.

On the other hand, suppose A to be a theorem of
LS, and let d′ be an M(LS)-assignment. Recall that
d′(A) = td′(A), and let d′(pi) = E(Bi) for the atomic
components p1, . . . , pn of A. Then td′(A) = td(Ss(A)),
where d is the assignment defined above, and s(pi) = Bi

for i = 1, . . . , n. So d′(A) = E(Ss(A)).
The result of an infinitary substitution on a single

sentence is just the result of some simultaneous substitu-
tions. In the particular case,

Ss(A) = SB1···Bn
p1··· pn (A),

which can be defined in terms of unary substitution.
Since A is a theorem, and T is closed under unary sub-
stitution, it follows therefore that Ss(A) is a theorem.

Hence d′(A) = E(Ss(A)) ∈ D. This argument being
general in d′, A is valid. This ends the proof.
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The above theorem is essentially due to Lindenbaum
and the matrix M(LS) is therefore called the Linden-

baum algebra of LS.3 The elements of the Lindenbaum
algebra are often defined as the classes

{B : A ≡ B is a theorem of the system}
(with ≡ defined as usual),

which coincides with our definition just when the follow-
ing principle holds:

A ≡ B is a theorem if and only if for any sentence C,
SAp (C) is a theorem iff SBp (C) is a theorem.

This is an important metatheorem for the classical propo-
sitional calculus and many other familiar systems.

5.1.2 Compactness and Finite Matrices

We recall from Chapter 2, Section 10, that if a language
is the union of a chain of its finitary fragments, then that
language is compact and has finitary entailment. This
provides us with the method of proof for the following
theorem.

Theorem. If L is an M-propositional language for some
finite matrix M , then L is compact and has finitary se-
mantic entailment.
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Proof: We proceed by showing that L is the union of
a chain of its finitary fragments (see Chapter 2, Section
10). Let the atomic sentences of L, in alphabetic order,
be p1, p2, . . . , and let Li be the M -propositional lan-
guage with only p1, . . . , pi as atomic sentences, for i = 1,
2, . . . . Then Li is a finitary fragment of L, because there
are only finitely many ways to map {p1, . . . , pi} into the
(finite) set of elements ofM , and hence only finitely many
M -assignments (and M -valuations) for Li.

Let d1 ⊆ d2 ⊆ d3 ⊆ · · · be M -assignments for L1, L2,
L3, . . . , respectively, and let d be the union of this chain.
Then d(A) ∈ E for any sentence A of L, and if A belongs
to Li and B to Lj, with i ≤ j, then

d(¬A) = di(¬A) = di(A) = d(A),

d(A&B) = dj(A&B) = dj(A) ··· dj(B) = d(A) ··· d(B),

so d is an M -assignment for L.
Now if v1 ⊆ v2 ⊆ v3 ⊆ · · · are admissible valuations

of L1, L2, L3, . . . , respectively, then for each vi there is
a class Di of M -assignments for Li such that

vi(A) = T iff d(A) ∈ D for any d ∈ Di.

Moreover, if d ⊆ Di+1, then there is a d′ in Di such that
d′ ⊆ d, and each Di is finite. We have, therefore, a finitely
branching tree, and no Di is empty, so it has infinitely
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many nodes. (As in the proof in Chapter 2, Section 10,
let Λ be the origin, and let Rdd′ for d in Di+1 iff d′ ∈ Di

and d′ ⊆ d.) By Koenig’s lemma this tree has infinite
branch

d1 ⊆ d2 ⊆ d3 ⊆ · · ·

where di ∈ Di for i = 1, 2, 3, . . . . We established above
that the union d of this branch is anM -assignment; more-
over, the union v of v1, v2, v3, . . . is a valuation on the
syntax of L such that, for A a sentence of Li,

v(A) = T iff vi(A) = T

iff di(A) ∈ D
iff d(A) ∈ D,

so v is the valuation induced by M and d and hence an
admissible valuation for L. This is a simplified proof of a
result due independently to P. Woodruff and B. Myers.

It must be pointed out that the restriction to finite
matrices is essential. For example, let E be the set of
natural numbers, and D = {1}, and let ··· be defined by

(x ··· y) =

{
1 iff x < y,

2 otherwise

where < is the less-than relation among natural numbers.
Then the following set is not satisfiable, although each of
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its finite subsets is:

{p2 ··· p1, p2 ··· p3, p3 ··· p1, p3 ··· p4, p4 ··· p1, . . . }.

We can satisfy the first k members of this set by the
assignment

d(p1) = k + 1; d(p2) = 1; d(p3) = 2; . . . ;

d(pk+1) = k,

but the whole set cannot be satisfied except by giving nat-
ural numbers of strictly increasing size to p2, p3, p4, . . . ,
and a still greater number to p1, which is impossible.
(The above example is due to R. Meyer.) Significant
compactness results for infinite matrices can be proved,
but only with special conditions on the operations (see
Appendix B).

5.2 Modal Logics

The construction of a semantics for modal logic by
McKinsey, Tarski, Kanger, Hintikka, and Kripke is one of
the most important developments in logic since the 1930s.
Kripke gave this semantics what is essentially its current
form, and provided weak completeness proofs for most of
the known systems of modal logic.4 Since completeness
proofs in this area are readily available in a number of
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forms, we shall not take them up here. We shall concen-
trate instead on soundness, compactness, and cardinality
questions.

5.2.1 Normal Propositional Modal
Logics

The systems of propositional modal logic to which our
discussion will be relevant are M (due to von Wright),
B (what Becker called the “Brouwersche system”), and
Lewis’s S4 and S5. Their rules and axioms are as follows:

R0. If A is a theorem of the classical propositional cal-
culus, `A.

R1. If `A and `A ⊃ B, then `B.

R2. If `A, then `�A.

A1. `�A ⊃ A.

A2. `�(A ⊃ B) ⊃ ··· �A ⊃ �B.

A3. `A ⊃ �♦A.

A4. `�A ⊃ ��A.

Here each system has R0, R1, R2, A1, A2; B has in
addition A3; S4 has in addition A4 but not A3; S5 has in
addition both A3 and A4. To extend the system to the
justification of arguments we add, as usual,

(ARG) A1, . . . , An ` B if `¬(A1 & · · · & An & ¬B)
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In addition, “♦” is short for “¬�¬” and “A ⊃ B” short
for “¬(A&¬B),” where ¬ and & are the signs for negation
and conjunction, respectively. We shall finally use τ as
an index, ranging over {m, b, 4, 5}, and use “system τ”
to refer to system M if τ = m, B if τ = b, S4 if τ = 4,
and S5 if τ = 5.

The syntax for each system is the same.

Definition. The syntactic system Synt is the triple 〈A ,
S , W 〉 where A is a denumerable set—the atomic sen-
tences ; S is the set {&, ¬, �, ), (}—the logical signs ;
and W is the least set containing A and such that if
A, B are in W , so are (A & B), ¬(A), �(A)—the set of
sentences.

The languages that we discuss here shall be called (with
obvious reference to the systems M , B, S4, S5) Lm, Lb,
L4, L5. We need several preliminary definitions. The
intuitive idea behind the interpretation of � is that �A
is true iff A is true in all possible worlds. Since truth is
itself relative to a possible world, it is more accurate to
say that �A is true in a given possible world α iff A is
true in each world that is possible relative to α. The set
of possible worlds with the possible-relative-to relation
on it will be called a model structure. The languages are
distinguished by the properties of this possible-relative-to
relation.
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Definition. A τ -model structure (τ -ms) is a couple M =
〈K, R〉, where K is a nonempty set (the “possible
worlds”) and R a dyadic reflexive relation on K, and
such that R is symmetric if τ = b, transitive if τ = 4,
and both transitive and symmetric if τ = 5.

We read “αRβ” as “β is possible relative to α,” or better,
as “There is access from α to β.”

Definition. A valuation over a τ -ms M = 〈K, R〉 is a
mapping v of K×W into {T, F} subject to the conditions
that for all α in K and A, B in W :

vα(¬A) = T iff vα(A) = F,

vα(A&B) = T iff vα(A) = vα(B) = T,

vα(�A) = T iff vβ(A) = T for all β in K such that
αRβ, where we designate v relativized
to α in K as vα and omit parentheses
where convenient.

If there is a τ -ms M = 〈K, R〉 and member α of K such
that v′ = vα, we call v′ a τ -valuation.

The language Lτ is the couple 〈Synt, Vτ 〉, where Vτ is
the set of all τ -valuations. We call W the set of sentences
of Lτ and Vτ the set of admissible valuations of Lτ , and
denote the valuation space of Lτ as Hτ .

Theorem. For each index τ , system τ is argument sound
for Lτ .
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Proof: That the classical propositional calculus is sound
for Lτ is clear (R0 and R1).

Suppose that 
A in Lτ , and let v′ = vα be a τ -
valuation over a τ -ms M = 〈K, R〉. Then for all β such
that αRβ, vβ(A) = T, just because all τ -valuations as-
sign T to A. Therefore, v′(�A) = vα(�A) = T. This
shows the soundness of R2.

Because R is reflexive, if vβ(A) = T for all β such
that αRβ, then vα(A) = T. Therefore, if vα(�A) = T,
then vα(A) = T. This shows the soundness of A1, and
the case of A2 may be proved similarly.

Suppose now that τ = b, so that R is symmetric, and
let vα(A) = T. Now if αRβ, then βRα, so there is a
possible world relative to β in which A is true (namely,
α). Therefore, vβ(♦A) = T. This proof is general in
β, so we have the result that for all β such that αRβ,
vβ(♦A) = T. So vα(�♦A) = T.

Finally, suppose that τ = 4, so that R is transitive,
and that vα(�A) = T. Then for all β possible relative
to α, vβ(A) = T. Suppose that β is possible relative to
α, and that γ is possible relative to β. Then αRγ also;
therefore, vγ(A) = T. This proof is general in γ, so if β is
possible relative to α, then vβ(�A) = T. And similarly
it follows then that vα(��A) = T.

The result for S5 and L5 follows from the preceding
considerations.
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Theorem. Every ultrafilter on Hτ converges.

Proof: Let F (τ) be the family of all ultrafilters on Hτ .
We define the relation R(τ) on F (τ) as follows:

if F , F ′ ∈ F (τ), then FR(τ)F ′ iff for all A ∈ W
such that Hτ (�A) ∈ F , Hτ (A) ∈ F .

Lemma 1. M(τ) = 〈F (τ), R(τ)〉 is a τ -ms.

Lemma 2. The mapping v of F (τ) × W into {T, F}
such that vF (A) = T iff Hτ (A) ∈ F , for all A ∈ W , for
all F in F (τ), is a valuation over M(τ).

It is clear that each ultrafilter F on Hτ converges to the
τ -valuation vF . Hence it remains only to prove the lem-
mas.

Proof of Lemma 1: In Lτ , �A 
 A; hence Hτ (�A) ⊆
Hτ (A); hence R(τ) is reflexive. In Lb, A 
 �♦A; let
FR(b)F ′ and Hb(�B) ∈ F ′. If Hb(B) /∈ F , then
Hb(¬B) ∈ F [because an ultrafilter on Hb contains ei-
ther Hb(B) or Hb − Hb(B)], so then F ′ would contain
Hb(♦¬B) = Hb(¬�B). But Hb(�B)∩Hb(¬�B) = Λ, so
this is impossible. Hence R(b) is also symmetric.

In L4, �A 
 ��A; hence H4(�A) ⊆ H4(��A).
Therefore, if FR(4)F ′, and H4(�A) ∈ F , then
H4(�A) ∈ F ′. Hence R(4) is also transitive. In L5 we
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prove similarly that R(5) is both symmetric and transi-
tive.

Proof of Lemma 2: Because an ultrafilter F must con-
tain either Hτ (B) or Hτ − Hτ (B) for any sentence B,
vF (¬B) = T iff vF (B) 6= T. Because an ultrafilter con-
tains Hτ (B & C) = Hτ (B) ∩ Hτ (C) iff it contains both
Hτ (B) and Hτ (C), vF (B&C) = T iff vF (B) = vF (C) =
T.

That vF (�B) = T iff vF ′(B) = T for all F ′ such
that FR(τ)F ′, we prove in two steps.

(a) If Hτ (�A) ∈ F , then Hτ (A) ∈ F ′ for all F ′ such
that FR(τ)F ′; this follows by the definition of
R(τ).

(b) IfHτ (�A) /∈ F , then F ∗ = {Hτ (¬A)} ∪ {Hτ (B) :
Hτ (�B) ∈ F} is a family of sets such that each
of its finite subfamilies has a nonempty intersec-
tion. For if it were not so, then there would be
sentences B1, . . . , Bn such that B1, . . . , Bn 
 A
holds in Lτ and Hτ (�B1), . . . , Hτ (�Bn) ∈ F . But
then �B1, . . . , �Bn 
 �A would hold in Lτ [let
vα(�A) = F and vα(�Bi) = T for i = 1, . . . , n;
then there is a β such that αRβ in the relevant
model structure and vβ(Bi) = T for i = 1, . . . , n,
but vβ(A) = F]; so then Hτ (�A) would be in F .
We conclude that F ∗ is a filter base on Hτ , in-
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cluded in an ultrafilter F ′. Clearly, FR(τ)F ′ and
Hτ (A) /∈ F ′.

Corollary. For each index τ , Lτ is compact and has fini-
tary semantic entailment.

Proof by the preceding theorem and the theorems in
Chapter 2.

This compactness proof can be extended to quantifi-
cational modal logic in the manner of Chapter 4, Section
5, and then yields also a Löwenheim–Skolem theorem.5

Since each model structure contains a number of
worlds, the question of cardinality may also be raised for
model structures. We can certainly find sets of sentences
which cannot be satisfied in finite model structures; for
example, the set with the members

♦p1,

♦(p1 & p2), ♦(p1 & ¬p2),
♦(p1 & p2 & p3), ♦(p1 & p2 & ¬p3),

♦(p1 & ¬p2 & p3), ♦(p1 & ¬p2 & ¬p3),
and so on. But the construction given in the preceding
theorem used a nondenumerable model structure. We
may reasonably expect a Skolem-like result for modal
logic: that each satisfiable set is satisfied in some at-
most-denumerable model structure. And this we shall
prove now.
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A set X is satisfiable iff {H(A) : A ∈ X} is a filter
base; let us call X a maximal satisfiable set if

X = {A : H(A) ∈ F}

for some ultrafilter F on the valuation space. Every
satisfiable set can therefore be extended into a maximal
satisfiable set; let us use the axiom of choice to intro-
duce a function that assigns each satisfiable set such an
extension:

The function δτ is defined for each satisfiable set of
sentences Lτ and if X is such a set, then δτ(X) is a
maximal satisfiable set of sentences of Lτ that contains
X.

Now, if X is a satisfiable set of sentences, we choose for
each of its members of form ♦A a world in which A is
true; since X is denumerable we need only choose denu-
merably many worlds to accomplish this. These worlds
will themselves have sentences of form ♦B true in them,
so the process must be repeated ad infinitum. But ℵ0
times ℵ0 still equals ℵ0, so this does not rule out that the
total number of worlds chosen can be denumerable. This
is the basis of the proof below.

Theorem. Every satisfiable set of sentences of Lτ is sat-
isfied by a valuation over a denumerable τ -ms.
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Proof: Let X be a satisfiable set of sentences of L. De-
fine the following sequence of sets

Γi = {δτ(X)},
Γ2i = {{A} ∪ {B : �B ∈ Y } : ♦A ∈ Y, Y ∈ Γ2i−1},

Γ2i+1 = {δτ(Y ) : Y ∈ Γ2i}

for i = 1, 2, 3, . . . . Now we define a large family

Γ =
∞⋃
i=0

Γ2i+1

the union of all the odd-numbered sets constructed above.
Γ1 has only one member and Γ2 is at most denumerable.
In going from Γ2i to Γ2i+1 we replace each member by an-
other set using the function δτ , so the cardinality of Γ2i+1

equals that of Γ2i. The only place a problem might be
expected is in going from Γ2i−1 to Γ2i. There we choose
for each set Y in Γ2i−1 a denumerable family of new sets
to put in Γ2i. If Γ2i−1 is itself denumerable, the cardi-
nality of Γ2i is therefore (ℵ0 times ℵ0 =) ℵ0. So each
Γj is denumerable, and Γ is again of cardinality ℵ0 times
ℵ0 = ℵ0.

If we now define YRZ iff {B : �B ∈ Y } ⊆ Z for all
Y and Z in Γ, then M = 〈Γ, R〉 is a denumerable τ -ms.
The proof of this is as for Lemma 1. Second, the mapping
v of Γ×W into {T, F} such that vY (A) = T iff A ∈ Y for
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all Y ∈ Γ, A ∈ W , is a valuation over M . This is proved
as for Lemma 2. And so X is satisfied by the τ -valuation
vY such that Y = δτ(X), which is a valuation over the
denumerable τ -ms M .

The similarity of this proof to that of the preced-
ing theorem suggests certain modifications in the latter
proof. That is, using the operation δτ , or an analogous
operation on filter bases, we could have shown that ev-
ery ultrafilter converges to a valuation over a denumer-
able model structure, and the present theorem would also
have been a corollary. But clarity suggested otherwise.

5.2.2 Transformation Semantics for
Modal Logics

Which sentences (in a given language) we consider true is
to some extent, perhaps even mainly, determined by lin-
guistic commitments that we might consider changing.
For example, as Poincaré argued, whether or not space
is Euclidean depends on what conventions we adopt con-
cerning spatial congruence. And we may distinguish such
conventions from some much better entrenched linguistic
commitments (say concerning the meaning of “congru-
ence”) so that we can freely admit arbitrary choices in
regions of our conceptual scheme without lapsing imme-
diately into trivial linguistic conventionalism. But with-
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out entering into difficult philosophical questions here, we
may note that “necessary” may be taken to mean “true
and such that its truth value is invariant under all admis-
sible changes in (transformations of) point of view, frame
of reference, linguistic conventions, . . . .” This interpre-
tation of necessity is the one that leads to the semantics
for modal logic developed in this section.6

We shall say that L = 〈Synt, Val, T, V 〉 is a trans-
formational modal language iff Val is a set of bivalent
valuations of Synt, T a set of transformations on Val,
and V (the set of admissible valuations) is a subset of
Val defined by

A member v of Val is in V if and only if, for all A, B ∈
W ,
(a) v(¬A) = T iff v(A) = F;
(b) v(A&B) = T iff v(A) = v(B) = T;
(c) v(�A = T iff t(v)(A) = T for all t ∈ T .

We shall henceforth write tv for t(v). It is to be noted
that the regular capital letter T is still being used to
stand for “True,” while the italic capital letter T is used
to denote a set of transformations. We use the lowercase
Greek letter τ again as an index, ranging over {m, b, 4,
5}, and define the following classes of transformational
languages:

L = 〈Synt, Val, T, V 〉 belongs to C(τ) iff the set τ of
conditions is fulfilled:
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m. (i) For all t in T and v in Val, if v ∈ V , then
tv ∈ V .
(ii) For each v in V , T contains an element t such
that tv = v.

b. (i), (ii), and
(iii) For each v in V , each t in T , T contains an
element t∗ such that t∗(tv) = v.

4. (i), (ii), and
(iv) For each v in V , and each t, t′ in T , T con-
tains an element t′′ such that t(t′v) = t′′v.

5. (i), (ii), (iii), and (iv).

We note that (ii) is satisfied if T has an identity element
(element i such that iv = v for all v ∈ Val), that (iii) is
satisfied if T has for every member t an inverse (element
t∗ such that t∗t = i), and that (iv) is satisfied if T is closed
under composition (tt′ is a member of T if t and t′ are).
The question whether these stronger conditions would
alter the set of valid arguments we leave as exercise.

Now it is easily proved that system τ is sound for any
language in C(τ). In addition, we argue that if X ` A
does not hold in system τ , then there is some language
L in C(τ) such that X 
 A does not hold in L. This
we prove with reference to the preceding subsection, by
showing that if v is a τ -valuation, then it is also an ad-
missible valuation for some language L in C(τ).
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Let M = 〈K, R〉 be a τ -ms and v a valuation over
M . We define

Val = {vα : α ∈ K},

and for each α in K we define a transformation tα on Val:

tαvβ =

{
vα if βRα,

vβ otherwise,

and T = {tα : α ∈ K}.
We claim now that L = 〈Synt, Val, T, V 〉 as defined

is a member of C(τ) and that V = Val, so that every
τ -valuation vα over M is an admissible valuation for L.
We establish this claim in four steps.

(1) V = Val. To show this, note that every mem-
ber of Val satisfies the conditions (a)–(c) on V .
Concerning (c) we have to note specifically that
{vβ : αRβ} = {tβvα : β ∈ K}, because αRβ iff
tβvα = vβ; in all other cases tβvα = vα, and αRα.

(2) Because V = Val, condition (i) on T is fulfilled;
to show that condition (ii) is fulfilled, note that
tβvβ = vβ for all β ∈ K.

(3) If R is symmetric, then if αRβ, tαtβvα = tαvβ = vα;
if not αRβ, then tβtβvα = tβvα = vα—therefore
condition (iii) is met.
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(4) If R is transitive, then condition (iv) is met. For if
αRβ and βRγ, then tγtβvα = vγ, but then αRγ, so
tγvα = vγ; and this is the only case for which the
condition could fail.

As an example we shall discuss briefly the case of τ = b.
Suppose M = 〈K, R〉 is a b-ms and α a member of

K; let {β : αRβ} have the structure

β

α
V = Val = {vα, vβ, vγ}
T = {tα, tβ, tγ}.

γ

R

R

Then tαvγ = vα but tγvα = vγ; thus the effect of tα on
vγ can be reversed, and similarly for the effect of other
transformations on other valuations. But condition (iv)
is not met, for T tβtαvγ = tβvα = vβ, but there is no
t in T such that tvγ = vβ (for tαvγ = vα; tβvγ = vγ;
tγvγ = vγ).

We have now shown that the set of arguments vali-
dated by system τ is exactly the set of arguments valid
in all languages in the class C(τ), for each index τ .
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5.3 Logic of Presuppositions

The term “presupposition” is sometimes used in the sense
of “assumption,” sometimes in the sense of “conse-
quence.” But there is also a more significant sense, aptly
characterized by P. F. Strawson, a sense corresponding to
a notion of presupposition that has played an important
role in many philosophical discussions. Strawson wrote:

“Does he care about it?” “He neither cares nor doesn’t
care; he’s dead.” The answer shows that the question
is inappropriate to the circumstances. . . It does not
show that the statement that he cared and the state-
ment that he did not care would both be false; it shows
rather that the question of which is true does not arise,
because the conditions of its arising are not fulfilled.7

Strawson then arrived at the following precise formula-
tion:

It is self-contradictory to conjoin S with the denial of
S ′ if S ′ is a necessary condition of the truth, simply, of
S. It is a different kind of logical absurdity to conjoin
S with the denial of S ′ if S ′ is a necessary condition
of the truth or falsity of S. The relation between S
and S ′ in the first case is that S entails S ′. We need a
different name for the second case; let us say, as above,
that S presupposes S ′.8
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There has been much discussion of the relation of presup-
position introduced by Strawson, and much confusion in
this discussion. The two major causes of the confusion
appear to have been the under-developed state of the
study of nonbivalent languages, and the fact that natu-
ral language provides for more than one kind of negation,
at the least exclusion negation and also what we shall call
“choice negation” below. (The reader may note that in
the second sentence in quotation marks in our first quota-
tion from Strawson, the negations expressed by “neither
. . . nor” and “doesn’t” cannot both be exclusion nega-
tion, if that sentence is to be satisfiable.) We shall now
study formal languages that admit of significant cases of
Strawsonian presuppositions.9

5.3.1 Presupposition and Semantic
Entailment

The semantic relation of presupposition may be defined
in our terms by

Definition. If A and B are sentences of L, then A pre-
supposes B in L iff, for every admissible valuation v of
L, if v(A) = T, then v(B) = T and if v(A) = F, then
v(B) = T.

This may be generalized to sets of sentences, of course, in
several ways. The relation of presupposition is most eas-
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ily studied if L has choice negation, that is, if L has for
every sentence A some sentence ∼A such that v(A) = T
(respectively, F) iff v(∼A) = F (respectively, T), for ev-
ery admissible valuation v of L. In that case, A presup-
poses B iff A 
 B and ∼A 
 B. Hence, in that case, the
study of presupposition forms a proper part of the study
of the relation of semantic entailment.

It is clear from the above definition that presupposi-
tion is a trivial relation if the language is bivalent; for
then A presupposes B if and only if B is valid. To make
the same point in a different way: If A has a presuppo-
sition that fails to be true, then A is neither true nor
false. So to have a nontrivial presupposition relation,
a language must not be bivalent. But Strawson argued
furthermore that, at the same time, natural language has
nontrivial presuppositions and that arguments in natural
language may be appraised by classical logic. So we shall
here study how logic is affected when presuppositions are
admitted, and accept as a criterion that presuppositions
are to be introduced in such a way that any logic that
was sound before their introduction remains sound after-
ward. We shall call the admissible valuations of the old
language the classical valuations. Then we add a new
relation N of sets of sentences to sentences; we call this
nonclassical necessitation. And then we define the ad-
missible valuations of the new language in such a way
that valid arguments in the old language are valid in the
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new, and if XNA, then the argument from X to A is also
valid in the new language.

The definition of presuppositional language that we
shall give will be rather broad, in that we shall omit
the requirement of choice negation, which would not play
any role in our theorems. We need some preliminary
definitions. First, let Syn be a syntactic system, V a set
of valuations of Syn, N a relation of sets of sentences of
Syn to sentences of Syn. Then X is a (V, N)-saturated
set of sentences of Syn iff X is a set of sentences of Syn;
some member of V satisfies X; if all members of V that
satisfy X also satisfy A, then A ∈ X; and if YNA for
some subset Y of X, then A ∈ X.

In the last section of Chapter 3 we introduced the
notion of a supervaluation and showed how to construct
from a given language L a new language L∗ with the same
semantic entailment relation. We shall now generalize
this construction to suit our present purposes.

Let us start out with a language L = 〈Syn, V 〉 and a
relation N as above. If X is any set of sentences of Syn,
a V -supervaluation of Syn induced by X is a valuation s
of Syn such that:

(a) s(A) = T iff v(A) = T for all v ∈ V that satisfy X;

(b) s(A) = F iff v(A) = F for all v ∈ V that satisfy X;

(c) s(A) is undefined otherwise.
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Now we will use the notions of (V, N)-saturation and V -
supervaluation to define a new language L∗ = 〈Syn, V, N,
C, V ∗〉 which is the result of admitting as valid arguments
all members of N into the old language L.

Definition. A presuppositional language L is a quintuple
〈Syn, V, N, C, V ∗〉 such that

(a) Syn is a syntactic system (the syntax of L);

(b) V is a set of valuations on Syn (the classical valu-
ations of L);

(c) N is a relation of sets of sentences of Syn to sen-
tences of Syn (nonclassical necessitation);

(d) C is the relation of sets of sentences of Syn to sen-
tences of Syn such that XCA iff all members of V
that satisfy X also satisfy A (classical necessita-
tion);

(e) V ∗ is a set of V -supervaluations of Syn induced
by (V, N)-saturated sets of sentences of Syn (the
admissible valuations of L).

From now on we shall simply say “supervaluation” and
“saturated” when the context specifies Syn, V , and N.
We also say “XNA in L” and “XCA in L” when L is a
presuppositional language 〈Syn, V, N, C, V ∗〉.

Theorem. If L is a presuppositional language, and X
classically or nonclassically necessitates A in L, then X 

A in L.

241



Proof obvious. We cannot immediately inquire into the
converse, because the set V ∗ is not defined, but only re-
stricted, in terms of V and N.

5.3.2 Policies on Presupposition

There are, of course, many possible ways to complete the
definition of the set of admissible valuations for a presup-
positional language. Each such completion—or policy—
defines a species of presuppositional languages. We shall
here address ourselves to two extreme policies, the radical
and the conservative. The former admits as many super-
valuations as our restrictions will allow, and the latter
very few. More specifically, the radical policy is to allow
that a sentence may be neither true nor false for reasons
not reflected in V or N, while the conservative policy is
to insist that all reasons for truth-value gaps be reflected
in V or N.

To be precise, a presuppositional language L = 〈Syn,
V, N, C, V ∗〉 is radical iff V ∗ is the set of all V -supervalu-
ations induced by (V, N)-saturated sets of sentences of
Syn.

Definition. If L is a presuppositional language and X a
set of sentences of L, then CNL(X) is the smallest set
of sentences Y such that Y contains X, and is closed
under C and N (that is, if a subset of Y classically or
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nonclassically necessitates A, then A ∈ Y ).

Theorem. If L is a radical presuppositional language,
then X 
 A in L iff A ∈ CNL(X).

Proof: The “if” part follows from the preceding theo-
rem. Second, note that either CNL(X) is a saturated
set, or CNL(X) is not satisfiable by a classical valuation.
In the first case, CNL(X) induces a supervaluation s such
that if A /∈ CNL(X), then s satisfies X but not A; hence
X 
 A does not hold in this case unless A ∈ CNL(X). In
the second case, XCA for every sentence A in L; hence
X 
 A and A ∈ CNL(X) for every sentence A in L.

Turning now to the conservative policy, we must first
provide it with a precise definition. The policy has at
least the assumptions that all presuppositions of a given
sentence are reflected in N, and if all these presupposi-
tions are satisfied, the sentence is either true or false. It
would seem reasonable therefore to stipulate that a sat-
urated set X induces an admissible supervaluation only
if it satisfies the condition

if all the presuppositions of A in L belong to X, so
does either A or ∼A.

This supposes that the language L contains choice nega-
tion. That supposition concerns specifically the syntax
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and classical valuations of L, and we prefer here to be
neutral on those features as far as possible.

There is, however, a more serious objection to the
course of taking the above condition as defining the con-
servative policy. When we first introduced this policy,
we said that it assumed also that the reasons for which
a sentence can lack a truth value are all reflected in N
and V . That the proposed explication does not fulfill
this assumption is seen when we ask the question: If a
set satisfies the above conditions, how could it fail to be
maximal among the saturated sets satisfied by a given
valuation v?

Suppose that X satisfies the condition but is not max-
imal in this sense; that is, suppose that v satisfies a
saturated set X ′ of which X is a proper subset. Let
A1 belong to X ′ but not to X. Then neither A1 nor
∼A1 belongs to X. So A1 must have a presupposition
A2 that does not belong to X. It belongs to X ′, how-
ever, because A1 does. Now A2 belongs to X ′ but not
to X; hence A2 has a presupposition A3 that does not
belong to X. But A3 belongs to X ′, because A2 does . . . ;
and so on, and so forth. Thus we obtain an infinite
chain A1, A2, . . . , Ak, . . . such that for each i, Ai is nei-
ther true nor false. Could this be because the whole set
(A1, . . . , Ak, . . . ) has an untrue presupposition B? Cer-
tainly not, for then B belongs to X ′, hence its negation
does not belong to X (and so on). The fact that a truth-
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value gap occurs is never explained in terms of N, but
always in terms of N and an additional truth-value gap.
If we deny this possibility, we arrive at the conclusion
that X must be maximal after all. This gives us the
correct definition of the conservative policy.

Definition. A presuppositional language L = 〈Syn, V, N,
C, V ∗〉 is conservative iff: s ∈ V ∗ iff s is a V -supervalu-
ation induced by some (V, N)-saturated set that is maxi-
mal among the (V, N)-saturated sets satisfied by a certain
v ∈ V .

When we are concerned with maximal elements, the obvi-
ous tool to use is Zorn’s lemma. But it is hard to see how
this could be used unless C and N are finitary relations,
that is, unless

XCA iff Y CA for some finite subset Y of X,
XNA iff YNA for some finite subset Y of X.

Theorem. If L = 〈Syn, V, N, C, V ∗〉 is a conservative
presuppositional language, and C and N are finitary, then
X 
 A in L iff A ∈ CNL(X).

Proof: Again the “if” part follows from a preceding the-
orem. To prove the “only if” part is somewhat more
complicated.

Let us suppose that A does not belong to CNL(X).
Since CNL(X) is closed under C, it follows that A is not
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a classical consequence of CNL(X). Hence there must be
a classical valuation v that assigns T to every member of
CNL(X), but not to A. We must now show that from
this it follows that there is an admissible supervaluation
that satisfies CNL(X) but not A.

Well, CNL(X) is a saturated set satisfied by v. Let F
be the family of all saturated sets that contain CNL(X)
and are satisfied by v. This family is partially ordered
by set inclusion. Consider the chain

· · · ⊆ Ci ⊆ Ci+1 ⊆ · · ·

of elements of F . The union of all the sets Ci is again sat-
isfied by v. This union is closed under C and N because
each of the sets Ci is and these are finitary relations. So
this union also belongs to the family F : It is an upper
bound of that chain in F . The argument being general,
we conclude that each chain in F has an upper bound
in F . Therefore, by Zorn’s lemma, F has a maximal
element M . This set M must also be maximal among
the saturated sets satisfied by v, for any larger such set
would contain M , and hence CNL(X), and hence belong
again to F . So M induces an admissible supervaluation.
This supervaluation satisfies M , and hence CNL(X), but
cannot assign T to A: for v does not assign T to A, so A
cannot belong to M . Hence if A /∈ CNL(X), then X 
 A
does not hold in L.
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5.3.3 Epitheoretic Arguments∗

As we noted in the first section of Chapter 3, Gentzen
introduced rules of the form

X1 ` A1, X2 ` A2, . . .

X ` A
to help catalogue the deductive consequences in a logical
system. While the usual rules of deduction, that is, rules
of the form “ X, hence A,” remain sound even after we
begin to countenance presuppositions, Gentzen rules may
not. For example, the Gentzen or natural deduction rule

(N)
A ` B ¬A ` B

`B
is sound in propositional logic. But if we extend this logic
by adding

A ` B
¬A ` B

for those cases in which A presupposes B, rule (N) would
allow us to deduce `B: All presuppositions would have
to be valid. Similarly the rule

(I)
A ` B
`A ⊃ B

∗Some of the following originally appeared in my article in K.
Lambert (ed.), The Logical Way of Doing Things (New Haven:
Yale University Press, 1969).
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would yield that if A presupposes B, A ⊃ B and ¬A ⊃ B
are valid. But together with the classically valid state-
ment (A ⊃ B) & (¬A ⊃ B) ··· ⊃ B and modus ponens,
this would mean again that B is valid. So some of the
Gentzen rules for classical propositional logic cease to
apply when nontrivial presuppositions exist.

Because ordinary arguments remain sound here, and
the arguments justified by the Gentzen rules do not,
Gentzen rules are essentially stronger than ordinary rules.
A Gentzen formulation of logic is essentially richer than
an axiomatic formulation.10 And this is not at all surpris-
ing, since Gentzen rules license arguments about ordinary
arguments.11

It is an interesting question just to what extent the
valid arguments about arguments in a language may be
destroyed by the countenancing of presuppositions. To
answer this question we must first make it precise.

Adapting some terminology introduced by Curry, we
call

X 
 A

an epistatement with antecedent X and consequent A.
This epistatement is true in L if and only if the argument
from X to A is valid in L. We use E, with or without
subscripts, to range over epistatements.

An epitheoretic argument is an argument whose prem-
ises and conclusion are epistatements. A minimal sense
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of validity for such an argument in a language L would
be: Either not all its premises are true in L or its con-
clusion is true in L. However, the notion of validity is
not interesting when we are considering only one inter-
pretation of the premises and conclusion, validity is an
interesting notion only in the presence of a certain degree
of abstraction. In the present context, it is more relevant
to abstract from the content of N. If L and L′ are both
radical or both conservative languages, we shall call L′ a
necessitation extension of L if and only if L′ and L have
the same syntax and class of classical valuations, but the
relation N′ of nonclassical necessitation of L′ contains the
corresponding N of L.

Definition. The epitheoretic argument

E1; . . . ;Ek; . . .

E

is valid in a radical or conservative presuppositional lan-
guage L if and only if for every necessitation extension L′

of L either E is true in L′ or not all of E1; . . . ; Ek; . . .
are true in L′.

We wish now to characterize the set of epistatements
X 
 A which can be deduced from a set K of epistate-
ments by means of the transitivity of 
. It is necessary to
take into account the infinitary case; A 
 (x)Fx should
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be considered a consequence of

A 
 Fx1; . . . ; A 
 Fxk; . . .

(where x1, . . . , xk, . . . are all the substituents for x) un-
der the substitution interpretation of the quantifier. (We
do limit ourselves to at most countable sets of epistate-
ments, although this makes little difference to our argu-
ment.) Hence we define:

Definition. CONL(X, K) is the smallest set Y satisfying

(a) X is contained in Y ;

(b) if for every member A of Xi, Y 
 A is true in L
and Xi 
 B is either true in L or a member of K,
then B is in Y .

Note that Y is closed under 
, and hence under C and
N.

Theorem. If L is a radical or conservative presupposi-
tional language, and A does not belong to CONL(X, K),
then the epitheoretic argument from K to X 
 A is not
valid in L.

Proof: To show that “K, hence X 
 A” is not valid
in L we must find a necessitation extension L′ of L in
which every member of K, but not X 
 A, is true.
We construct L′ by setting YN′B if YNB, and also if
Y 
 B is a member of K. Note that CONL′(X, K) =
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CONL(X, K); the extension of N to N′ is chosen so as
not to increase the set of sentences semantically entailed
by CONL(X, K). So CONL′(X, K) is a saturated set of
L′ not containing A. Thus X 
 A is not true in L′; but,
clearly, each member of K is true in L′.

Theorem. If L is a conservative presuppositional lan-
guage with C and N finitary, and A does not belong to
CONL(X, K), then the epitheoretic argument from K to
X 
 A is not valid in L.

Proof: In this case we must take care, in our construc-
tion of L′, to keep N′ finitary. We begin with the stipula-
tion that YN′B if YNB, and also if Y is finite and Y 
 B
belongs to K. If Y 
 B belongs to K and Y is not finite,
there are two cases to be considered. If Y is included in
CONL(X, K) we choose alphabetically the first sentence
in Y , say D, and set {D}N′B (if Y is empty let D be
alphabetically the first valid sentence of L). If Y is not
included in CONL(X, K) we choose alphabetically the
first sentence of Y that does not belong to CONL(X, K),
say D, and set {D}N′B. Now each member of K is
true in L′; yet CONL′(X, K) = CONL(X, K). So now
CONL(X, K) is a saturated set of L′ not containing A.
As in the preceding subsection, it can be extended into a
maximal saturated set not containing A. Thus X 
 A is
not true in L′.
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5.4 Concept of Truth

The notion of truth has been discussed by philosophers
throughout the Western tradition; indeed, Aristotle’s dis-
cussion of the subject is still one of the most important.12

In the present century, the most widely discussed theory
of truth is certainly Tarski’s, a theory that led to impor-
tant results concerning limitations upon expressibility in
language.13 But much of the discussion of truth in this
century, including Tarski’s, has implicitly or explicitly re-
stricted itself to bivalent languages, and this makes the
discussion rather limited in some respects.14 The purpose
of this section is to discuss the notion of truth in any lan-
guage, bivalent or nonbivalent.

5.4.1 Truth and Bivalence

Through the writings of Tarski, and others, the following
principle has widely been accepted as correct:

1. [A] is true if and only if A,

where A is any sentence and [A] a name of that sentence.
This principle has such seemingly innocuous instances as

1′. “Snow is white” is true if and only if snow is white,

and it has widely been accepted that any adequate the-
ory of truth must have all these instances [the range of A
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restricted to the object language(s) that the theory con-
cerns] as consequences. This has furthermore in philo-
sophical circles led to the “redundancy theory of truth”
according to which “[A] is true” is but a redundant way
of rendering the informative content of A.

Now this leads to certain difficulties when we consider
nonbivalent languages. Let us symbolize “[A] is true” as
T(A). Then the problem is this: Clearly T(A) is true
if and only if A is true. But what is the truth value
of T(A) if A is not true? If one answers “false,” then
T(A) is no longer semantically on par with A in all cases,
sine A may now be neither true nor false, while T(A)
is false. If one answers “the same truth value as A,”
then T(A) and A remain semantically on a par, but then
one’s metalanguage is not bivalent either. And we are
so used to discussing the structure of languages ourselves
in the usual language of ordinary (that is, classical) logic
that this may appear to be a drawback. That is, if the
metalanguage is not bivalent, then it does not seem to
be a correct model of the part of natural language that
we actually use to discuss the object language.

Here it may be countered that it may just not be
possible to remain in the secure enclave of the language
of ordinary logic. The semantic paradoxes (such as Epi-
menides’s liar paradox) tend to show this. But even if
that is correct, we can maintain that we can use that
simple language to discuss simple objects, such as the
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nonbivalent languages studied in this book, and wish to
take advantage of this possibility.15 A second point is that
even if we find it necessary to go to a nonbivalent meta-
language, we can at least try to preserve the soundness
of ordinary logic, so that our uncritical reasoning will be
valid insofar as that is possible.

The whole discussion so far has been rather abstract,
so let us see specifically what happens when principle 1
is applied in a nonclassical context. In Chapter 9 of De
Interpretatione Aristotle apparently found it necessary
to give up bivalence; but he wished to retain excluded
middle, that is, the principle that any sentence of form
(A or not A) is valid.16 The Kneales have questioned his

consistency at this point17 by roughly the following ar-
gument:

2. (a) P or (not P ) premise

(b) P if and only if T(P ) from 1

(c) T(P ) or (not P ) (a), (b) sub. equiv.

(d) (not P ) if and only if
T(not P ) from 1

(e) T(P ) or T(not P ) (c), (d) sub. equiv.

(f) False(P ) iff T(not P ) definition

(g) T(P ) or False(P ) (e), (f) sub. equiv.

By “sub. equiv.” we mean the operation of substitution
of equivalent sentences for equivalent sentences. In the
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last step this is justified by the equivalence of “It is false
that P” as “It is true that (not P ).” While this equiva-
lence might or might not always be acceptable, we shall
not quibble with it here; certainly Aristotle seemed to
accept it in this context.

What conclusion can we draw from this? It is not pos-
sible to agree that Aristotle is inconsistent here, since we
have studied languages in which excluded middle holds
although bivalence fails. So we must conclude that either
1 must be given up, or the meaning of “if and only if”
in 1 is not such as to license the substitution of the left-
hand side for the right-hand side everywhere. Either way
the redundancy theory of truth seems to be in trouble:
If T(A) and A are redundantly equivalent, it is hard to
see how either 1 or the substitution of T(A) for A could
possibly be wrong.

Of course, the rule of sub. equiv. is a rather pow-
erful one, usually proved as a metatheorem rather than
assumed. (And it is known that it fails, in its most famil-
iar form, in modal contexts.) But the argument is easily
pared down to a much more manageable form:

3. (a) If P , then T(P ) from 1

(b) If not T(P ), then not P (a), contrapos.

(c) If not P , then T(not P ) from 1

(d) If not T(P ), then T(not P ) (b), (c) transit.
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The conclusion (d) seems to amount to bivalence, be-
cause a sentence P such that neither T(P ) nor T(not P )
is true would seem to be a counterexample to this impli-
cation. The choice seems now to be between giving up 1,
or saying that the meaning of “if” in 1 is such that even
the most familiar reasoning involving implications is not
sound.

We propose that the trouble lies in the move from (a)
to (b) in 3. For suppose the antecedent is true: P is not
true. Then P is either false or neither true nor false. But
only if P is false will the consequent, (not P ), be true.
But in that case 3(a) cannot be true unless it does not
express or entail the material conditional that it seems
to express or entail.

This analysis supposes that we have accepted the def-
initional equivalence of

[P ] is false

and
[not P ] is true,

which seems innocuous enough. But, of course, other
approaches are possible.

What can we save from the long-cherished principle
1? Near the beginning of this discussion we said that
the important question determining our alternatives was:
What truth value will T(A) have if A is not true? We
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can leave this question entirely open, and still accept that
the following holds in any adequate theory of truth:

4. A 
 T(A) and T(A) 
 A

[for any sentence A, in a language in which A as well
as T(A) appears]. For 4 says only that T(A) is true if
and only if A is true. This principle must form the core
of a theory of truth with application to nonclassical as
well as classical logics.

5.4.2 Designation of True Sentences

With only principle 4 of the preceding section as an abso-
lute requirement, there are of course many different ways
of constructing languages in which truth may be asserted.
In this section we shall consider one kind of construction,
which begins with a referential quantifier language,18 and
in the next section we shall consider another kind of con-
struction, which begins with an arbitrary language. In
both cases the construction is such that classical logic is
sound in the new language; this is achieved through the
use of supervaluations.

Let L be a language that has a QCS as syntax. We
adopt the following terminology.

Definition. In L, monadic predicate P (semantically)
represents truth with respect to the mapping g of sen-
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tences into variables for valuation v iff for any sentence
A, v(A) = T iff v(Pg(A)) = T, and strongly represents
truth with respect to g iff it represents truth with respect
to g for all admissible valuations of L.

Now, when g(¬Px) = x, then we cannot have P repre-
senting truth with respect to g and any bivalent valuation
v. The simple restriction that g(A) should not occur in
A does not remove the difficulty entirely, since we might
still have v(x = y) = T and g(¬Px) = y. However, we
might then hope that, identities aside, we could satisfy
whatever set of sentences we wished to satisfy. [That is,
we would then hope to prove, for example, that if L is
a referential quantifier language, and X a satisfiable set
of sentences in which P does not occur, nor any iden-
tity statements in which variables g(A) occur, then X is
satisfiable by a valuation for which P represents truth
with respect to g.] But this is not very general, nor very
interesting.

We shall here consider the problem of constructing
a language in which truth is strongly represented in the
above sense, and in which the satisfiability of sets of sen-
tences in which the predicate P and the variables in the
range of g do not occur is not affected. Because of the
paradoxical cases discussed above, such a language can-
not be bivalent.

Let L0 be a referential quantifier language, P a mon-
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adic predicate of L0, and g a mapping of the sentences
of L0 into the variables of L0. We shall henceforth write
Pg(A) as T(A). Let N0 be the smallest relation such that

{A}N0T(A)

{T(A)}N0A

(this will be the relation of nonclassical necessitation; see
the section on the logic of presuppositions above). We
define the language L to be the presuppositional language

L = 〈Syn, V, N0, C, V ∗〉

where Syn is the syntax of L0, V the set of admissible val-
uations of L0, C the relation of semantic entailment of L0,
and V ∗ the set of all V -supervaluations of Syn induced
by (V, N0)-saturated sets of sentences of Syn (the radical
policy; it is easy to see that the conservative policy would
lead to the same results here, since N0 is finitary).

From our results in Section 3 we know that semantic
entailment in L can be characterized exactly in terms of
C and N0. In addition, it is immediate that P strongly
represents truth with respect to g in L. Because of the
paradoxical cases that may occur due to the nature of g,
however, one might still doubt the usefulness of L for any
purpose but that for which we explicitly designed it. It
is hoped that the adequacy proof in Appendix C will lay
these doubts to rest.
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5.4.3 Truth Assertions in General

When discussing the structure of a given language L we
normally do not assume that L is bivalent, nor that L has
the familiar structure that L0 was assumed to have in the
preceding section. We do tend to assume, on the other
hand, that our own assertions of truth in L are bivalent,
and combined into complex assertions in the familiar way
studied in classical logic. We shall now construct a lan-
guage L∗ that plays a role vis-á-vis L that satisfies these
assumptions.19 The atomic sentences of L∗ will be exactly
the sentences of L. We introduce the unary connectors
T and ∼, and the binary connector & (not expressions of
L): T(A) is to mean that A is true, ∼A that A is false,
A & B that A is true and B is true. There is no doubt
again more than one way to implement these stipulations,
but the way we choose has some interesting connections
with modal logic.

The syntax of L∗ is the triple 〈A , S, W 〉, where A
is the set of sentences of L, S the set {T, ¬, &}, and
W the least set containing A such that if A and B are
in W , so are T(A), ∼(A), (A & B). A model for L∗ is
any admissible valuation for L. An assignment d over a
model M is a bivalent valuation of A such that

d(A) = T if M(A) = T,

d(A) = F if M(A) = F, for all A ∈ A .
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We define the truth value of a sentence A in a model M
relative to an assignment d over M , |A[d]|M , as follows
(suppressing the superscript M when only one model is
referred to in the context):

(a) |A[d]| ∈ {T, F} for all A in W .

(b) |A[d]| = d(A) if d(A) is defined.

(c) |∼A[d]| = T iff |A[d]| = F.

(d) |(A&B)[d]| = T iff |A[d]| = |B[d]| = T.

(e) |T(A)[d]|M = T iff |A[d′]|M = T for every assign-
ment d′ over M .

The value of a sentence A in M , |A|M , is defined to be
T(F) if |A[d]|M = T(F) for all assignments d over M , and
is undefined otherwise. An admissible valuation for L∗ is
any function v defined only on sentences of L∗ for which
there is a model M for L∗ such that

v(A) = |A|M for all A in W

(where we momentarily regard t = t′ as true when neither
exists).

We note that |T(A)|M = T iff |A|M = T for any
sentence A. Therefore, if we define

T(X) = {T(A) : A ∈ X},

we deduce immediately that T(X) is satisfiable iff X is
satisfiable, and X 
 A iff T(X) 
 T(A), in L∗. It is
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now easy to show that the following logical system LT
pertaining to the syntax of L∗ is sound for L∗.

LT : X ` A in LT iff T(X) ` T(A) in S5

with T as necessity symbol

(we mean simply that in S5 in the usual formulation the
necessity sign is the box �, and we wish to consider it
formulated with T instead of � as necessity sign).

What is LT like? Well, in S5 we have `�(�A ⊃ A),
so in LT we have

1. `T(A) ⊃ A.

However, �(A ⊃ �A) is not a theorem of S5, so that
A ⊃ T(A) is not a theorem of LT . However, �A ` ��A
in S5, so we have in LT

2. A ` T(A)

and, of course,

3. `T(A) ⊃ TT(A).

Also, `�(∼�A ⊃ �(∼�A)) in S5, so in LT

4. `∼T(A) ⊃ T(∼T(A)).

Finally, we have

5. `T(A ⊃ B) ⊃ ··· T(A) ⊃ T(B),
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6. If `A, then `T(A),

as well as ordinary propositional logic and modus ponens.
We do not have that if A ` B, then `A ⊃ B, but only if
A ` B, then `T(A) ⊃ T(B), and if T(A) ` T(B), then
`T(A) ⊃ T(B).

We now want to prove a kind of completeness theo-
rem: We want to show that if A cannot be deduced from
X in LT , then there is a language L (whose sentences
form the set A ) such that X 
 A does not hold in L∗.
First a definition and a lemma.

Definition. X `1 A iff X ` A in S5 with T as necessity
sign.

Lemma 1. If X `1 A, then X ` A in LT .

This has as corollary that `1A iff `A in LT , but this will
already have been clear from 1 and 6 above. We shan’t
prove the lemma, which is quite straightforward.

Keeping in mind that we wish to show completeness
for the case of L arbitrary, we shall call M a general
model of L∗ if M is any mapping of a subset of A into
{T, F}. We shall call a set X consistent iff not X ` A for
some sentence A (for example, B&∼B), and say that X
is 1-consistent iff not X `1 A for some sentence A. Now
we have X 
 A in L∗ iff X∪{∼T(A)} is not satisfiable in
L∗, so the following theorem suffices to show soundness
and strong completeness.
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Theorem. A set of sentences X is satisfiable by a gen-
eral model of L∗ iff X is consistent in LT .

Proof: We have already commented on the soundness
(“only if” part) of this theorem. Now suppose that X
is consistent in LT . Then by the definition of ` in LT ,
T(X) is 1-consistent. So T(X) can be extended into a
maximal 1-consistent set Y , by Zorn’s lemma and the fact
that deducibility is a finitary relation in S5. But then Y
is satisfiable by a valuation v over a general model M of
L∗ (Lemma 2). So M satisfies the sentences in Y that
have the form T(A); and this includes T(X). But then
M satisfies X.

Lemma 2. If Y is a maximal 1-consistent set of sen-
tences of L∗, then Y is satisfied by a valuation v over a
general model M of L∗.

Proof: Define M to be the mapping M(A) = T (re-
spectively, F) iff A ∈ A and T(A) ∈ Y (respectively,
T(∼A) ∈ Y ). Define a relation R among the maximal
1-consistent sets Z of sentences of L∗ by

ZRZ ′ iff {B : T(B) ∈ Z} ⊆ Z ′

and define vZ to be the bivalent valuation on W mapping
exactly the members of Z into T. Then it is easily proved
(by strong induction; see similar proofs in Section 2.1)
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that v is a valuation over M iff v = vZ for some Z such
that Y RZ. Thus vY is the valuation over M that we were
looking for.

In conclusion I wish to point out that we can define
connectives in L∗ that correspond to familiar matrix op-
erations. This is due to the bivalence of truth assertions
in L∗. Thus if we write −A for ∼T(A), we find that
we have exclusion negation: −A is false when A is true,
and true otherwise. Similarly, if “(A ··· B)” is short for
(T(A) & T(B)), then A ··· B is true exactly when A and
B are both true, and false otherwise. These connectives
correspond to the operations of the matrix M∗∗

3 studied
in Section 5 of Chapter 3. The operations of the matrix
M3 studied there may be similarly represented.
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par une méthode de déduction naturelle (Louvain: Editions
Nauwelaerts, 1962), and H. Curry, Foundations of Mathe-
matical Logic (New York: McGraw-Hill, 1963).

11. A note on natural deduction. Many logic texts use neither
the axiomatic nor the Gentzen method, but the method of
subproofs (often called “natural deduction,” although that
term is sometimes used to include Gentzen methods). Ex-
amples are I. Copi, Symbolic Logic (New York: Macmil-
lan, 1954); F. Fitch, Symbolic Logic—An Introduction (New
York: Ronald Press, 1952); and D. Kalish and R. Mon-
tague, Logic—Techniques of Formal Reasoning (New York:
Harcourt, Brace & World, 1964). The method is described
systematically in F. Fitch and R. Orgass, Minimal Logic and
Computers—I. The Method of Subordinate Proofs (IBM Re-
search Report RC 2503, 1969). First some rules are given
which can be stated in the form “From A1, . . . , An, infer
B.” A first-order proof from premises X is a sequence of
sentences each of which either belongs to X or follows from
preceding members of the sequence by the given rules. Sub-
ject to certain restrictions, which constitute further rules,
a sequence of sentences and first-order proofs is a second-
order proof, a sequence of sentences and first- or second-
order proofs is a third-order proof, and so on. It is clear
that in the higher-order proofs one is utilizing arguments
about arguments, just as in the Gentzen method. Thus the
rules describing higher-order proofs are vulnerable when pre-
suppositions are introduced in just the same sense as the

267



Gentzen rules. For informative discussions concerning the
relations among the various methods, see H. Curry, Foun-
dations of Mathematical Logic, chap. 5, secs. B and E8;
chap 6, sec. C 1–3.

12. Aristotle, Metaphysics, Book IV: chap. 7 (1011b, 25–30),
and Book IX: chap. 10 (1051b, 5–1952a, 4).

13. A. Tarski, “The Concept of Truth in Formalized Languages,”
in his Logic, Semantics, Metamathematics, J. H. Woodger,
trans. (Oxford: Clarendon, 1956), pp. 152–278.

14. For a good selection of papers, see C. Pitcher, Truth (En-
glewood Cliffs, N.J.: Prentice-Hall, 1964).

15. If 1 (or its instances) can be expressed in the language, the
nonbivalent sentences A must occur in the language. But
the part of the language in which the shortest sentences
all begin with T could be kept ordinary; this part of the
metalanguage is what we are discussing here.

16. Aristotle, On Interpretation, chap. 9 (18a, 30–19b, 4).

17. W. and M. Kneale, The Development of Logic (Oxford: Ox-
ford university Press, 1962), pp. 46–48.

18. Cf. B. van Fraassen, “Truth and Paradoxical Consequences”
in R. Martin, ed., The Liar (New Haven: Yale University
Press, 1970), pp. 13–23.

19. This construction was first described in B. van Fraassen,
“A propos Kaplan’s R,” mimeographed, Indiana University,
1968. The constructed system bears some relation to those
of B. Skyrms, “Return of the Liar: Three-Valued Logic and

268



the Concept of Truth,” mimeographed, University of Illinois
at Chicago Circle, 1968; and S. McCall, “Notes Toward a
Non-classical Theory of Truth,” mimeographed, University
of Pittsburgh, 1968. The first mentioned paper was a re-
action to mimeographed notes of D. Kaplan (University of
California at Los Angeles, 1968).

269



Appendix A

Completeness of the
Calculus of Systems

In Section 6 of Chapter 2 we gave a simple set of princi-
ples (a)–(g) that may be taken as a set of axioms for a
general calculus of systems. We noted there that these
were essentially the axioms of the theory of lattices. We
shall here use some results from that theory to show that
no further principle expressible in those terms (such as
distributivity or modularity) holds in general for systems
of languages of arbitrary structure.

If L is a language, let us denote by SYST(L) the
set of systems of L. Then the study of the relations
among systems of L, using the notions we have so far
introduced, is the study of the mathematical structure
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〈SYST(L), ∩, ∪̇, ⊆〉, which we shall call the calculus of
systems in L—CS(L). To see what kind of structure this
is we formally introduce the notion of a lattice.

Definition. A lattice is a quadruple 〈X, ∧, ∨, ≤〉 such
that X is a nonempty set, ∧ and ∨ binary operations on
X, and ≤ a partial ordering of X, such that

(a) a ∧ b ≤ a; a ∧ b ≤ b;

(b) a ≤ a ∨ b; b ≤ a ∨ b;
(c) if c ≤ a and c ≤ b, then c ≤ a ∧ b;
(d) if a ≤ c and b ≤ c, then a ∨ b ≤ c

for all elements a, b, c of X.

We call a ∧ b the greatest lower bound (glb) or meet of a
and b, a ∨ b their lowest upper bound (lub) or join. It is
easy to check that CS(L) is a lattice, with ∩ as meet, ∪̇
as join, and ⊆ as partial ordering.

There are interesting kinds of lattices, the most famil-
iar being the distributive lattices (for example, classical
propositional logic, Boolean algebra, the lattice of sub-
sets of a given set). A calculus of systems is a distributive
lattice iff the following laws hold (for all systems, X, Y ,
Z, in the language in question):

(e) X ∩ (Y ∪̇Z) ⊆ (X ∩ Y ) ∪̇ (X ∩ Z)

(f) (X ∪̇Y ) ∩ (X ∪̇Z) ⊆ X ∪̇ (Y ∩ Z)
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But this is not always the case. For example, let L have
only the sentences p, q, p→q; and let its admissible val-
uations be the bivalent valuations v on these sentences
such that if v(p) = v(p→ q) = T, then v(q) = T. We
clearly have

{p}, {q}, and {p→q} are systems,

{q} ∩ ({p} ∪̇ {p→q}) = {q} ∩ {p, p→q, q}
= {q},

({q} ∩ {p}) ∪̇ ({q} ∩ {p→q}) = Λ ∪̇ Λ = Λ.

Since {q} 6= Λ, law (e) does not hold for the systems
X = {q}, Y = {p}, and Z = {p → q}. However, we
must point out that if we take p, q, p→ q to belong to
a bivalent propositional language L′, with p→ q defined
as ¬(p& ¬q), then the law does not fail in this way. For
then we must set

X = {A : q 
 A} 6= {q},
Y = {A : p 
 A} 6= {p},
Z = {A : p→q 
 A} 6= {p→q}

and, furthermore,

p ∨ q ∈ X ∩ Y,
(p→q) ∨ q ∈ X ∩ Y,

so
p ∨ q, (p→q) ∨ q ∈ (X ∩ Y ) ∪̇ (X ∩ Z),
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but then q ∈ (X∩Y ) ∪̇ (X∩Z). There is, in fact, a proof
that CS(L) is a distributive lattice when L is a bivalent

propositional language.1 But we are here concerned with
the general case.

We shall now prove that the laws that hold in any cal-
culus of systems are exactly those that make it a lattice,
and no others. First we must make this precise. We shall
use the notation ϕ(X1, . . . , Xn) to refer to a sentence
made up of variables X1, . . . , Xn, and the symbols, ∧,
∨, ≤. We say that ϕ(X1, . . . , Xn) holds in a lattice iff it
is true for all values of the variables X1, . . . , Xn in that
lattice, where ∧, ∨, ≤ are interpreted as standing for the
meet, join, and partial ordering of that lattice. We shall
also need a lemma from lattice theory that we shall not
prove.2

Lemma. There exists a denumerable free lattice, that is,
a denumerable lattice A such that any sentence ϕ(X1,
. . . , Xn) holds in A if and only if it holds in all lattices.

Theorem. A sentence ϕ(X1, . . . , Xn) holds in every cal-
culus of systems if and only if it holds in all lattices.

Proof: Let A = 〈W, ∧, ∨, ≤〉 be a denumerable free
lattice, and L the language whose sentences are the el-
ements of W , and whose admissible valuations are the
mappings of W into {T, F} such that

1. if v(b) = T and a ≤ b, then v(a) = T;
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2. if v(a) = v(b) = T, then v(a ∨ b) = T

for all elements a, b of W .
We shall concentrate on those systems in L that are

axiomatizable by means of a single sentence. For brevity,
we define

[a] = {b : a 
 b in L},
[W ] = {[a] : a ∈ W}.

The structure A∗∗∗ = 〈[W ], ∩, ∪̇, ⊆〉 is a lattice of sys-
tems in L, and we assert that A∗∗∗ is isomorphic to A, by
mapping f of W into [W ] such that f(a) = [a].

To prove this, we note first that [a] = {b : b ≤ a}.
By 1, if b ≤ a, then b ∈ [a]. Second, the valuation v :
v(b) = T iff b ≤ a, v(b) = F otherwise, is an admissible
valuation (if c ≤ b, b ≤ a, then c ≤ a, so 1 holds; if
c ≤ a, b ≤ a, then c ∨ b ≤ a, so 2 holds). We may also
note about any system that it contains the join of any
two of its elements, because of 2. We can now prove the
isomorphism in four steps.

(a) If [a] = [b], then a = b, because if a ≤ b and b ≤ a,
then a = b.

(b) a ≤ b iff [a] ≤ [b], by our first observation above.

(c) [a ∧ b] = {x : x ≤ a ∧ b} = {x : x ≤ a and x ≤ b} =
{x : x ≤ a} ∩ {x : x ≤ b} = [a] ∩ [b].

(d) [a∨b] = [a] ∪̇ [b]. By definition, [a] ∪̇ [b] is the small-
est system including both [a] and [b]. If a system

274



contains both a and b, it contains a ∨ b, and hence
includes [a ∨ b]. On the other hand a ≤ a ∨ b and
b ≤ a ∨ b, hence [a ∨ b] contains both a and b, and
so includes both [a] and [b].

Because of this isomorphism, a lattice theoretic sen-
tence ϕ(X1, . . . , Xn) will hold in A∗∗∗ iff it holds in A. But
A is free, so this is equivalent to ϕ(X1, . . . , Xn) holding
in all lattices. On the other hand, A∗∗∗ is part of CS(L),
so if ϕ(X1, . . . , Xn) does not hold in A∗∗∗, then it does
not hold in CS(L). We conclude that if ϕ does not hold
in all lattices, then it does not hold in CS(L), and so the
general calculus of systems is complete.

Notes

1. E. W. Beth, The Foundations of Mathematics (Amsterdam:
North-Holland, 1965), p. 548.

2. See C. Birkhoff, Lattice Theory, rev. ed. (New York: Amer-
ican Mathematical Society, 1948), pp. viii, 29.
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Appendix B

Topological Matrices

When the elements of a matrix are taken to be the points
in a topological space, we call the matrix a topological
matrix. This extension of the theory of matrices will
enable us to prove a general compactness result of which
the compactness theorem of Section 1.2 of Chapter 5 is a
corollary.1 It will be necessary to introduce some notions
and results from point-set topology.2

Definition. A topological space is a couple 〈E, O〉, where
E is a nonempty set (the points or elements) and O is a
family of subsets of E (the open sets) such that

(a) Λ ∈ O, E ∈ O;

(b) if O1, O2 ∈ O, then O1 ∩O2 ∈ O;

(c) if O ′ ⊆ O, then
⋃

O ′ ∈ O.
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When 〈E, O〉 is a topological space, we also say that O
is a topology on E. The relative complement in E of a
member of O is called a closed set in this space.

The notion of compactness for a topological space,
when defined in terms of open sets, resembles that of
U-compactness for a valuation space.

Definition. A topological space 〈E, O〉 is compact iff ev-
ery family O ′ ⊆ O such that

⋃
O ′ = E (an open cover)

has a finite subfamily O ′′ such that
⋃

O ′′ = E (a finite
subcover).

Two new topics must be covered before we can turn
to topological matrices proper: Cartesian products of
spaces, and continuous functions.

We begin by generalizing products of sets as follows:
Where I is the set of the first n natural numbers, or
the set of all natural numbers,

∏
({Yi}, i ∈ I) is the set

of sequences whose ith member is an element of Yi, i ∈
I. For example

∏
({Xi}, i ∈ {1, 2}) is the Cartesian

product of X1 with X2, and hence X2 when X1 = X2 =
X. When all the Xi are the same, and I is the set of all
natural numbers, we designate

∏
({Xi}, i ∈ I) as Xω (X

to the power omega). More generally we shall write XI

for
∏

({Xi}, i ∈ I) when X = Xi for each i in I.
We shall now use topologies on given sets to produce

a topology on their products.
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Definition. When the families {Oi}, i ∈ I are topologies
on the sets {Ei}, i ∈ I, then the corresponding product
topology on

∏
({Ei}, i ∈ I) is the family of products∏∗({Oi}, i ∈ I) = {

∏
({Qi}, i ∈ I) : Qi ∈ Oi for each

i ∈ I, and Qi = Ei for all but finitely many indices i}.

That
∏∗({Oi}, i ∈ I) is indeed a topology on

∏
({Ei}, i ∈

I) may readily be checked.3 When all the sets Ei equal
E, and all the sets Oi equal O, then the resulting topo-
logical space is designated as 〈E, O〉I = 〈EI , OI〉 where
OI is the product topology in question.

The following theorem is a special case of a famous
result known as Tychonoff’s theorem, its proof may be
found in any text.

Theorem. If a topological space is compact, then all its
Cartesian powers are compact.

We turn now to continuous functions.

When f maps E into E ′, we shall also say that it
maps any space 〈E, O〉 into any space 〈E ′, O ′〉. And
then we call f continuous if, whenever O ⊆ E ′ is an open
set, its inverse image f−1(O) = {x ∈ E : f(x) ∈ O} is
again an open set. We call f an n-ary operation on E
if it maps En into E, and a continuous n-ary operation
on 〈E, O〉 if it maps 〈E, O〉I continuously into 〈E, O〉,
where I = {i, . . . , n}. It can readily be checked that for
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a continuous mapping, the inverse images of closed sets
are again closed.

The theory of continuous mappings is an interesting
subject, from which we shall need several lemmas.

Lemma 1. If f is a continuous n-ary operation on 〈E, O〉
then f ∗ : f ∗(d) = f(〈d(1), . . . , d(n)〉) defined for all d in
EI , where {1, . . . , n} ⊆ I ⊆ ω, is a continuous mapping
from 〈E, O〉I into 〈E, O〉.

Proof: Suppose that O is an open set on E. Then if f
is continuous, f−1(O) is an open set on En, hence if a
product

∏
({Oi}, i ∈ {1, 2, . . . , n}) of open sets on E.

But the inverse image of O under f ∗ is just f−1(O)×E×
E × · · · , and so an open set on EI .

Lemma 2. If g is a continuous mapping of 〈E1, O1〉 into
〈E2, O2〉, and f a continuous mapping of 〈E2, O2〉 into
〈E3, O3〉, then the composite function fg is a continuous
mapping of 〈E1, O1〉 into 〈E3, O3〉.

Proof: The function fg is defined by fg(x) = f(g(x)),
so that function is the set of couples

{〈x, y〉 : x ∈ E1, y ∈ E3, and there is a z ∈ E2

such that g(x) = z, f(z) = y.}

It can then readily be seen that fg−1(O) = g−1(f−1(O)).
So ifO is open, then f−1(O) is open and then g−1(f−1(O))
is open, provided f and g are continuous.
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Lemma 3. If g1 and g2 are continuous mappings of spaces
S1 and S2 into S, and f is a continuous mapping of S2

into S, then the composite function h(x, y) = f(〈g1(x),
g2(y)〉) is a continuous mapping of the product of S1 and
S2 into S.

Proof: This can be reduced to the previous lemma if we
can prove it for the case

h′(x, y) = 〈g1(x), g2(y)〉

because then h(x, y) = fh′(x, y). To prove the case for
h′ is straightforward: If O is open in S, then its inverse
image under h′ is just the product of g−11 (O) with g−12 (O).
If the functions g1 and g2 are continuous, the components
of that product are open, and hence so is the product it-
self.

Now, at long last, we can return to topological ma-
trices. Again we consider matrices with only two opera-
tions.

Definition. A topological matrix is a quintuple M =
〈E, O, D, ···, −〉, where 〈E, D, ···, −〉 is a matrix and O
a topology on E.

We shall now study the class of topological matrices 〈E,
O, D, ···, −〉 with continuous operations ··· and −. We
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shall use the terms “M -assignment,” “M -propositional
language,” and so on, as before. If L is a M -propositional
language, where 〈E, O, D, ···, −〉, and A its set of atomic
sentences, there is a one-to-one correspondence between
Eω and the set of M -assignments—the natural corre-
spondence of the restriction of each M -assignment to
atomic sentences (for what the M -assignment assigns to
the atomic sentences determines it uniquely).

In addition, because of Lemmas 2 and 3, there will be
for each sentence A a continuous n-ary operation a on
E, where A contains alphabetically the nth but no later
atomic sentences, such that

d(A) = a(d(p1), . . . , d(pn)).

By Lemma 1, a can be extended into a continuous op-
eration a∗ on Eω, so that

d(A) = a∗(d),

where M -assignments are now identified with elements
of Eω in the natural manner described above.

Henceforth we shall call T(A) = {d ∈ Eω : d(A) ∈ D}
the truth sets for the M -propositional language.

Lemma 4. If L is an M-propositional language with set
of atomic sentences A and M = 〈E, O, D, ···, −〉 such
that ··· and − are continuous operations on 〈E, O〉, then
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(a) if D is open in 〈E, O〉, the truth sets are open in
〈E, O〉ω;

(b) if D is closed in 〈E, O〉, the truth sets are closed
in 〈E, O〉ω.

Proof: The truth sets

T(A) = {d ∈ Eω : d(A) ∈ D}
= {d ∈ Eω : a∗(d) ∈ D}

are the inverse images of D under the continuous function
a∗. Hence is D is open, the truth sets are open, and if D
is closed, the truth sets are closed.

Theorem. If L is an M-propositional language, where
M = 〈E, O, D, ···, −〉 such that

(a) 〈E, O〉 is compact,

(b) ···, − are continuous operations on E, O,
then L is U-compact if D is open, I-compact if D is
closed, and has finitary entailment if D is both open and
closed.

Proof: Let A be the set of atomic sentences and assume
the conditions of the theorem. By Tychonoff’s theorem
〈E, O〉ω is compact.

(a) Let D be open. Then, by Lemma 4, the truth sets
are open in 〈E, O〉ω. If X is a set of sentences such
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that each admissible valuation satisfies a member
of X, then ⋃

A∈X

T(A) = Eω.

By the compactness of 〈E, O〉ω, this cover contains
a finite subcover; hence X has a finite unassailable
subset.

(b) Suppose D is closed. Then the truth sets are closed.
It follows that any finite intersection of truth sets
is closed. Suppose that for each finite subset Y
of X, T(Y ) =

⋂
A∈Y T(A) is nonempty. Then the

sets Eω − T(Y ) are open sets not equal to E, and
correspond to the finite unions of complements of
truth sets of members of X. By compactness we
conclude that the union

⋃
{Eω − T(A) : A ∈ X}

does not cover E; hence the intersection T(X) is
not empty.

(c) Suppose D is both open and closed. Then, by
Lemma 4, the truth sets are both open and closed.
Then if X 
 A,⋂

{T(B) : B ∈ X} ⊆ T(A);⋂
{T(B) : B ∈ X} ∩ (Eω − T(A)) = Λ

But T(A) is open, so (Eω − T(A)) is closed, and
we have here an infinite intersection of closed sets
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that is empty. By compactness and (b) above, this
has a finite subintersection that is empty, so X has
a finite subset Y such that⋂

{T(B) : B ∈ Y } ∩ (Eω − T(A)) = Λ;

that is, Y 
 A.

The compactness result of Section 1.2 of Chapter 5
is a corollary to this. For a topology on a finite set of
elements must itself be finite, so that compactness holds
automatically. Second, we can choose this topology on
the set of elements to be simply the family of all its sub-
sets, so that each subset is both open and closed.

Notes

1. Cf. C. C. Chang and H. J. Keisler, Continuous Model The-
ory (Princeton, N.J.: Princeton University Press, 1966) for
a more general development of this subject.

2. See, e.g., S. A. Gaal, Point Set Topology (New York: Aca-
demic Press, 1964).

3. Cf. Gaal, Point Set Topology, p. 59, lemma 2.
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Appendix C

Satisfiability and
Semantic Paradoxes

In Section 4.2 of Chapter 5 we constructed a language L
from a language L0 in which for every sentence A there
is a name g(A) and predicate P such that A and Pg(A)
semantically entail each other in L. The mapping g of
sentences into names has no restrictions placed on it, so
paradoxical cases may result. We shall now prove that
these paradoxes do not infect the rest of the language;
that is, if a set of sentences does not involve the predicate
P or the names g(A), and it is ordinarily satisfiable, then
it is satisfiable in L.

To prove this result, we shall need a famous theo-
rem concerning quantificational logic which we have not
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proved.1

Craig’s Lemma. Let `A ⊃ B in quantificational logic.
Then if some predicates occur in both A and B, there is
a sentence C such that `A ⊃ C and `C ⊃ B, and any
other predicate or free variable in C is a predicate or free
variable both in A and in B. If no predicates occur in
both A and B, then either `¬A or `B.

Corollary. If X is a set of sentences and A a sentence
of L0, and X is satisfiable in L0, then X 
 A in L0 if
and only if there is a sentence B of L0 such that all the
predicates and free variables in B are predicates and free
variables in X and in A and X 
 B, B 
 A in L0; or

A in L0.

This corollary follows immediately from Craig’s lemma
by the compactness, soundness, and completeness theo-
rems for quantificational logic.

Let SY be the set of sentences of L in which the
predicate P and the variables g(A), A a sentence, do not
appear, and let L, L0 be as in Section 4.2 of Chapter 5.

Theorem. If X is a subset of SY and satisfiable in L0,
then X is satisfiable in L.
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Proof: We perform the following construction:

X1 = X,

X2i = {A : X2i−1 
 A in L0}, X1 =
∞⋃
j=1

Xj

X2i+1 = X2i

⋃
{T(A) : A ∈ X2i}.

We assert that X1 is satisfiable in L. To prove this, note
that 
 in L0 is finitary, and so is N0. Therefore X1 is
closed under both classical and nonclassical necessitation
for L. It remains to prove that X1 is satisfied by some ad-
missible valuation of L0: Then X1 will be N0-saturated,
and induce an admissible (super)valuation that satisfies
it and hence X.

We claim first that if B ∈ X2i, then there are sen-
tences A1, . . . , Am ∈ X and T(Am+1), . . . , T(An) ∈
X2i−1 such that A1, . . . , Am, T(Am+1), . . . , T(An) 
 B
in L0. This is obvious for cases i = 1, i = 2; mathemati-
cal induction quickly shows the rest.

Now if X1 is not satisfiable in L0, it contains a con-
tradiction (p & ¬p); this contradiction will be found in
X2i for some i. But then we have A1, . . . , Am ∈ X,
Pxm+1, . . . , Pxn ∈ X2i−1 such that A1, . . . , Am, Pxm+1,
. . . , Pxn 
 (p& ¬p) in L0, This means that A1 & · · · &
Am 
 ¬(Pxm+1 & · · · & Pxn) in L0. Now the Ai ∈ X ⊆
SY , so the antecedent and consequent have no predicates
in common. By Craig’s lemma, either the antecedent is a
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contradiction or the consequent is a tautology. The for-
mer cannot be because X is satisfiable in L0. The latter
cannot be because a conjunction of atomic sentences is
never contradictory. Therefore, X1 must be satisfiable in
L0, as we meant to prove.2

Notes

1. See, e.g., A. Robinson, Introduction to Model Theory and
to the Metamathematics of Algebra (Amsterdam: North-
Holland, 1965), p. 116. A simplified proof is given by B.
Dreben and H. Putnam, “The Craig Interpolation Lemma,”
Notre Dame Journal of Formal Logic, 8 (1967), pp. 229–
233, and a more semantic proof by J. R. Schoenfield, Math-
ematical Logic (Reading, Mass.: Addison-Wesley, 1967), pp.
79–81.

2. Cf. B. van Fraassen, “Truth and Paradoxical Consequences”
in R. Martin, ed., The Liar (New Haven: Yale University
Press, 1970), pp. 13–23.
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Problems

Chapter 1

Section 1

1.1 Prove, using the principles of abstraction and ex-
tensionality, and the definitions of the set-theoretic
symbols:

(a) Λ = X.
(b) If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.
(c) If X ⊆ Y and X ⊆ Z, then X ⊆ Y ∩ Z.
(d) X − (X − Y ) ⊆ Y .
(e) If X ⊆ Z for every member Z of a family F ,

then X ⊆
⋂
Z∈F Z.

X, Y , and Z stand for sets.
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Section 2

2.1 If there is a one-to-one mapping from X into Y
and also a one-to-one mapping from Y into Z, then
there is a one-to-one mapping from X into Z.

2.2 Every one-to-one mapping has an inverse; that is,
if f is a one-to-one mapping from X onto Y , then
there is a mapping f ′ from Y onto X such that
f(x) = y if f ′(y) = x, for any members x of X and
y of Y .

2.3 If a mapping has a unique inverse (see 2.2), then it
is one-to-one.

2.4 The intersection of a family of functions is a func-
tion.

2.5 Show that having the same cardinality (≡) is an
equivalence relation among sets, that is, it is reflex-
ive (X ≡ X), symmetric (if X ≡ Y , then Y ≡ X),
and transitive (if X ≡ Y and Y ≡ Z, then X ≡ Z).

2.6 (Cantor) |{Y : Y ⊆ X}| > |X|.
2.7 (a) Where N is the set of natural numbers, |N2| =

|N |.
(b) The union of denumerably many countable sets

is countable.
(c) The Cartesian product of two countable sets

is countable.
(d) The set of all finite sequences of members of a

given countable set is again countable.
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(e) The set of all countable sequences of members
of a given countable set is not countable.

Section 3

3.1 Use Zorn’s lemma to prove that a nonempty family
D of lines in a plane must have a maximal subset
D′ such that if 1 and 1′ belong to D′, they do not
intersect.

3.2 “Everything is conditioned to exist by something.
Hence, there exists something (an ‘absolute’) which
is not conditioned to exist by anything other than
itself.” Make explicit any further assumptions
needed for this to follow by Zorn’s lemma. Will it
also follow that this “absolute” conditions all else
to exist?

3.3 Can a tree with the finite branching property have
nondenumerably many branches?

Section 4

4.1 The sum
∑n

i=1 ai of the first n members of the
sequence 〈a1, a2, . . . , ai, . . . 〉 is defined recursively
by

(a)
1∑
i=1

ai = a1.
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(b)
k+1∑
i=1

ai =

(
k∑
i=1

ai

)
+ ak+1.

Define similarly the product
∏n

i=1 ai of the first n
members of this sequence.

4.2 With reference to the definition in Exercise 4.1,
prove the following by natural induction:

(a)
n∑
i=1

rai = r
n∑
i=1

ai.

(b)
n∑
i=1

(ai + bi) =
n∑
i=1

ai +
n∑
i=1

bi.

(c)
n∑
i=1

i =
n(n+ 1)

2
.

4.3 Prove by strong induction and some simple prem-
ises about the human race that each human is a
descendant of Adam or Eve. (These premises might
include, for example, that all but Adam and Eve
have parents, and that each person is a descendent
both of himself and of whomever his parents are
descendants. Hint: Assign each person a rank.)

Section 5

5.1 Assuming that a given machine (or person) can
multiply numbers less than 10 and can add any
two numbers, construct an algorithm by which it
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(he) can multiply any two numbers less than 100.
Carry it out for 24× 23.

5.2 Construct an algorithm for transforming an expres-
sion into its reverse, and carry it out for abc. [Hint:
Mark the first letter, move marked letters to the
right; a marked letter should stop moving to the
right when either (a) there is nothing to its right
or (b) a marked letter is on its right. Finally, erase
the marks.]

Chapter 2

Section 2

2.1 Show that two PCS have the same sentences if they
have the same atomic sentences and the same logi-
cal signs.

2.2 Prove that if P does not occur in B, then SAp (B) =
B.

2.3 Prove that SB1···Bn
p1··· pn (A) = Ss(A) for a mapping s

such that s(pi) = Bi for i = 1, . . . , n, and if q
occurs in A but is not one of the pi, then s(q) =
q. (The case n = 1 is a theorem proved in this
section.)
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Section 3

3.1 Show that infinitary substitution preserves validity
in a bivalent propositional language. What does
this show about unary and simultaneous substitu-
tion?

3.2 From the definition of bivalent propositional lan-
guage, show that {A, B, ¬(A & B)} is not a sat-
isfiable set, and that X is not a satisfiable set iff
X−{A} 
 ¬A holds, in such a language, if A ∈ X.

3.3 Prove clauses (b)–(d) of the theorem on the prop-
erties of the semantic entailment relation.

Section 4

4.1 Let H be the valuation space of a bivalent propo-
sitional language. Show informally that

(a) the intersection of a finite family of elementary
classes is an elementary class,

(b) the intersection of an infinite family of elemen-
tary classes may not be an elementary class

4.2 If H is the valuation space of a bivalent language
L with exclusion negation, and v, v′ are distinct
points inH, then there are elementary classesH(A),
H(B) such that v ∈ H(A), v′ ∈ H(B), and H(A)∩
H(B) ∈ Λ.
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4.3 
A ⊃ B iff H(A) ⊆ H(B) for all sentences A, B in
a bivalent propositional language L with valuation
space H. [Use the identities H(A & B) = H(A) ∩
H(B), H(¬A) = H −H(A).]

4.4 Using Exercise 4.3, show the validity of the follow-
ing sentences in a bivalent propositional language:

(a) (A ⊃ B ··· ⊃ A) ⊃ A.
(b) A ⊃ B ··· ⊃ ··· (A& C) ⊃ B.
(c) ¬(¬A& (¬A ⊃ A)).
(d) A ⊃ (¬A ⊃ B).

4.5 Show that if L has a sentence f such that H(f) = Λ
and L has finitary semantic entailment, then L is
I-compact.

Section 5

5.1 If for all sentences A of L, X 
 A iff Y 
 A in L,
then X and Y are semantically equivalent in L.

5.2 Define C(X) = {A : X 
 A in L}, that is C(X) is
the least system in L that contains X. Prove that

(a) X ⊆ C(X).
(b) C(C(X)) ⊆ C(X).
(c) if X ⊆ Y , then C(X) ⊆ C(Y ).
(d) C(X ∪ Y ) = C(C(X) ∪C(Y )).

[Note: By definition, C is a closure operation
(on the sets of sentences of L) iff conditions
(a)–(c) hold.]
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5.3 Let Nx mean that x is a natural number, and con-
sider the set of true sentences formed by the use of
quantification, the identity predicate =, conjunc-
tion, negation, and predicate N . Is this set finitely
axiomatizable?

Section 6

6.1 With reference to Exercise 5.2, note that X ∪̇ Y =
C(X∪Y ). Use Exercise 5.2 to show that if X, Y , Z
are systems and X ⊆ Z, Y ⊆ Z, then X ∪̇ Y ⊆ Z.

6.2 Find a counterexample to the assertion that the
general calculus of systems is distributive, that is,
to X ∩ (Y ∪̇ Z) ⊆ (X ∩ Y ) ∪̇ (X ∩ Z).

Section 7

7.1 Find a language in whose calculus of systems
˙X ∩ Y = Ẋ ∪̇ Ẏ does not hold.

7.2 Show that ˙X ∩ Y = Ẋ∪ Ẏ holds for finitely axiom-
atizable systems X, Y in a bivalent propositional
language.

Section 8

8.1 Suppose that B is a nonempty family of subsets
of X such that any two members of B have a
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nonempty intersection. Does it follow that B is
a filter base?

8.2 In the example of a bivalent propositional language,
with exactly two atomic sentences, each subset of
H is an elementary class. Why is this so?

8.3 Show that if F is a filter on X and contains the
union of Y and Z iff it contains Y or Z, for all
subsets Y and Z of X, then F contains either Y
or X − Y (for all subsets Y of X).

8.4 Show that if H is I(U)-compact, then every ultra-
filter on H is I(U)-convergent.

8.5 Show that if F is an ultrafilter on Z, then if X ⊆ Z
and X ∩ Y 6= Λ for all Y in F , then X is in F .

8.6 Show that I-compactness does not entail U-com-
pactness.

8.7 If A is a sentences of language L, define L(A) to be
the language with the same syntax as L and whose
admissible valuations are exactly those admissible
valuations of L that do not satisfy A. Show that
L has finitary semantic entailment iff for every sen-
tence A of L, L(A) is I-compact.

Section 9

9.1 Let L be a language with the following syntax and
semantics:
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(a) L has denumerably many atomic sentences,
and if A, B are sentences, so is (A|B).

(b) A valuation v is admissible for L iff v maps
all sentences into {T, F}, and is such that
v(A|B) = F iff v(A) = v(B) = T.

Show that the valuation space H of L admits all
ultraproducts.1

Section 10

10.1 Show that if a language L is the union of a chain
of its finitary fragments, then L is U-compact.

10.2 Let L be the language defined in Exercise 9.1; show
that L is the union of a chain of its finitary frag-
ments.

Chapter 3

Section 1

1.1 Show that (c) if X ⊆ Y and X 
 A, then Y 
 A
follows from (a) X 
 A if A ∈ X, and (b) if X 
 A
for all A in Y and Y 
 B, then X 
 B.

1.2 Show that if LS = 〈Syn, Th, `〉 is a normal logical
system, then Th = Cn(Th) = Cn(Λ), and also that

298



Th is the intersection of all sets Cn(X), X a set of
sentences of Syn.

1.3 Show from the definition that if Cn is a closure
operator, then Cn(X ∪ Y ) ⊆ Cn(Cn(X) ∪ Cn(Y )).

1.4 Let Cn be a closure operator on the sets of sentences
of syntax Syn, and define the relation ` by X ` A
iff A ∈ Cn(X). Prove that

(a) X ` A if A ∈ X.
(b) If X ` A for all A ∈ Y and Y ` B, then

X ` B.

1.5 With references to Exercise 1.4, prove that if Cn is
a closure operator on the sets of sentences of syn-
tax Syn, then Cn(Cn(X) ∪ Cn(Y )) ⊆ Cn(X ∪ Y ).
(Note: Compare Exercises 1.3 and 1.5 with Exer-
cise 5.2 of Chapter 2.)

1.6 If L has an absurd sentence f(H(f) = Λ), and
there is a logical system LS sound and strongly
complete for L with ` in LS a finitary relation,
then L is I-compact. (Note: This is the usual form
of the compactness proofs in standard texts.)

1.7 Let Syn be a PCS, and the relation ` be given by

(a) any sentence of form ¬(A & ¬A) belongs to
Th = {A : Λ ` A}.

(b) if `A and `B, then `A&B.
(c) {A} ` ¬¬A.
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Show that the system LS = 〈Syn, Th, `〉 is sound,
but neither statement nor argument complete, for
a bivalent propositional language with syntax Syn.

Section 2

2.1 Prove that `A ⊃ A in Sobocinski’s system.

2.2 Prove Sobocinski’s axioms by the Beth algorithm.

2.3 Prove that if ` is the deducibility relation in propo-
sitional logic, and Cn(X) = {A : X ` A} for all sets
of sentences X of a given PCS, Cn is a closure op-
erator.

Section 3

3.1 Prove that v(A1 ∨ · · · ∨ An) = F iff v(A1) = · · · =
v(An) = F.

3.2 Prove that if the tableau sequences of A and A ⊃ B
terminate, so does the tableau sequence of B.

Section 5

5.1 Let M = 〈E, {0}, ···, −〉 be a matrix with E the set
of integers and ···, − the operations of multiplication
and subtraction from zero. Which of the following
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mappings are homomorphisms of M into M?

f : f(x) = −x,
g : g(x) = |x|,
h : h(x) = 1 + x,

j : j(x) = x2.

5.2 For a matrix M = 〈E, D, ···, −〉 let M2 be the ma-
trix 〈E2, (E ×D)∪ (D×E), ∧, ∼〉 with the oper-
ations defined by

〈x1, y1〉 ∧ 〈x2, y2〉 = 〈x1 ··· x2, y1 ··· y2〉,
∼〈x, y〉 = 〈−x, −y〉.

Construct the matrix B2
2 , and compare it with the

matrix B4 defined in this section.2

5.3 With M2 defined as in Exercise 5.2, show there
are homomorphisms from M into M2 and from M2

into M which take undesignated elements into un-
designated elements.3 What does this show about
matrix interpretations of propositional logic?

5.4 Investigate the statement and argument soundness
and completeness of classical propositional logic
with respect to M∗

3 = 〈{1, b, 0}, {1}, ···, −〉 with the
operator diagrams
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··· 1 b 0
1 1 1 0
b 1 1 0
0 0 0 0

−
1 0
b 1
0 1

5.5 Show that for any n-valued matrix there is an (n+

1)-valued matrix with the same valid sentences.4

Section 6

6.1 Let L be a bivalent propositional language with ex-
actly two atomic sentences, and L∗ the language
with the same syntax as L but with the supervalu-
ations for L being the admissible valuations for L∗.
Show that L∗ is a matrix-propositional language for
a four-element matrix M4. Can you generalize this
result?

Chapter 4

Section 1

1.1 What sentences are (x/y)((x)(Fxy ∨ (y)(Ex)(y 6=
x))), and f((x)(Fxy ∨ (y)(Ex)(y 6= x))), where
f(y) = x, f(x) = z, f(z) = y? How are these
sentences related?
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1.2 Prove the theorems in this section whose proofs
were said to be immediate.

Section 2

2.1 Show that the tableau sequences of the axioms ter-
minate.

2.2 In what sense is rule Ur justified by the axiom sys-
tem?

Section 3

3.1 Show that the rule of generalization preserves va-
lidity under the standard interpretation.

3.2 Show that M � (Ey)(Fy ⊃ (x)Fx) for any model
M , where F is a unary predicate.

3.3 Show by explicit counterexample (that is, by a
model M and assignment function d for M) that
{Fy : y a variable} � (x)Fx does not hold in a
referential quantifier language.

Section 5

5.1 Prove Lemma 2.

5.2 Show that regular valuations could be defined with-
out recourse to models, that is, in terms of the val-
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ues assigned to component sentences, as in the case
of bivalent propositional languages.

Section 6

6.1 Let L be a referential quantifier language with only
one predicate, P , of degree 2; and M = 〈D, R〉
a model for L with D = {1, 2, 3}, R = {〈1, 2〉,
〈2, 3〉}. For the following models, consider whether
they are submodels of, elementary submodels of, or
elementarily equivalent to M .

M1 = 〈{1, 2}, {〈1, 2〉}〉,
M2 = 〈{1, 2}, Λ〉,
M3 = 〈{1, 2, 3}, {〈0, 2〉, 〈2, 1〉}〉.

6.2 If M ′ is an extension of M , and M ′′ is an elemen-
tary extension of both M and M ′, then M ′ is an
elementary extension of M .

6.3 If A does not contain any quantifiers and B =
(y1)(y2) . . . (yn)A holds in M , then B holds in all
submodels of M .

Section 8

8.1 We consider a language with one (binary) predicate
P . Let N be the set of nonnegative integers, ≤ the
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usual less-than-or-equal-to relation on N , and con-
sider the models M = 〈N, ≤〉, M ′ = 〈{2i : i ∈
N}, {〈2i, 2j〉 : i ≤ j}〉. Show that M ′ is elementar-
ily equivalent to M , but that M ′ is not an elemen-
tary submodel of M .

Section 9

9.1 Define X → A to hold in substitutional quantifier
language L iff f(X) 
 f(A) in L for all one-to-one
substitution functions f . Show that X → A in L iff
X 
 A in the corresponding referential quantifier
language L∗.

9.2 Calling substitutional quantifier language L′ an ex-
tension of similar language L if all expressions of
L are expressions of L′ and all predicates of L′ are
predicates of L, define X → A to hold in L iff
X 
 A holds in all extensions of L. Show that
X → A in L iff X 
 A in the corresponding refer-
ential quantifier language L∗.

Section 10

10.1 Show that if the Beth algorithm is applied to a syn-
tactic system formed by adding names to a QCS,
the tableau sequence of (x)Fx&(Ey)(y = b) ··· ⊃ Fb
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terminates, provided rule I is extended to apply to
names.

10.2 Show that ` F ( ιx)Fx and ` (Ey)Fy ⊃ F( ιy)Fy
cannot be added as axiom schemes to free descrip-
tion theory without disastrous results.

10.3 Show that the addition of either of the following
axiom schemes to free description theory would lead
to equivalent theories:

(a) `¬(Ey)(y = t) & ¬(Ey)(y = t′) ··· ⊃ t = t′.
(b) (1) `(x)(Fx ≡ Gx) ⊃ ( ιx)Fx = ( ιx)Gx.

(2) ` t = ( ιx)(x = t).

Chapter 5

Section 1

1.1 Prove Lemma 2.

1.2 Show that one-to-one substitution of atomic sen-
tences for atomic sentences preserves satisfiability
in a matrix-propositional language.

1.3 If M = 〈E, D, ···,−〉 and M ′ = 〈E ′, D′, ∧, ∼〉 de-
fine M �M ′ to be 〈E ×E ′, D ×D′, ∩, ÷〉, where
〈u, u′〉 ∩ 〈v, v′〉 = 〈u ··· v, u′ ∧ v′〉 and ÷〈u, u′〉 =
〈−u, ∼u′〉. Show that the sentences valid inM�M ′

are exactly those valid in both M and M ′.(Hint:

Define products of matrix assignments.)5
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1.4 With M and M ′ as in Exercise 1.3, let M � M ′

be like M �M ′ except that the set of designated
elements is (E × D′) ∪ (D × E ′). Show that the
sentences valid in M � M ′ are exactly those valid
in either M or M ′. (For a hint, see Exercise 1.3.)6

Section 2.1

2.1.1 Show that sentence τ (τ = m, b, 4, 5) below is valid
in language Lτ , without appeal to the relevant log-
ical systems. (p is an atomic sentence and ♦A is
defined as ¬�¬A.)

m. p ⊃ ♦p

b. ♦�p ⊃ p

4. ♦♦p ⊃ ♦p

5. ♦p ⊃ �♦p
2.1.2 Show that the sentence b of 2.1.1 is not valid in Lm,

that 4 is not valid in Lb, and that 5 is not valid in
L4.

2.1.3 In Section 2.1 an infinite set of sentences was in-
dicated which is not satisfiable in any finite model
structure. Show that this is so, and also show that
the set is, nevertheless, satisfiable.
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Section 2.2

2.2.1 Prove that system τ is sound for every language in
C(τ), τ = m, b, 4, 5.

2.2.2 Certain stronger conditions entailing (b), (c), and
(d) are suggested; show that the set of sentences
valid in all members of C(τ) remains the same (τ =
m, b, 4, 5) when (b), (c), and (d) are replaced by

these stronger conditions.7

Section 3.1

3.1.1 Let L = 〈Syn, V 〉 be a referential quantifier lan-
guage, and let the relation N be the least relation
such that 〈{A}, (Ex)(x 6= y)〉 ∈ N for every sen-
tence A with y free in A and x a variable distinct
from y. Characterize the set of valid sentences of
the presuppositional language L∗ = 〈Syn, V, N, C,
V ∗〉 with C as usual and V ∗ the set of all V -super-
valuations of Syn induced by (V, N)-saturated sets.

Section 3.2

3.2.1 Let L = 〈Syn, V 〉 be a bivalent propositional lan-
guage with atomic sentences p1, p2, p3, . . . , and let
N be the least relation such that {pi}Np2i and
{¬pi}Np2i, for each index i. Show that there is a
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member v of V such that some set maximal among
the (V, N)-saturated sets satisfied by v contains ei-
ther pi or ¬pi if and only if i = 2n ··· 3, for some
nonnegative integer n.

Section 3.3

3.3.1 The following are Gentzen rules for classical logic.
Check each to see whether it would remain valid
no matter what presuppositions are introduced (as-
sume the radical policy).

(a)
A ` B

A& C ` B
(b)

A ` B A ` C
A ` B & C

(c)
A ` B C ` B
A ∨ C ` B

(d)
A ` B

A ` B ∨ C

(e)
A ` B

A, ¬B ` C
(f)

A, B ` C A, B ` ¬C
A ` ¬B

(g)
A ` B

(x)A ` B
(h)

A ` B
A ` (x)B

provided x

is not free in A.

Section 4.2

4.2.1 Characterize the set of valid sentences of the pre-
suppositional language L constructed in this sec-

309



tion (using the radical policy on presuppositions),
considering specifically its classical satisfiability.

Section 4.3

4.3.1 Show directly that the following hold in L∗.

(a) 
T(A) ⊃ A.
(b) 
T(A ⊃ B) ⊃ ··· T(A) ⊃ T(B).
(c) 
A ⊃ T ∼ T ∼ A.
(d) 
T(A) ⊃ TT(A).
(e) A 
 T(A).

4.3.2 Prove Lemma 1: If X `1 A, then X ` A in LT .

4.3.3 Prove the remark that precedes the theorem: X 

A in L∗ iff X ∪ {∼T(A)} is not satisfiable in L∗.

4.3.4 With − and ··· as defined in this section, consider the
fragment L∗2 of L∗ whose sentences are those made
up of atomic sentences of L∗ by the connectives −
and ···, and whose models are the general models of
L∗. Show that classical logic is sound and strongly
complete for L∗2.

Notes

1. The vertical stroke denotes a single truth function in terms
of which all other truth functions in a bivalent language
may be defined.; cf., e.g., W. V. O. Quine, Mathematical
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Logic, rev. ed. (Cambridge, Mass.: Harvard University
Press, 1958), pp. 48–49.

2. Cf. N. Rescher, Many-Valued Logic (New York: McGraw-
Hill, 1969), chap. 2, sec. 16.

3. Ibid.

4. Ibid., chap. 2, sec. 15.

5. Ibid.. chap. 2, sec. 16.

6. Ibid.

7. See K. Lambert and B. van Fraassen, “Meaning Relations,
Possible Objects, and Possible Worlds,” in K. Lambert, ed.,
Philosophical Problems in Logic (Dordrecht, Holland: Rei-
del, 1970), pp. 1–20, Appendix, for a completeness proof
using these stronger conditions and covering quantification.
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Solutions to Selected
Problems

Chapter 1

2.3 Assume that function f has a unique inverse f ∗ :
f(x) = y if and only if f ∗(y) = x for all x in the
domain of f and all y in the domain of f ∗, and
no function other than f ∗ satisfies this condition.
Assume per absurdum that f is not one-to-one, so
that there are elements v, w such that f(v) = f(w)
and v 6= w. Let f ′ be like f ∗ except at f(v), and
yet f ′(f(v)) is either v or w. Then f ′ is also an
inverse of f .

2.6 Suppose there is a one-to-one mapping f of the
members of X onto the subsets of X. That means
that if x ∈ X, then f(x) ⊆ X. Let Y = {x ∈
X : x /∈ f(x)}. Since Y ⊆ X there must be an
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element y of X such that Y = f(y). We now ask
whether y is in Y ; if y ∈ Y , then y ∈ f(y) so y /∈ Y
by the definition of Y . This reduces our supposition
to absurdity.

2.7 (a) One strategy is to divide N2 into denumerably
many finite sets first; say N2 = R1 ∪R2 ∪ · · · with
|Ri| = ni ∈ N . Then R1 can be mapped one-to-one
onto {1, . . . , n1}, R2 onto {n1 +1, . . . , n1 +n+2},
and so on, thus yielding a one-to-one mapping ofN2

ontoN . To divideN2 into denumerably many finite
sets, we assign each couple 〈x, y〉 the index x + y.
This index is a natural number, so there are at most
denumerably many such indices. In addition, each
natural number from 2 = 1 + 1 on is such an in-
dex. So we set Ri = {〈x, y〉 : x+y = i+1}. But Ri

must be finite, because there are only finitely many
couples 〈x, y〉 such that x, y are each smaller than
(i + 1), so there are less than (i + 1) ··· (i + 1) such
couples.
(b) Let the sets be X1, X2, . . . and let each be de-
numerated in some way: Xi = {xi1, xi2, . . . }. Then
the mapping

f(xij) = 〈i, j〉

is a one-to-one mapping of their union onto N2 [see
(a)].
(c) Let X = {x1, x2, . . . } and Y = {y1, y2, . . . }.
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Then the mapping

f(〈xi, yj〉) = 〈i, j〉

is again one-to-one onto N2.
(d) Let X be countable, and note the obvious one-
to-one correspondence betweenXn+1 and the Carte-
sian product of Xn with X. By natural induction
and (c) above we therefore find that Xn is count-
able for all natural numbers n. By (b), result (d)
follows.
(e) Suppose we denote the ith element of such a se-
quence d of members of countable set X as di, and
suppose that f maps a set of such sequences one-
to-one onto N . If we now construct a new sequence
d′ such that d′i 6= di when f(di) = i, then clearly f
is not defined for d′. Hence any such denumeration
fails to be exhaustive.

3.1 Let F = {E ⊆ D : no two members of E intersect}.
The family F is partially ordered by set inclusion,
and if C is a chain in F , then

⋃
C is an upper

bound of C . But
⋃

C belongs to F , for any two
members of

⋃
C are members of some member of

C and hence do not intersect. By Zorn’s lemma,
F has a maximal element.

3.3 Let T be the full binary tree: Each node has ex-
actly two notes directly below it, a left node and
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a right node. Now let X be a denumerable set
{x1, x2, . . . }. We begin by associating with each
node of T a subset of X: With the origin we as-
sociate Λ, with each left node of rank n we as-
sociate the set associated with its direct ancestor,
with each right node of rank n we associate the set
associated with its direct ancestor plus xn−1 (n =
2, 3, . . . ). Now with each branch of T we associate
the union of the sets associated with the nodes on
that branch. This establishes a one-to-one corre-
spondence between the branches of T and the sub-
sets of X. By Exercise 2.6, our result follows.

4.2 (c)
1∑
i=1

i = 1 =
1(1 + 1)

2
.

Assume that
k∑
i=1

i =
k(k + 1)

2
.

k+1∑
i=1

=
k∑
i=1

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2
=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
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5.1 Commands
C1. (xy, a)→ (x0, a) + (y, a)
C2. (x0, a)→ (x, a)0
C3. (x, yz)→ ((x, y)0 + (x, z))
C4. (x, y)→ b, where b is the product of x and y.
C5. (a)→ a
C6. a+ b→ c, where c is the sum of a and b.

Here x, y range over integers less than 10, and a,
b over integers less than 100 (all nonnegative); ter-
mination consists in being blocked.

5.2 There are at least two answers. First reversing al-
gorithm:

C1. αβxy → αyβx
C2. βxy → yβx
C3. αx→ αβx
C4. αβx→ xα
C5. α→ ···
C6.→ α

Second reversing algorithm:

C1. αxy → yαx
C2. αx +→ β + x, with + another aux. symbol.
C3. αx→ β + x
C4. xβ → βx
C5. βx→ αx
C6. β + x→ xβ
C7. β → ···
C8.→ α
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Chapter 2

2.3 Recall that simultaneous substitution has been de-
fined in terms of unary substitution. In addition,
each unary substitution SBp is equivalent to an in-
finitary substitution s : s(p) = B, s(q) = q when
q = p. It is therefore sufficient to prove that the re-
sult of performing a series of infinitary substitution
is again an infinitary substitution (which is obvi-
ous), and that the precautions taken in the defini-
tion of simultaneous substitution in terms of unary
substitution are not nullified in the process.

3.1 By our previous results that unary and simultane-
ous substitution are definable in terms of infinitary
substitutions, it follows that these will also preserve
validity. To prove the first part, suppose that v
is an admissible valuation such that v(Ss(A)) =
F. Define v∗(B) = v(Ss(B)) for all sentences B;
then v∗(A) = F, so it will suffice to show that
the mapping v∗ is again an admissible valuation.
This is straightforward; for example, v∗(B & C) =
v(Ss(B & C)) = v(Ss(B) & Ss(C)) = T iff
v(Ss(B)) = v(Ss(C)) = T iff v∗(B) = v∗(C) = T.

4.2 If v 6= v′, then v(A) = T 6= v′(A), for some sentence
A; so v′(A) = F. But H(A) ∩H(¬A) = Λ.

4.3 
A ⊃ B iff H(A ⊃ B) = H iff H(¬(A&¬B)) = H
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iff H(A & ¬B) = Λ iff H(A) ∩ H(¬B) = Λ iff
H(A) ⊆ H −H(¬B) iff H(A) ⊆ H(B).

5.2 (d) For any set X of sentences of L, C(X) is seman-
tically equivalent to X. Hence we have X ∪ Y se-
mantically equivalent to C(X∪Y ), and also C(X)∪
C(Y ) semantically equivalent to C(C(X)∪C(Y )).
It remains to show that X ∪Y is thus equivalent to
C(X) ∪C(Y ). But v satisfies X ∪ Y iff it satisfies
both X and Y iff it satisfies both C(X) and C(Y )
iff it satisfies C(X) ∪C(Y ).

5.3 This set contains sentences which formulate that
there are at least two natural numbers, at least
three natural numbers, at least four natural num-
bers, and so on ((Ex)(Ey)(Nx & Ny & x 6= y),
(Ex)(Ey)(Ez)(Nx & Ny & Nz & x 6= y &
y 6= z & x 6= z), . . . ). These form a chain of in-
creasing strength; hence the set cannot be finitely
axiomatized.

6.1 Because X, Y, Z, X ∪̇ Y are systems, we have, for
example, Z = C(Z), X ∪̇ Y = C(X ∪ Y ) =
C(C(X) ∪ C(Y )). Now if X ⊆ Z and Y ⊆ Z
then C(X) ⊆ C(Z) and C(Y ) ⊆ C(Z), so C(X)∪
C(Y ) ⊆ C(Z) = Z; hence X ∪̇ Y = C(C(X) ∪
C(Y )) ⊆ C(Z) = Z.

6.2 Let L be a language with exactly three sentences
(p, q, r) and as admissible valuations exactly those
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mappings v of {p, q, r} into {T, F} such that if v
satisfies both p and q, then v satisfies r (think of q
as saying that p implies r). Then {r}∩({p}∪̇{q}) =
{r}∩{p, q, r} = {r}. But ({r}∩{p})∪̇({r}∩{q}) =
Λ ∪̇ Λ = Λ.

7.1 Let L have exactly two sentences (p, q) and as ad-
missible valuations all mappings of {p, q} into {T,
F}. Then {p} ∩ {q} = Λ and its system comple-
ment is {p, q}. But the system complements of {p}
and {q} are both empty, so their system union is
also empty.

7.2 In such a language, each finitely axiomatizable set
is axiomatizable by a single sentence. In addition,
if X = {A : B 
 A} and Y = {A : C 
 A}, then

Ẋ = {A : ¬B 
 A}, Ẏ = {A : ¬C 
 A}, and

Ẋ ∪̇ Ẏ = {A : ¬B & ¬C 
 A} = {A : ¬(B ∨ C) 

A}, where disjunction is defined as usual. But also,
X ∩ Y = {A : B ∨ C 
 A}.

8.3 Suppose that F is a filter on X and contains Y ∪Z
iff it contains Y or Z, for all Y, Z ∈ X. Every filter
on X contains X; X = (X − Y )∪ Y when Y ⊆ X;
hence by our assumption F contains X − Y or Y .

8.4 (a) Let F be an ultrafilter on H which is not I-
convergent. Then there is no point v contained by
every elementary class H(A) in F . Hence the in-
tersection of all elementary classes in F is empty;
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but F being a filter, the intersection of any fi-
nite collection of elementary classes in F is not
empty. Therefore, the elementary classes in F pro-
vide a counterexample to the hypothesis that H is
I-compact.
(b) Let F be an ultrafilter on H which is not U-
convergent. Then for every point v in H there is
an elementary class H(A) containing v which does
not belong to F . These elementary classes cover
H; the question is whether any finite union of them
covers H. Suppose H(A1) ∪ · · · ∪H(An) is such a
finite union. Then, being equal to H, it belongs to
F . F being an ultrafilter, it contains one of the
components of that union. But this is contrary to
assumption.

8.5 Suppose F is an ultrafilter on Z and X∩Y 6= Λ for
all Y in F , but X /∈ F . Then Z −X ∈ F . So by
assumption, X ∩ (Z−X) 6= Λ, which is impossible.

9.1 Let V = {vi}, i /∈ I be a subset of the valuation
space H of L, U an ultrafilter on I, and v an ul-
traproduct of V generated by U . Then we have,
for any sentence A,

v(A) = T iff {i : vi(A) = T} ∈ U .

Let us add

v(A) = F iff v(A) 6= T, for all sentences A of L.
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It remains then to show that v, thus defined, is an
admissible valuation of L.
(a) v(A|B) = F iff {i : vi(A|B) = T} /∈ U

iff I − {i : vi(A|B) = T} ∈ U
iff {i : vi(A|B) = F} ∈ U
iff {i : vi(A) = vi(B) = T} ∈ U
iff {i : vi(A) = T} ∩
{i : vi(B) = T} ∈ U

iff {i : vi(A) = T},
{i : vi(B) = T} ∈ U

iff v(A) = v(B) = T.

10.1 Let language L be the union of its finitary frag-
ments L1, L2, . . . , with Li a fragment of Li+1 (i =
1, 2, . . . ). Suppose that X is an infinite set of sen-
tences of L such that each finite subset of X fails
to be satisfied by some admissible valuation for L.
Let Xi be the set of sentences of Li belonging to
X; for each index i we have a valuation vi of L
whose restriction to Li does not satisfy Xi. Since
Li is finitary, Xi is equivalent to some finite set of
sentences of Li. We construct a tree as before, the
nodes of rank i being the valuations of Li not sat-
isfying Xi; the union of an infinite branch of this
tree (existing by Koenig’s lemma) is an admissible
valuation of L that does not satisfy X.
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Chapter 3

1.4 (b) Suppose that X ` A for all A in Y and Y ` B.
That means that Y ⊆ Cn(X) and so Cn(Y ) ⊆
Cn(Cn(X)) = Cn(X). But also B ∈ Cn(Y ) so
B ∈ Cn(X); that is, X ` B.

1.5 From Exercise 1.4 we infer that if Y ⊆ Cn(X), then
Cn(Y ) ⊆ Cn(X). So we need only to show that
Cn(X) ∪ Cn(Y ) ⊆ Cn(X ∪ Y ). But that follows
because both Cn(X) and Cn(Y ) are included in
Cn(X ∪ Y ), owing to the fact that X and Y are
included in X ∪ Y .

1.7 The system is not complete because, for example,
¬(¬p & p) cannot be deduced; it is not an axiom,
not a conjunction, and does not begin with a double
negation.

3.2 By the soundness and completeness theorems, this
reduces to showing that if A and A ⊃ B are valid,
so is B.

5.2 Setting 〈1, 1〉 = 1, 〈0, 1〉 = a, 〈1, 0〉 = b, 〈0, 0〉 = 0
we see that the only difference between B2

2 and B4

is that here one more element is designated. (See
Exercise 1.4 of Chapter 5 for a more general treat-
ment.)

5.3 Define f(x) = 〈x, x〉 and g(〈x, y〉) = x; these are
homomorphisms taking undesignated elements into
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undesignated elements. Hence M is an adequate
matrix iff M2 is an adequate matrix.

5.4 The function f(1) = 1, f(0) = 0 is a homomor-
phism of B2 into M∗

3 taking undesignated elements
into undesignated elements. Hence the proposi-
tional calculus is statement complete for an M∗

3 -
propositional language (and argument complete for
the same reason: a counterexample in B2 is again
a counterexample in M∗

3 ). The logic is not state-
ment sound since −(b ··· −b) = 0. However, the
link between statements and inferences is classical:

 ¬(A & ¬B) iff A 
 B in an M∗

3 -propositional
language—that is, if d(¬(A & ¬B)) = d(A) = 1,
then d(B) = 1 for any M∗

3 -assignment d. But if
d(¬(A&¬B)) = 1, then d(A&¬B) equals either 0
or b. But d(A & ¬B) = d(A) ··· d(¬B), so it cannot
equal b. If d(A) ··· d(¬B) = 0 and d(A) = 1, then
d(¬B) = 0; hence d(B) = 1.

5.5 Let c be an element of M and add an element b
which is like c in all respects to form M ′. Then
f(x) = x is a homomorphism of M into M ′, and
g(b) = c, g(y) = y when y 6= b is a homomorphism
of M ′ into M .
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6.1 We let M be the matrix 〈E, D, ···, −〉 such that

E = {0, 1}4, D = {〈1, 1, 1, 1〉},
− 〈x, y, z, w〉 = 〈−x, −y, −z, −w〉,
〈x, y, z, w〉 ··· 〈x′, y′, z′, w′〉 = 〈x ··· x′, y ··· y′,

z ··· z′, w ··· w′〉

Then the supervaluations of L correspond exactly
to M -assignments; for example, if s is the super-
valuation corresponding to the set {v1, v2} of val-
uations, then s corresponds to the M -assignment
d(A) = 〈v1(A), v2(A), v2(A), v2(A)〉. We can gen-
eralize this in two ways: (a) for sentences with at
most n atomic components the supervaluation ap-
proach is equivalent to the use of a finite matrix
with 22n elements; (b) we have here a construction
of powers of matrices (M being the fourth power of
B2) which yield the same set of valid sentences as
the original matrix (see Exercise 1.3 of Chapter 5).

Chapter 4

3.1 The rule has two parts; we must show that if 
A
then 
 (x)A, and that if y is not free in A, and

 (y/x)A, then 
 (x)A. [Note that in the sec-
ond case, (y/x)A is exactly like an alphabetic vari-
ant of A except that it has free occurrences of y
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wherever A has free occurrences of x.] We prove
the second case. Suppose ∼M 
 (x)A[d]. Then
for some d′ =x d, ∼M 
 A[d′]. Let d′′ =y d′,
d′′(y) = d′(x), so that d′′(y) = d′′(x). Then we can
apply the unary substitution theorem to d′′ by it-
self: d′′ =x d

′′ and d′′(x) = d′′(y). Hence M 
 A[d′′]
iff M � (y/x)A[d′′]. In addition, since y is not free
in A, d′′ agrees with d′ on all variables free in A, so
that ∼M � A[d′′].

3.2 Suppose ∼M � (Ey)(Fy ⊃ (x)Fx)[d]; that is,
M � (y)(Fy & ¬(x)Fx)[d]. Then for any d′ =y d,
M � Fy[d′] and ∼M � (x)Fx[d′]. So there must be
d′′ =x d

′ such thatM � ¬Fx[d′′]. Now let d′′′ =y d
′′,

d′′′(y) = d′′(x). Since y does not occur in ¬Fx, M �
¬Fx[d′′′]. But also, by the unary substitution the-
orem M � ¬Fx[d′′′] iff M � ¬Fy[d′′′], since d′′′ =x

d′′′, d′′′(y) = d′′′(x). On the other hand, d′′′ agrees
with d on all variables free in (y)(Fy & ¬(x)Fx)—
none—so M � (y)(Fy & ¬(x)Fx)[d′′′] and hence
M � Fy[d′′′]. But this is absurd.

5.1 We prove by strong induction on the length of A
that M � A∗[d] iff M � A[d∗]. The only part which
is not obvious is that if M � A∗[d], then M � A[d∗]
when A has the form (x)B. Suppose that M �
B∗[d], that is, M � (x∗)B∗[d], so for each d′ =x∗ d,
M � B∗[d′]. By hypothesis, for each such d′, M �
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B[d′∗]. It will suffice to show now that if d′′ =x d
∗,

then d′′ = d′∗ for some d′ =x∗ d. This can be done
by explicit constructions; given d′′ =x d

∗, we define

d′(y∗) = d′′(y) for all variables y,

d′(z) = d(z) when z 6= y∗ for any y.

We clearly have that d′′ = d′∗, and need to show
that d′ =x∗ d. This amounts to: If y 6= x, then
d′(y∗) = d(y∗). But d′(y∗) = d′′(y) = d∗(y) when
y 6= x, and d∗(y) = d(y∗), so d′(y∗) = d(y∗) when
y 6= x.

6.2 Note that any sequence d in M is also a sequence
in M ′. For such a sequence d and any sentence
A we have therefore M � A[d] iff M ′′ � A[d] iff
M ′ � A[d].

6.3 Let M ′ be a submodel of M . Then, since A is
quantifier free, M ′ � A[d] iff M � A[d] for any
sequence d in M ′ (this can be proved by an easy
induction). Now M � B iff M � A. So if M � B,
then M � A[d] for all sequences d in M , hence
M � A[d′] for all sequences d′ in M ′. But then
M ′ � A[d′] for all sequences d′ inM ′; henceM ′ � B.

8.1 To show that M and M ′ are elementarily equivalent
it suffices to show that they are isomorphic. Define
f : f(i) = 2i. We clearly have that 〈f(i), f(j)〉 ∈
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{〈2i, 2j〉 : i ≤ j} iff 〈i, j〉 ∈ ≤; moreover f is one-
to-one and onto, so f is an isomorphism. To show
that M ′ is not an elementary submodel of M , let
d(x) = 0, d(y) = 2. Then M � (Ez)(x ≤ z & z ≤
y & z 6= x & z 6= y)[d], but this does not hold for
M ′, although d is a sequence in M ′.

9.1 If X 
 A in L∗, then f(X) 
 f(A) in L∗, for all
one-to-one substitution functions f , hence f(X) 

f(A) in L for all such f , hence X → A in L. On the
other hand, suppose that X 
 A does not hold in
L∗; then L∗ has a denumerable model M = 〈f, D〉
with assignment d such that d satisfies X∪{¬A} =
X ′ in M . Let f(xi) = x2i; as in Section 5, we
conclude that some d′ for M satisfies f(X ′). Let
d′′ agree with d′ on all even variables, and map the
odd variables onto D; then d′′ satisfies f(X ′) and
is canonical. But then d′′ satisfies f(X) and not
f(A); hence f(X) 
 f(A) does not hold in L.

10.2 Let Fx be (Cx & ¬Cx) in the first case, let it be
(Ez)(z = x) in the second, and apply principle FD.

Chapter 5

1.1 Note that td(p) = td′(s(p)) for all atomic sentences
p; by induction td(A) = td′(Ss(A)) for all sentences
A. If d′ exists, so does d.
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1.2 Let M -assignment d satisfy set X and let s be a
one-to-one substitution function. Define d′ :
d′(s(p)) = d(p), d′(q) = d(q) when q 6= s(p) for
any atomic sentence p. Because s is one-to-one, d′

exists when d exists. By Lemma 2, d′ now satisfies
{Ss(A) : A ∈ X}.

1.3 If d, d′ are assignments for M, M ′, respectively,
define d × d′ to be the assignment d × d′(A) =
〈d(A), d′(A)〉. It is easily shown that any M �M ′

assignment is such a product of M and M ′ assign-
ments, and conversely. Moreover, d× d′(A) is des-
ignated exactly if d(A) and d′(A) are both desig-
nated, so A is valid in M �M ′ iff A is valid in both
M and M ′.

2.1.3 Let Y be the least set containing p1 and such that if
A is a sentence with atomic components p1, . . . , pn
which belongs to Y , then both A & pn+1 and A &
¬pn+1 belong to Y . Then the set in question may
be defined as X = {♦B : B ∈ Y }. The members
of Y form a tree with p1 as origin and being part of
as ancestor relation. The members of a branch of
this tree are jointly satisfiable, but the union of any
two branches is not satisfiable; moreover, there are
infinitely many branches. So X is not satisfiable
in a finite model structure. But we can take the
set B of branches of this tree as possible worlds;
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then 〈B, B2〉 is a 5-ms, and X is satisfied in each
member α of B by the valuation vα : vα(pi) = T iff
pi occurs as a conjunct in some member of branch
α. It is also possible to construct a denumerable
ms; take a specific branch B, say the leftmost, and
consider the set C of rightmost branches passing
through members of B. C is countable because B
is countable, and 〈C , C 2〉 is again a suitable 5-ms.

2.2.1 (Ad R2) If not 
 �A in L = 〈Synt, Val, T, V 〉
then there is a v in V such that for some t in T ,
tv(A) 6= T. But by (i), tv ∈ V , so not 
A in L.
(Ad A2) If v(�(A ⊃ B)) = v(�A), then for all t
in T , tv(A ⊃ B) = tv(A) = T, so tv(B) = T. But
then v(�B) = T.
(Ad A1) If v(�A) = T, then tv(A) = T for all
t ∈ T ; by (ii), v(A) = T.
(Ad A3) If v(A) = T and v′ = tv, then by (iii),
v = t∗v′, so v′(♦A) = T. Since this is so for all t in
T , v(�♦A) = T.
(Ad A4) If v(�A) = T, then for all t in T , tv(A) =
T. By (iv), if v′ = t′(t(v)), then v′ = t′′v for some t′′

in T ; hence v′(A) = T. So for any t, tv(�A) = T;
so v(��A) = T.

2.2.2 That the soundness results follow holds a fortiori ;
in addition, the completeness proof given in this
section continues to go through, because the iden-
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tity {vβ : αRβ} = {tvα : t ∈ T} continues to hold.

3.1.1 In L∗, A is valid iff (Ex)(Ey)(x 6= y) 
 A in L.
First, to show that (Ex)(Ey)(x 6= y) is valid in
L∗, we note that any (V, N)-saturated set will con-
tain y = y, and hence (Ex)(x 6= y), and hence
(Ex)(Ey)(x 6= y), for any pair of distinct variables
x and y. Second, to show that only the sentences
quantificationally deducible from (Ex)(Ey)(x 6= y)
are valid in L∗, let X = {(Ex)(Ey)(x 6= y)} and
C(X) = {A : XCA}. We maintain that C(X) is
(V, N)-saturated and provides therefore a counter-
example to the validity of any sentence not de-
ducible from (Ex)(Ey)(x 6= y). It suffices here to
show that (Ex)(Ey)(x 6= y) 
 (Ez)(z 6= w) in L
when z and w are distinct variables, which can be
shown, for example, by semantic tableau.

3.2.1 Let v be the admissible valuation for L such that
v(pi) = T iff i = 2n ···3 for some nonnegative integer
n. Then if X is a (V, N)-saturated set satisfied by
v, and j 6= 2n ··· 3 for any such n, then neither pj
nor ¬pj can belong to X. For if either belonged,
so would p2j, so v(p2j) = T, so 2j = 2m ··· 3 for
some m, so j = 2m−1 ··· 3, counter to assumption.
In addition, N is finitary, so any (V, N)-saturated
set satisfied by v can be extended into a maximal
such set. It will now suffice, therefore, to prove that

330



Y = {pj : j = 2n ··· 3 for some nonnegative integer
n} is clearly included in some (V, N)-saturated set
satisfied by v. But clearly X = {A : Y 
 A in L} is
such a set, since Y is already closed under N and X
does not contain any atomic sentences or negations
of atomic sentences that do not belong to Y .

3.3.1 (a), (b), (d), (e), (g) hold. This can be proved
by considering the construction of CONL(X, K).
Thus for (a) let X = {A&C}, K = {A 
 B}; since
A & C 
 A holds classically, B ∈ CONL(X, K).
For (b) we assume A 
 B and A 
 C, so that both
B and C belong to the consequences of {A}; by the
classical B, C 
 B & C, it follows that B & C also
belongs to these consequences under our assump-
tions.

But the others need not hold, for example, if Fy
presupposes Fx, we have Fy 
 Fx, but not (nec-
essarily) Fy 
 (x)Fx.

4.2.1 The only principle that would have to be added to
quantificational logic is that if A is a theorem, so
is T(A). To prove this we note first that if A be-
longs to any saturated set, so does T(A). Therefore,
the rule is sound. [Indeed, the stronger principle
A ` T(A) is sound, but we are here only considering
valid sentences.] The important question is com-
pleteness. Let Y be the least set of sentences closed
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under deduction in quantificational logic such that
if A is in Y , so is T(A). That Y is closed under N is
clear; we need to prove that Y is satisfied by some
valuation of L0. We can do this by noting that Y
is the union of the sets

X1 = set of valid sentences of L0,

X2i = X2i−1 ∪ {T(A) : A ∈ X2i−1},
X2i+1 = {A : X2i 
 A in L0}.

For convenience, let Yi = {T(A) : A ∈ X2i−1 and
T(A) /∈ X2i−1}, so that X2i = X2i−1 ∪ Yi. Indeed,
all members of X are semantically entailed by the
union Y of the sets Yi. We define the model 〈f, D〉
as follows: D is the set of variables occurring in
members of Y , f(P ) = {x ∈ D : Px ∈ Y }, f(P ′) =
Λ for any other predicate P ′. Now the assignment
d : d(x) = x if x ∈ D, d(x) is alphabetically the
first variable in D otherwise, satisfies the set Y in
this model.

4.3.2 We have X ` A iff T(X) `1 T(A), and Y `1 B iff
Y ` B in S5. So we must prove that if X ` A in
S5, then T(X) ` T(A) in S5, with T as necessity
sign. Given the soundness and completeness of S5

for L5 (see Section 2.1) it suffices to show that if
X 
 A in L5 and T(X) is satisfied in a 5-ms, then
so is T(A), which is straightforward.
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4.3.3 If ∼T(A) is satisfied in M , then there is a d over
M that does not satisfy A. Hence if X ∪ {∼T(A)}
is satisfied in M , so is X but not A. Conversely,
suppose that X but not A is satisfied in M . Then
some d over M does not satisfy A; but then ∼T(A)
is satisfied in M .

4.3.4 It suffices to show that L∗2 can be regarded as an
M∗∗

3 -propositional language. This means that to a
model M of L∗ there corresponds an M∗∗

3 -assign-
ment d such that d(A) = 1 iff |A|M = T, d(A) = 0
iff |A|M = F, and d(A) = b otherwise, for all sen-
tencesA of L∗. Conversely, for everM∗∗

3 -assignment
d we have a general model M of L∗ such that these
conditions are satisfied. Both cases are easily proved.
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Well-ordering
well-ordering Principle
Whitehead, Alfred N.
Wittgenstein, Ludwig
Woodruff, Peter W.

Zorn’s lemma
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Index of Unsearchable Terms

ARG, 131, 167, 223

B (Brouwersche system),
223, 224

B2 (two-element Boolean
algebra), 143–146,
301

B4, 145–146, 301

DN (double negation), 127

Gödel, Kurt, 123, 154

I, 165, 167, 175, 177, 178

Lτ , 225, 227, 229
Lb, 224
Lm, 224
L4, 224, 227
L5, 224, 226, 227
 Los, J., 154

Löwenheim, L., 191
Löwenheim–Skolem

theorem, 154,
191–195, 198, 204,
210, 229, 266

M (von Wright), 223, 224
M3, 147–148, 265
M∗

3 , 148, 301
M∗∗

3 , 149, 265
MP, 125

NK, 127, 165

S4, 223, 224
S5, 223, 224, 226, 262
SYST(L), 76, 270

Ul, 165, 178
Ur, 165, 303
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Index of Symbols

→, 40, 124
¬, 49
&, 49
SAp , 50
Ss, 51

, 55
H, 59
∪̇, 75
˙ , 77
`, 117
Th, 120
Cn, 121
=, 158

E, 160
(y/x), 160
�, 169
∼, 169
=x, 170

ι, 208
�, 223
♦, 223
τ , 224
N, 241
C, 241
T, 253
ω, 277
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