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BAS C. VAN FRAASSEN

FIGURES IN A PROBABILITY LANDSCAPE'

1. THE PRIMARY LOGIC OF JUDGEMENT

In general, our opinion is certainly not expressible in precise numerical probabilities.
But in some cases it is, and in the case of a small field of propositions — e.g. a field
generated by a single proposition — my opinion may be exactly represented by a
single probability function. Therefore I shall begin with the fiction that it is always
§O.

Expression of a judgement is a partial expression of one’s opinion. Examples
are accordingly:

(a) It seems more likely than not that A

(b) It seems twice as likely that A than that B

) It seems at least as likely that A as that B

(c) It seems 7 times more likely that A than not, on the supposition
that C

The semantic notion needed is that of a probability function which satisfies a given
judgement. It is easy to see what that means for this example. For example, p
satisfies (a) exactly if p(A) > p(—A).
Epistemic logic has been misguided when it investigated the relation

John believes that . . . |- John believes that

In John’s opinion, (b) |- In John’s opinion, (b')
which holds if the situation which satisfies the former must also satisfy the latter (truth
preservation). This led to triviality, because for any example of this relationship we
can imagine a moron who is a counter- example. Instead we should look for the
significant relationship

O ®")

which should hold intuitively if any rational opinion partially expressed
through (b) must also be expressible in part by (b’). On our fiction, this means
that any probability function which satisfies the former also satisfies the latter.

! Tam very glad to have this opportunity 1o honor my teacher, and eventual colleague and friend,
Nuel Belnap. In my first year as a graduate student I had Nuel’s seminar on the logic of questions,
which took us on an exploration of the riches of formal semantics — greater than the fabled treasures
of the Indies and the Spanish Main to my eyes. Questions, it tumed out, needed a great deal for their
understanding: semantics, the technique of consistency and completeness proofs, modal logic, and most
of all, the enlargement of philosophical logic beyond the realm of declarative factual statements. That
was the beginning; tautological entailment, relevance, algebraic techniques, and much more were to
follow. It is easy and pleasant to recall those days, and perhaps most of all Nuel’s gentle and unpolemical
spirit, always ready to laugh a little at his own and our shared excitement.
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Brian Ellis (1979) investigated this subject for non-probabilistic judgements; see
my (1980).

This sets the primary subject for investigation. We can immediately note a
useful reduction of the forms of judgement, in terms of the statistical notion of
expectation (*‘expectation value”).

A space isacouple S = (K, F) with A # K € F and F a field of subsets of
K (the events or propositions). The probability functions on S are defined by the
conditions

®1) 0=p(A) < p(A) < p(K) =1

®2) p(AUB) + p(AN B) = p(4) +p(B)
A random variable (rv) on K is a function g : K — R (real numbers) which is
“measurable” with respect to F', that is

[RYVY) g~ 1(E) € F for all Borel sets E

where the Borel sets are the countable unions and intersections of intervals ((half-)
open, (half-) closed) of real numbers. I shall restrict the discussion to rv with finite
range which I shall call simple rv. Then (RV) amounts to

(RV simp) ¢~!(r) € F for all real numbers r.

Intuitively, g is a quantity which has a numerical value in each possible state of
affairs, and its value can be described by means of field ' of propositions.

For given probability function p, the expectation Ep(g) = Xp(A)ga where A
ranges over the characteristic partition X, of rv g, which has the members required
by (RV simp), and I use the notation

for A =g~ 1(r), write g4 = 7.
Example. g measures the daily rainfall in inches, and K is a finite set of days. Then
for a person with subjective probability p, the number E(g) is the expected number
of inches of rain — which means, the possible daily amounts of rain, averaged in
terms of his probabilities for those amounts.
Let our standard forms of judgement now be all Boolean combinations of
E(f > a) satisfied by piff E,(f) > a
E(f < a)satisfied by piff E,(f) < a
This is already redundant, since E(f < a) is the same as E(—f > —a). We can
further abbreviate:

E(f=a) =E(f>a)& E(f <a)
E(f,0,0)) = E(f > a) & E(f <8)
E(f >a) ="E(f<a)

E(f,(a,b]) = E(f > a) & E(f <)

and so forth. But we can also reduce the other forms of judgement, by using the
indicators of propositions: [ 4(z) = 1ifzisin A (Ais trueatz) and = 0 otherwise.
Then

p(A)=riff E,(Ia) =17
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P(A) :p(B)=riff Ep(I4 —rIg) =0
p(A|B) = riff Ep(IAnB - TIB) =0
provided p(B) # 0
because expectation is linear:
Ep(af +bg) = aEp(f) + bEy(g)
We can now rewrite our original examples as:

(a) P[A(—A]:E(IA—I_A<0)

®) P[A=rB]l=E(Iy —rilp=0)

®) P[A>B]=E(la —Ip > 0)

(©) Pl[A=r~ A|C] = E((Lanc — (n/7+ 1)Ic) = 0)

so that the now defined family of judgements comprises a large variety. There are
however intuitively possible judgements which are not so expressible, such as that A
and B seem independent (which is satisfied by p exactly if p(A)p(B) = p(A N B)).

2. STATES OF OPINION: VAGUE PROBABILITY

If a person has numerically precise probabilities, the judgements he or she expresses
will convey only part of that. The difference between that fiction and ourselves, I
propose as improved hypothesis, is that in our case a finite and even small number
of judgements may convey all there is to our opinion. But then there is a large
class of probability functions which satisfy just those judgements, hence which are
compatible with the person’s state of opinion. Call that his or her representor (class).

Suppose my entire state of opinion can be expressed by means of the judgement
P[A > 0.5] or equivalently E(I4,[0.5,1]). Then we may equally say either that
my probability for A is vague, with lower and upper bounds 0.5 and 1, or that I am
ambivalent between or about the probability functions p such that 0.5 < p(A) < 1.
This modelling of vagueness as ambivalence — the “supervaluation” way — is
familiar from the general literature on that subject (Fine (1975), Kamp (1977), van
Fraassen (1968, 1970) are among the earliest discussions). It certainly has its limits,
which have to do with the well-known “vagueness of vagueness”, and this subject
continues to be explored (see e.g. Tappenden (1989)).

The logic and semantics of vague probability was worked out satisfactorily
over several decades (see especially Smith (1961), Levi (1974), Spielman (1976),
Williams (1976), Suppes and Zanotti (1977), Jeffrey (1983)). In my opinion the
results are perfectly summed up in Theorem 1 of Gaifman (1988). I will explain
how his models work, and then develop the generalized theory applying to vague
expectation judgements.

An ordinary statement, such as “It rains” is meant to represent some member
of the field of propositions on which our probabilities are defined. Each such
proposition is represented by a class of situations in which it is true. What about the
judgement that it seems as likely as not that it will rain? Its semantic value is the set
of probability functions which give 0.5 to that proposition. But we may also wish to
consider the proposition that it is (was, will be) my opinion that rain seems as likely
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as not. To have this proposition to think about, it needs to belong to that field. That
in turn means that we must think of each situation as including me having some
state of opinion or other. Well, that is quite possible. We can think that way without
circularity. Here is, roughly, how Gaifman handles it:

There exists for the space (K, F) a function P such that for
each A in F and interval [a, b] C [0, 1], there is a member B of
F such that P(4, [a,b]) = B, and this function P is moreover
such that. ..

I will not go into the details, for Gaifman then gives the representation theorem
which establishes that this is equivalent to:

There exists for the space (K, F') a function p mapping K
into the probability functions defined on F, and such that
P(A,[a,b]) = {z € K : a < p(z)(A) < b} belongs to F
for all A in F',and for all a, b in [0, 1].

How exactly does such a structure model my opinion? First of all we may
think of F' as having a subfield for each definite “ordinary” topic on which I have
opinions — for instance, the field of propositions about the weather tomorrow, or
over the next year, or the tosses of a given die or dice. Secondly, we can see my
representor class in this structure: the set RC' = {p(z) : z € K} is the set of
probability assignments (to the whole of F') compatible with my opinion.

There is a problem which I must discuss here, if only briefly. The model
represents also opinions about my own opinion. There must be criteria of rationality
for those too. Suppose that my opinion about whether it will rain is vague, and
completely expressed by the judgement

1) Plrain, [0, 0.5]]

What opinion might I have concerning the autobiographical proposition
which is true exactly if (1) expresses my opinion about rain completely? Could
1 give probability 0.8 to the statement that my probability for rain is greater than 0.5?
If I do, my opinion has some defect; the question is only whether it is a factual error
or a logical one. Am I like someone who believes that Hitler was a misunderstood
good man, or like someone who believes that a square with the same perimeter as a
certain circle, has a greater area than that circle? The latter is incoherent, even if he
does not realize it. In this paper I shall discuss only opinion “of first order”.

If we call such a combination (K, F') and P (or p) a model, the general logic
of judgements has found an image in a restricted logic of propositions. For example

Pl[A=z],P[B=y],P[ANB=Z]||F P[AB=z +y - 2]
" is called correct because

P(4,[z]) 0 P(B,[y]) N P(AN B, [2]) C P(AUB, [z +y - 2))
in all models, and hence also, if the left hand side is K in such a model, then so is
the right hand side.
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3. STATES OoF OPINION: VAGUE EXPECTATION

The outline of a theory of vague expectation, along the above lines, is now clear
enough. The main first desideratum will be a representation theorem, formulated in
such a way that we have a clear and complete axiomatization of the theory. To this
end I define the two notions of VEX (“Vague Expectation”) model and structure. I
will use Greek letters to range over closed real number intervals.

(K, F,p)isa VEX model iff A # K € F;
F is a field of subsets of K; and

K robability functions with domain F'} such that .
p:K—=1{p Y ¥ } Correction to lllve.

B(f.0) =tz € K : Byo)(f) €6} (Read "(i)" as subscript
letter "i" and "delta" as
the Greek letter delta, in
what follows:)

is in F' for each closed interval § and every simple rv f
of the space (K, F).

(K, F,E)isaVEX structure ift A # K € F;

F is a field of subsets of K, and [llve should end with:

E : {simple rv} x {closed intervals} — F' such that "contains all sums of

ve. E(f,[inf(f),sup(f)]) = K elements a(i) of intervals
E(f,A)=A delta(i)."

live. E(kf,[a,b]) = E(f,[ka, kb)) ifk #0
Ilive. NE(fi,6i) C E(Xf;, C)
where C'is the least closed interval that contains all §;
IVve. E(f,[a,b]) N E(h,[c,d]) C E(g, [min(a, c), maz(b, d)))
iff<g<h.
Vve. E(f,6Né)=E(f 6 nE(f§)
Vive. E(f,6 U8') = E(f,6) U E(f, )
if 6 U ¢’ is a closed interval,

In Illve. 1 have left the index set indefinite; this should be finite in the present
context, but could be countable if we require all the probability functions in question
to be probability measures (i.e. countably additive).

We should note that all the other forms of judgement discussed are available
to us here. Since a simple rv f has a minimum f_, for example, E(f < b) =
E(f,[f-,b]), and of course E(f > b) = K — E(f < b), and so forth.

THEOREM 1. If (K, F,p) is a VEX model, and E is defined by
E(f,6) ={z € K : E,(5)(f) € 6} then (K, F, E) is a VEX structure.

The proof is elementary, by inspection of the “axioms” Ive.-Vive.
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THEOREM 2. If (K, F, E) is a VEX structure, then for each simple rv f of
space (K, F) and for each set A # Y C K there are numbers a¥ , bY such that:

Y CE(f,6)  ifandonlyif [af,b]]Cé

CoroLLARY. If (K, F, E) is a VEX structure, then there is for each = in K
and each simple rv f of space (K, F') a unique number r§ such that:

z € E(f,6) if and only if ri €6.

THEOREM 3. If (K, F, E} is a VEX structure and p, p’ are defined by
p(z)(A) = inf{z:z € E(14,[0,2])}
P (z)(A) = sup{z : z € E(la,[z,0])}
then p = p’ and (K, F, p} is a VEX model.

It is easy to see how Theorem 3 will follow from the preceding ones. Ap-
plying the Corollary to f = I, we see at once that p = p’ because both pick out
r§ for each z in K. The “axioms” in the definition of VEX structures give the
ordinary characteristics of expectation when the intervals are degenerate; using £’
for neutrality:

E'(f <a)={z € K : Eps)(f) < a}
={z€K:rf <a}
={z€ K :[r§] C[af,a]}
= {z € K : {z} C E(f,[d,a])}
={z€K:x€E(f;[a;(,a])}
= E(f <a)

and so this set will be in F' as required.

So this ends the proof of Theorem 3 from the Corollary. The latter follows
from Theorem 2 by setting Y = {z}. Writing then a}, b7 accordingly, we consider
the equation

E(f,[aF,b67]) = E(f,[aF,r]) U E(f, [, b7])

which is true for a7 < r < b%. But then, if this interval is not degenerate, = must
lie in one of those two parts, and [a%, b%] is not minimal in the required sense —
contrary (o supposition.

There remains Theorem 2. It will suffice thatfor A # X C K thereisa smallest
closed interval é such that X C E(f, §). Itis already part of the supposition that we
have a VEX structure, that this set E'( f, ) is in the field of propositions.

The rv f is simple, so its range falls inside a closed interval [f_, f;] and
E(f,[f-, f+]) = K by Ive. Consider the family of closed subintervals é of this
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interval such that, for given X # A, X C E(f,§). By Ive, IVve, Vve this is a
proper filter, and since [f_, f, ] is compact, it follows that this filter has a non-empty
intersection. (Cf. e.g. Gaal (1964), Ch. II1, sections 1 and 2.) Call it . This must
itself be a closed interval, for if é is in the family, and £ C § then also the least
closed interval containing E' is contained in §, for all § in this filter, and hence part
of, and therefore identical with E. This ends the proof.

4. CONDITIONALIZING A VEX

The next obvious question to ask is: how does a person’s opinion change with time?
There are philosophical disputes and also nice general results in this area, which I
have discussed elsewhere (1984, 1986, 1987). At least from a technical point of
view the old rule of Conditionalization

(COND) prior p, evidence E — posterior p’ = p(—|E)

plays a central role almost everywhere. So that is what I shall take up here.

Suppose a person’s opinion is vague, equivalently, that his or her opinion is
ambivalent on a whole set of probability functions. Suppose in addition that he
thinks in a certain case that a certain rule such as COND is applicable. Then it
would seem that his posterior opinion should be in effect ambivalence on the new
set, formed from the original one by applying the rule to each of its members. This
leads us to the definition:

If M = (K, F,p)isa VEX and B in F such that E(Ip = 0) #
K, then the conditionalization of M on B is the structure

Mg = (KB, FB pB)

where
KB =KnE(Ip >0)
FB={ANE(p>0):A€F}
P (2)(Q) = p(=)(Q|B}

forall z in K®, and Q in FB.

Our suppositions entail at once that K ¥ # A and that F'B is a subfield of F.

Some violence is done here to the range of envisaged possible situations if, for
example, these include ones in which Santa Claus exists, and all the latter are ones
in which the precise opinion associated assigns zero to B. So it looks as if we are
confusing the conditionalization of opinion on B — “learning” that B, taking B as
one’s total new evidence, with “learning” — taking as one’s total new evidence —
that one’s own opinion really is such as to give B a positive probability.
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But I think this case does not arise if we make up the VEX in the way it
should be made up. Suppose (K, F°) represents only possible situations logically
independent of my present opinion, but that opinion is vague on the set ¢} of
probability functions on F°. Then we should build our VEX starting with K =
K° x Q — in other words, in such a way that the association of probability functions
is used purely and solely to represent our present opinion. But (K, F'°) itself could
be made up of VEXSs, say ones that represent in part our possible future states of
opinion — that makes for no difficulty.

THEOREM 4. A conditionalizationof a VEX is a VEX.

I chose a VEX model to focus on, because there we see at once that p? does
indeed assign probability functions on F'B. The rest is not so obvious, because there
is no definition of conditional probability in terms of expectation. To prove the
theorem, I shall first prove a lemma for all VEX models, which concerns a surrogate
for conditionalization. Let us define for M = (K, F\, p):

E/Z(f) =) Ap(z)(AIB)fa : A € X;)
ifz € E(Ip > 0) and undefined otherwise;

and then prove the

LEMMA. ifz € E(Ig > 0) then E/B(f) € [a,b] if and only if z belongs to
the two propositions E(h — alp > 0) and E(h — big < 0).

To prove this assume z is indeed in E(Ip > 0) in which case the following are
equivalent:

L E/E(f) €a,b]

2. a <Y {p(z)(A|B)fa: A€ X;}<b

3. a <1/p(z)(B) C{p(s)(ANB)fa : A € X;} <b
4. ap(z)(B) < Ez(f.Ip) < bp(x)B

because f.Ip defined by f.Ip(z) = f(z).Ip(x) takes value f4 on A N B and zero
elsewhere for exactly the members A of X;. But4 is equivalent to the conjunction:
5. Ex(aIB) < E:(f.Ip) and Er(f.IB) < Ez(bIB)
6. z€ E(fIp—algp >0)andz € E(f.Ip —blp <0)
as the lemma asserts.

But we see now that there is a close relationship between E® and its surrogate
E/® partially defined on M. If g is an rv of (KB, FB) define g+ to be the rv on
(K, F') such that

g+a =gaforAinX,andg+g_gs =0
then we have
7. E/B(g) = EB(g) forallz in KB
8. {ze KB E/B(9)€[a,b]}=KBn{zeK:
E/B(g+) is defined and in [a, b]}
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9. :KBQE(g-’r.IB—aIBZO)ﬂ
E(g+ .Ig—bIp <0)
which is certainly in F, and hence, in view of the definition, also in FZ. This ends
the proof.

5. PRESERVATION OF FIGURES: FINITE DESCRIBABILITY

We are finite beings. Some of us are also small-minded. Anyone who can be
simulated on a computer surely is that. But as long as we are finite then, even if
we are not small-minded, with respect to any well-defined field of propositions our
expressible opinion must be expressible in a finite number of judgements — so in
that respect we are just the same.

Within this context therefore the representor of my state of opinion too s a finite
intersection of propositions E/(f > 0) — let us call such a set a figure. (Obviously
E(f > a) = E(f — a > 0) etc.; we are not losing generality here.) The complexity
of a figure is the least number of such propositions of which it is an intersection.

To say that my representor is a figure means that it is a figure in the set of all
probability functions on a given space. If a certain VEX (X, F, p) then models my
state of opinion, that means that {p(z) : ¢ € K}, which is my representor, is a
figure in the set of probability functions with domain F'.

Question (essentially raised earlier by Gilbert Harman — see my (1987)):

— is this property of being a figure preserved under conditionalization?
— if so, does its complexity decrease, or increase and if the latter, by how
much?

It is easy to see why this is of interest: having opted for a representation we
believe adequate — partly in its observance of human limitations — we shouldn’t
like it to be one which becomes inadequate if the state of opinion is changed by
something so apparently elementary as conditionalization. But the answer to the
first part is yes, and the answer to the second is that the complexity increases at most
by a little, and often decreases.?

Let X be the set of probability functions on a given domain. A figure (in X)
— a finitely describable subset — is equivalently the intersection of finitely many
“half-spaces” defined by bounded expectation values:

E(f > a)={r: E,(f) > a}

E(f <a)={r: E(f) <a}
where f is a random variable on the domain. I shall use p, ¢, r as variables ranging
over the probability functions on that domain. Abbreviation:

|B|=FE(Ip=1)=E(Ig > 1)NE(Ip < 1)
={r:r7(B)=1}

2 With thanks to John Broome for a helpful discussion.
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where 14 is the indicator taking value 1 on A and O on —A.
For any subset S of X define:

Sp = {p(—|B) : p € Sand p(B) > 0}
the conditionalizationof S on B in X.

THEOREM 5. If S isafigurein X, sois Sp

To prove this, note that p has a (“orthogonal”) decomposition in terms of B, if
0<pB)<1l:
p=cpt +(1-c)p”
where 0 < ¢ < 1, p* = p(—|B); p~ =p(—|K — B).
So also Ep(f) = cEp+(f) + (1 — ¢)E,-(f)

LEMMA. (DNE)c =DcNEc.

Obvious from the definition. Hence we need only look at a single half space.
I'lldoitfor E(f > a).

LEMMA. E(f 2 a)=E(f—a>0).

So let us take S = E(g > 0). Noting that if p* exists then p(B) > 0, we
argue:
q € Sp iff ¢ = pt forsomep € S
i.e. such that E,(g) > 0
i.e. such that cEp+(g) + (1 —¢)Ep-(g9) 20
ie. such that cEp+(g) > —(1 —¢)Ep-(g)
Hence: ¢ € Sp iff ¢ € | B and there is 7 in |K — B| and number 0 < ¢ < 1 such
that

) Ei(e) > “VE.(9)

We have two cases:

Case 1:  for some 7 in | — B|, E,(g) > 0. Then the RHS of (*) has no lower
bound (as ¢ goes to 0 it goes to negative infinity), so Sp = | B|
Case2: forallrin|— B|, E.(g) < 0. Inthatcase, the RHS of (*) ranges from
0 to positive infinity, so then the LHS need only be non-negative, and
Sp =|B|NE(g > 0).
In both cases Sg is a figure, as was to be proved.
Example. Let S be the set of probability functions on a given domain that give A a
probability > .5. The rv is then I4 — .5, and this has positive expectation for some
7 in | — B|. So the above implies that Sp = | B|. Indeed — suppose p gives 1 to B;
then p = p* and whatever p(A) is, we can mix p with a p~ so that the resultant is in
S, i.e. gives A a probability > .5, while also giving B a non-negative probability.
This was enough to show that the property of being a figure is preserved. Let
us now look at the complexity. Conditionalization will transform each half space
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into either |B| or its intersection with |B|. In other words for each relevant rv
we either keep the information that its expectation is non-negative or else lose it
altogether — while of course gaining the information involved in the new cestainty
of B. The latter corresponds to the intersection of two half-spaces. Therefore the
new complexity is at most two more than the old, and generally even less than it
was.

THEOREM 6. The complexity of a figure increases by at most two under
conditionalization.

This sums up all the preceding, for it implies preservation of figurehood.3

3 The author thanks the National Science Foundation for research support.
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