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Comparison

eInitial discrepancy attributed to thermal radiative transfer between the droplet surface and the duct
walls. In some experimental configurations, the ratio of the estimated incident thermal radiation from
the far-field as compared to the total energy flux of the unperturbed, simulated system reached 25%.

By assuming the bath gas to be optically thin to thermal radiation wavelengths, an effective heat source
term was introduced to the droplet surface to mimic the gray-body radiative exchange between the
liquid surface and far-field solid boundary.

. . *This modified the burning rate by a nearly constant amount over the droplet lifetime, which is to be
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expected as the radiative influx scales with droplet surface area.

*Within the experimental accuracy, the emissivity of the liquid phase was estimated to be 1.0.
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The modification was sufficient to account for the discrepancy in droplet behavior and to bring the
experimental results in line with previous experimental work conducted under true microgravity
condjitions.
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assuming the gas phase speciesmhad little interaction with the broadband far-field
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*As CO, mole fraction is increased, extinction, as
characterized by a region of high negative curvature,

, . , , begins at higher temperatures. This time corresponds
0 1 : : : exactly with a rapid decrease in burning rate.
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: | : *The rapid decrease in standoff ratio which occurs near
extinction corresponds exactly with 1250 K. It therefore
decorrelates from extinction time as the mole fraction of
CO, increases
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As visible 1n the temperature profiles at differing times
within a characteristic burning history, we see the

. : : : fundamental difference between the temperature profile
0 i i i i before the decrease in standoff and thereafter 1s the loss
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. . . . . *We therefore have a simple technique for differentiating
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: *The suppressant effect of carbon dioxide 1s therefore not

only because of an increase in local heat capacity, but

, . . . : also due to some more active source of heat loss. These

0 2 s : 3 10 12 losses could most easily be attributed to an increase in
Distance from Droplet Center (crm) spectral radiative heat transfer from the flame zone.
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