
9

Design Intent Coverage Revisited

ARNAB SINHA, PALLAB DASGUPTA, BHASKAR PAL, SAYANTAN DAS,
PRASENJIT BASU, and P.P. CHAKRABARTI

Indian Institute of Technology, Kharagpur

Design intent coverage is a formal methodology for analyzing the gap between a formal architectural

specification of a design and the formal functional specifications of the component RTL blocks of the

design. In this article we extend the design intent coverage methodology to hybrid specifications

containing both state-machines and formal properties. We demonstrate the benefits of this exten-

sion in two domains of considerable recent interest, namely (a) the use of auxiliary state-machines

in formal specifications, and (b) the use of modest sized RTL blocks in the design intent coverage

analysis.

Categories and Subject Descriptors: category [Integrated Circuits]: Design Aids—Verification

General Terms: Verification

Additional Key Words and Phrases: Design Intent Coverage

ACM Reference Format:
Sinha, A., Dasgupta, P., Pal, B., Das, S., Basu, P., and Chakrabarti, P. P. 2009. Design intent coverage

revisited. ACM Trans. Des. Autom. Electron. Syst., 14, 1, Article 9 (January 2009), 32 pages,

DOI = 10.1145/1455229.1455238 http://doi.acm.org/10.1145/1455229.1455238

1. INTRODUCTION

The design of complex digital circuits is typically done top-down. The design cy-
cle begins with the development of the microarchitectural specifications, which
captures the design’s architectural intent. The design team systematically at-
tempts to implement the design intent by choosing a set of functional blocks
that must work together to achieve the design intent. The larger blocks are
hierarchically implemented in terms of smaller blocks and so on. Each step
of this cycle refines the design intent, since the implementation typically has
more details than the specification from which it is built. In each step, either
the components are chosen from existing legacy designs, or the required com-
ponent specifications (in English) are developed. Design entry (RTL) for a new

Author’s address: B. Pal, Indian Institute of Technology, Kharagpur, India 731302; email:

bhaskarpal@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1084-4309/2009/01-ART9 $5.00 DOI 10.1145/1455229.1455238 http://doi.acm.org/

10.1145/1455229.1455238

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:2 • A. Sinha et al.

component starts when the component specification is simple enough to be
implemented as a unit module.

Verification, on the other hand, starts bottom-up. The unit modules are ver-
ified against the unit-level specification, before they are integrated into respec-
tive blocks. The blocks are then verified against the block-level specifications.
This process continues until all the components are integrated into the main
design and only then we are able to verify the integrated design against the
architectural specifications. Finding design intent violations so late in the de-
sign flow can be very expensive. Moreover, there is a serious gap in available
verification technology at this level: formal tools do not scale to this level, and
achieving meaningful simulation coverage over the integrated design is rapidly
becoming infeasible in practice.

In a previous work [Basu et al. 2006; Dasgupta 2006] we have shown that
if key properties of the architectural intent are formally captured early in the
design flow, then they can be formally carried through the top-down design flow.
The proposed methodology is shown in Figure 1. The design team works with the
verification team while developing the component block specifications. While
the design team expects that the component block specifications developed by
them are explicit enough to capture the design’s architectural intent, the ver-
ification team formally checks the validity of this expectation. This is done by
selectively defining formal properties for the component blocks and then check-
ing whether we can prove the architectural properties of the integrated design
from the properties of the components and the way they are interconnected
(that is, the top-level schematic). The development of component properties is
manual, but the proof methodology is automatic. When the blocks are small
enough, the block properties can be formally checked on the RTL for the blocks
using standard model checking tools.

There are at least three benefits in this approach, namely:

(1) We compose the formal specifications of the components while proving a
global property over the integrated design. This is significantly more scal-
able than composing the components themselves, since the properties are
much smaller than the state machines representing the components.

(2) We can perform the verification early in the design flow, even before the
components are coded. Logical errors due to incorrect decomposition of the
design intent can be detected early. Component specifications will be more
accurate and correct-by-construction.

(3) The acceptability of third-party design modules can be verified early if they
come with known properties. We can use the known properties along with
the properties of other components to check whether the design intent prop-
erties are satisfied.

The key component of the new approach, which has been presented in Basu
et al. [2006], is a method for proving the global properties of a design using the
properties of its components and the way they are interconnected. This is not an
equivalence checking problem, since the components properties will typically
have more functional details and more variables than the global properties.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:3

Fig. 1. Specification refinement. (Figure source: A Roadmap for Formal Property Verification,

Pallab Dasgupta, Springer, 2006).

This is a coverage problem, where the component specifications together should
catch all bugs that are caught by the global specification. Formally, any trace
that is invalid with respect to the global properties should refute one or more
of the component properties. The invalid traces of the component specifications
should cover (or be a superset of) the invalid traces of the global properties. We
refer to this coverage as design intent coverage.

This is a totally different approach for coverage analysis of formal specifica-
tions as compared to the existing body of literature on formal coverage analysis,
which primarily test the completeness of specifications by mutating a given im-
plementation and then testing whether the properties fail as a consequence of
the mutation [Chockler et al. 2001; Chockler et al. 2001; Chockler et al. 2003;
Hoskote et al. 1999; Katz et al. 1999]. A relatively recent survey on formal
coverage analysis can be found in Chapter 5 of Dasgupta [2006].

Though this coverage is always theoretically possible (since the components
actually constitute the design implementation), it is not practical to assume
that the verification team will always be able to achieve this closure by de-
veloping the formal specifications of the components. Therefore, we also need
a methodology for computing the coverage gap between the global properties
and the collection of component properties. The coverage gap is represented
by another property that captures exactly those scenarios under which a bug
detected by the global specification is not caught by the component properties.
Finding this gap is important, since verification should target these scenarios
specifically when the integrated design is available.

The core algorithm presented in Basu et al. [2006] compares two specifica-
tions, each consisting of a set of temporal logic properties. The first specification,

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:4 • A. Sinha et al.

A, consists of the global properties of the integrated design—we shall refer to
this specification as the architectural specification. The second specification, R,
consists of the collection of local properties of the components—we shall refer
to this as the RTL specification. This naming convention is only to indicate that
A is a higher level specification as compared to R. We assume that each signal
in A is also present in R, but not vice versa. The algorithm finds a property
P that represents the gap between A and R, that is, P fails in all those traces
where A fails but R passes.

Design intent coverage [Basu et al. 2006] and compositional model check-
ing [Sistla and Clarke 1985] can be seen as two extremes of a component based
design verification methodology. In the traditional model checking problem,
the components are given in RTL, and the goal is to check whether the compo-
nents together imply (or model) the architectural specification. The gap between
these represent the counter-examples. In the design intent coverage problem,
the components are given as specifications, and the goal is to check whether the
component specifications together imply the architectural specification. The de-
sign intent coverage approach has computational advantage, since model check-
ing methods typically run into capacity issues while attempting to compose the
state machines of the components.

In this article we explore the space in between these two extremes. Specif-
ically, we examine those cases where we are given formal properties for some
of the components and the RTL for the rest of the components. This enables
us to handle glue logic between modules (which may be modeled as small RTL
blocks), and extends our approach to cases where legacy designs are used for
some of the components (for which no properties are available). A preliminary
version of this work was presented in Das et al. [2006].

In this article, we extend the design intent coverage methodology [Basu
et al. 2006] to specifications that consist of auxiliary state machines anno-
tated with formal properties. This style of development of formal specifications
has received considerable recent attention for several reasons as explained in
Section 5.

The theoretical basis for both the extensions presented in this article is sim-
ilar in the sense that in both problems we compare specifications consisting of
formal properties and state machines. Moreover, the problems of model check-
ing and design intent coverage are fundamentally similar when properties are
specified in Linear Temporal Logic (LTL) [Pnueli 1977], because LTL satisfia-
bility (which is the formal basis for design intent coverage algorithms) coincides
with LTL model checking [Sistla and Clarke 1985]. In Section 2 we demonstrate
this similarity and methods for reducing one to the other—this reduction forms
the foundation of the methods presented in this article.

The article is organized as follows. Section 2 presents the relation between
LTL satisfiability and LTL model checking—these results are not new, but they
develop the necessary background for the methods presented in this article.
Section 3 presents our original algorithms for design intent coverage. Section 4
introduces the role of auxiliary state machines (ASM) in specification develop-
ment and then extends the design intent coverage methodology to specifications
containing ASMs. Section 5 extends the design intent coverage methodology to

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:5

Fig. 2. Verilog implementation of a 2-bit gray counter.

cases where we are given formal properties for some of the components and the
RTL for the rest.

2. LTL: SATISfiABILITY VERSUS MODEL CHECKING

The formal methods presented in this article are developed for specifications
in Linear Temporal Logic (LTL) [Pnueli 1977], and will also work for language
standards such as PSL [PSL] and SVA [SVA], which are based on LTL. For
the sake of completeness, the syntax and semantics of LTL is presented in
Appendix A.

This section demonstrates the fundamental similarities between LTL model
checking and LTL satisfiability. This relation is germane to the problems ad-
dressed in the other sections.

Example 1. Consider a two bit Gray counter. A gray counter has the fol-
lowing property: the next value of the counter differs from the present value of
the counter in exactly one bit. Let us represent the two bits as x1 and x2. We
consider a high active input reset, which resets the counter in the following
cycle, that is:

G(reset ⇒ X (¬x1 ∧ ¬x2)).

Suppose, we wish to verify the following property: if the counter is not reset,
then the next value of the counter differs from the present value by exactly one
bit. In LTL this property may be expressed as follows:

ϕ : G(¬reset ⇒ (x1 ⊕ X x1) ⊕ (x2 ⊕ X x2)).

Figure 2 shows an implementation of the counter (in Verilog). We wish to ver-
ify whether this implementation satisfies ϕ. The traditional approach for LTL
model checking checks whether any accepting run for ¬ϕ belongs to the imple-
mentation. This check is done by extracting a state-machine T representing

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:6 • A. Sinha et al.

the implementation and verifying whether the product of T with any acceptor
of ¬ϕ is empty.

Any state machine can be represented by a collection of Boolean state tran-
sition functions. In other words for each state bit si, we have a function, fi that
accepts the present values of the state bits and inputs, and returns the value
of si in the next cycle. It is easy to express these transition functions in LTL as:

G(X si ⇔ fi(present-state bits, present-input bits)).

For example, the transition relation, T , corresponding to the Gray counter im-
plementation of Figure 2 can be expressed in LTL as follows:

P1 : G ((¬reset ∧ x2) ⇔ X (x1)) (1)

P2 : G ((¬reset ∧ ¬x1) ⇔ X (x2)) (2)

All formal verification tools extract the transition systems from each compo-
nent prior to model checking. The scalability problem is not in this extraction,
but in computing the product of the transition systems. Therefore the tasks of
extracting the transition system for individual components of modest size and
then translating the component transition systems into LTL are straight for-
ward for formal property verification tools. Model checking tools will not do this
normally, but this translation will be an important link in the scheme of things
when we deal with design intent coverage problems involving state machines.

There can be two approaches of verifying the property ϕ.

(1) Model-check the property ϕ on the model extracted from the 2-bit gray
counter module.

(2) The other approach is to check the validity of the following LTL property:

(P1 ∧ P2) ⇒ ϕ.

Obviously a model checking tool will not take the second approach, but it
is interesting to see that the second approach is fundamentally equivalent to
the first. The second approach is equivalent to checking whether the logical
representation of T implies ϕ, that is, we check whether T ⇒ ϕ is valid. This
follows from the fact that T ⇒ ϕ is valid iff T ∧ ¬ϕ is unsatisfiable, which is
exactly what model checking techniques verify.

The previous example indicates that for LTL, the model checking problem
and the satisfiability problem are fundamentally similar. Not surprisingly, the
computational complexity of both problems are the same (both are PSPACE-
complete) [Sistla and Clarke 1985]. Therefore, theoretically, we can always
transform the LTL model checking problem into a LTL satisfiability problem.
We do not explicitly take this approach in practice, because verification tools
perform a lot of reductions (pruning) on the state-machine before the actual
model checking step, and these reductions are easier to apply on state-machines
rather than on formal properties.

In this article, we use the notion of transforming state-machines into LTL
properties to unify the problems of design intent coverage and model checking,
and solve the unified problem using LTL satisfiability. Moreover, we define new

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:7

algorithms for refining the specification under such transformations to reflect
the coverage gap between the two specifications in a readable way.

3. BACKGROUND

This section presents a summary of our previous work on design intent coverage
for the sake of completeness of this article.1 The original theorems are stated
without the proofs.

In our original problem formulation, design intent coverage essentially com-
pares a high level specification, A, with a low level specification, R, and deter-
mines whether R covers A, that is, whether every invalid scenario for A is also
an invalid scenario for R, so that no bug detected by A is missed by R.

To distinguish between the high level specification, A, and the low level
specification,R, we shall refer toA as the architectural intent, andR as the RTL
specification. The inputs to the original design intent coverage methodology are:

(1) The architectural intent A as a set of LTL properties over a set, APA, of
Boolean signals, and

(2) The RTL specification R as another set of LTL properties over a set, APR,
of Boolean signals.

We shall also use A to denote the conjunction of the properties in the archi-
tectural intent, and R to denote the conjunction of the properties in the RTL
specification.

Assumption 1. Throughout this article we assume that APA ⊆ APR.
This assumption essentially means that the low level specification has the

same names for their signals as the corresponding ones in the high level spec-
ification. The RTL specification can have other signals in addition to these.
Typically this is not a restrictive assumption within the design hierarchy, since
it is generally considered a good practice for designers at a lower level of the
design hierarchy to inherit the interface signal names from the previous level
of hierarchy.

Given a specification, we define a state as a valuation of the signals used in
the specification. A run is an infinite sequence of states.

Definition 1. (Coverage Definition)
The RTL specification covers the architectural intent if and only if there exists
no run that refutes one or more properties of the architectural intent but does
not refute any property of the RTL specification.

Our coverage problem is as follows:

—To determine whether the RTL specification covers the architectural intent,
and

—If the answer to the previous question is no, then to determine a set of ad-
ditional temporal properties that represent the coverage gap (that is, these

1Parts of this section have been abstracted from the book: A Roadmap for Formal Property Verifi-
cation by Pallab Dasgupta, Springer 2006.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:8 • A. Sinha et al.

Fig. 3. A toy arbiter.

properties together with the RTL specification succeed in covering the archi-
tectural intent).

The following theorem shows us a way to answer the first question.

THEOREM 1. The RTL specification, R, covers the architectural intent A, iff
the temporal property R ⇒ A is valid.

Example 2. Let us consider the design of an arbiter that arbitrates between
two request lines r1 and r2 from two master devices. Let the corresponding grant
lines to the master devices be g1 and g2. The arbiter also receives an input z,
from a slave device, that remains high as long as the slave device is ready.

The arbiter specification requires us to treat r2 as a high-priority request.
Whenever r2 is asserted and the slave is ready (that is, z is high), the arbiter
must give the grant, g2 in the next cycle, and continue to assert g2 as long
as r2 remains asserted. When r2 is not high, the arbiter parks the grant on
g1 regardless of whether r1 is asserted. We are further given, that the request
r2 is fair in the sense that it is de-asserted infinitely often (enabling g1 to be
asserted infinitely often).
This architectural intent may be expressed in LTL as follows:

A1: G F (¬r2)
A2: G((r2 ∧ z) ⇒ X (g2 U ¬r2))
A3: G((¬r2) ⇒ X g1).

Let us now consider an implementation of the arbiter using a component called
XAND, as shown in Figure 3. The specification of the module XAND is as follows:

R1
′: G((a ∧ b) ⇒ X c)).

It may be noted that we do not require the internal implementation of the RTL
module XAND. Property R1

′ is part of the RTL specification for XAND.
Substituting the signal names of the instances of XAND in Figure 1(b) with

r1, r2, g1, g2 and z, and adding the fairness property on r2, we have the RTL
specification as:

R1: G F (¬r2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:9

R2: G((r1 ∧ ¬r2) ⇒ X g1)
R3: G((r2 ∧ z) ⇒ X g2).

The first property is the same fairness constraint as in the architectural intent.
The second property says if r1 is asserted and r2 is de-asserted then g1 is as-
serted in the next cycle. The third property states that whenever r2 and z are
asserted together, then g2 is asserted in the next cycle.

Our primary coverage problem is to determine whether (R1 ∧ R2 ∧ R3) ⇒
(A1 ∧ A2 ∧ A3) is valid. In this case, the answer is negative. It is clear that A1

is implied by the RTL specification, but we can see that neither A2 nor A3 is
covered by the properties in the RTL specification.

For example, whenever we have a scenario where both r1 and r2 are low, the
architectural intent requires g1 to be asserted, but the RTL specification does
not have this requirement. This shows that A3 is not covered.

Also, consider those scenarios where r2 and z are asserted together, but z
de-asserts before r2 (that is, the slave becomes unavailable before the transfer
completes). In these scenarios, the architectural intent requires g2 to remain
high as long as r2 remains high (property A2), but the RTL specification does
not guarantee this.

It is not hard to compute the coverage gap between two temporal specifica-
tions and specify a property that theoretically represents the coverage gap. The
main challenge is in presenting the new property in a form that is syntactically
similar and visually comparable with the original specification, so that the vali-
dation engineer is able to visually examine the new property and realize the set
of architectural behaviors that have not been covered by the RTL specification.
Let us first see how the coverage gap can be computed.

Example 3. Let us consider the coverage of the property, A3 of Example 2
by the RTL specification. We have already established that A3 is not covered.
However this information does not accurately point out the coverage gap be-
tween A3 and the RTL specification. Specifically, the coverage gap lies only for
those scenarios where r1 and r2 are simultaneously low at some point of time.
In other words, the coverage gap can be accurately represented by the following
property that considers exactly the above scenarios:

U1: G((¬r1 ∧ ¬r2) ⇒ X g1).

We have R2 ∧ U1 ⇒ A3, and therefore U1 closes the coverage gap between
R2 and A3. In general, our aim is to determine the weakest set of temporal
properties that close the coverage gap between the RTL specification and the
architectural intent. This intent is formally expressed as follows.

Definition 2. (Strong and weak properties). A property F1 is stronger than
a property F2 iff F1 ⇒ F2 and F2 	⇒ F1. We also say that F2 is weaker than F1.

Definition 3. (Coverage Hole in RTL Spec). A coverage hole in the RTL
specification is a property RH over APR, such that (R ∧ RH) ⇒ A is valid,
and there exists no property, R′

H , over APR such that R′
H is weaker than RH

and (R ∧ R′
H) ⇒ A is valid. In other words, we find the weakest property that

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:10 • A. Sinha et al.

suffices to close the coverage hole. Adding the weakest property strengthens
the RTL specification in a minimal way.

Since APA ⊆ APR, each property of the architectural intent is a valid prop-
erty over APR. The following theorem characterizes the coverage hole.

THEOREM 2. The coverage hole in the RTL specification is unique and is
given by A ∨ ¬R.

There is an intuitive explanation of the coverage hole as defined by Theo-
rem 2. The goal of the design intent coverage analysis is to find those behaviors
that refute A but satisfy R, that is, those behaviors that satisfy:

ϕ = ¬A ∧ R.

The property representing the coverage hole must reject exactly these behav-
iors, hence the property is A∨ ¬R which is ¬ϕ. The following example demon-
strates the notion of a coverage hole in our formulation.

Example 4. Let us again consider the arbiter of Example 2. We had seen
that the coverage gap lies in A2 and A3. By Theorem 2 we have the coverage
hole in the RTL specification as:

RH : ((A2 ∧ A3) ∨ ¬(R1 ∧ R2 ∧ R3)).

We can also write the same coverage hole as the conjunction of the following
two properties:

RH
′: (A2 ∨ ¬(R1 ∧ R2 ∧ R3))

RH
′′: (A3 ∨ ¬(R1 ∧ R2 ∧ R3)).

In other words, we can examine the coverage of each architectural property
separately and produce a set of properties representing the coverage hole.

Typically, the coverage hole, A∨¬R, will contain signals belonging to APR−
APA. To demonstrate the part of the architectural intent that is not covered by
the RTL specification, we need a further level of abstraction. The definition of
the uncovered architectural intent is as follows.

Definition 4. (Uncovered architectural intent). The uncovered architectural
intent is a property AH over APA, such that (R ∧ AH) ⇒ A is valid, and
there exists no property A′

H over APA such that A′
H is weaker than AH and

(R∧A′
H) ⇒ A is valid. In other words, we find the weakest property over APA

that suffices to close the coverage hole.

Theorem 2 gives us a formalism for computing the coverage hole, but does
not present the missing properties in a meaningful way. Our aim is to present
the coverage hole and the uncovered architectural intent before the designer
in a form that is syntactically close to the architectural intent and is thereby
amenable to visual comparison with the architectural intent.

The expressibility of the logic used for specification does not always permit a
succinct representation of the coverage hole. In such cases, we prefer to present
the coverage hole as a succinct set of properties that closes the coverage gap,

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:11

but may be marginally stronger than the actual coverage gap. The following
example highlights this intent.

Example 5. We consider the coverage of A3 by R2 in the specifications given
in Example 2. By Theorem 2, the coverage gap between A3 and R2 is given by
the property:

ϕ = A3 ∨ ¬R2.

The knowledge that this property is satisfiable does not convey any meaningful
information to the designer. On the other hand, consider the property U1 of
Example 3:

U1: G((¬r1 ∧ ¬r2) ⇒ X g1).

U1 is stronger than ϕ, but is able to represent the coverage gap more effectively
than ϕ. This is because, the designer can visually compare U1 with A3 and see
what remains to be covered.

It is also important to be able to preserve structural similarity with the archi-
tectural intent when we present the coverage hole. For example, the property
U1 can also be written as:

G(r1 ∨ r2 ∨ X g1)

or as:

G((¬X g1 ∧ ¬r1) ⇒ r2).

These representations are logically equivalent to U1, but are not visually similar
to A3. Preserving structural similarity is a very important issue in presenting
the gaps between formal property specifications.

Our original design intent coverage algorithm preserves syntactic similarity
with the architectural properties by extracting terms from the coverage gap
and then pushing these terms into the syntactic structure of the architectural
properties to obtain the uncovered part.

3.1 The Intent Coverage Algorithm

The intent coverage algorithm takes each formula FA from the architectural
intent A and finds the coverage gap, G, for FA, with respect to the RTL specifi-
cation R.

The first step determines the coverage gap formula U in terms of RTL vari-
ables. If U is valid then FA is covered. Otherwise, we need to find an abstraction
of U over the architectural variables that is syntactically close to FA. The second
step of the algorithm performs this task.

In Step 2(a), we recursively unfold U and generate a disjunction of terms,
UM , that contain only Boolean subformulas and Boolean subformulas guarded
by a finite number of X (next) operators. We guarantee that UM is as strong
as the coverage gap, U . By this approximation, we eliminate all unbounded
temporal operators from U , which helps us to push the terms in UM into the
syntactic structure of FA. Before we describe the unfolding step we present

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:12 • A. Sinha et al.

Algorithm 1. Find Coverage Gap(FA,R)

(1) Compute U = FA ∨ ¬R
(2) If U is not valid then

(a) Unfold U to create a set of uncovered terms, UM , that approximates the coverage
gap;

(b) Use universal quantification to eliminate signals belonging to APR − APA,
(c) FU = Call Push Term(FA, UM , 1);

(3) Return FU ;

the definitions of an X-pushed formula, X-guarded formula and X-depth of an
operator within a formula.

Definition 5. (X-pushed formula). A formula is said to be X-pushed if all
the X operators in the formula are pushed as far as possible to the left.

Definition 6. (X-guarded formula). A formula is said to be X-guarded if the
corresponding X-pushed formula starts with an X operator whose scope covers
the whole formula.

Definition 7. (X-depth of an operator). The X-depth of an operator within
a formula is the number of X operators whose scope covers the operator in the
X-pushed form.

Example 6. Let us consider the temporal property:

P = ((X p) U (X X q)) ∧ (X F r).

The X-pushed form of P is:

PX = X ((p U (X q)) ∧ (F r)).

Now P is an X-guarded formula because the corresponding X-pushed formula
PX starts with an X operator whose scope covers the whole formula. P contains
two unbounded temporal operators, U and F . The X-depth of both U and F is
1.

Our methodology for decomposing U into a disjunction UM of terms is as
follows. It is known that any LTL property can be recursively unfolded over time
steps to create an equivalent property over Boolean formulas and X-guarded
LTL formulas. For example, the property p U q may be rewritten as:

q ∨ [p ∧ X (p U q)]

after one level of unfolding, and as:

q ∨ [p ∧ X (q ∨ (p ∧ X (p U q)))]

after two levels of unfolding. After k-level unfolding, we can distribute the X
operators over the Boolean operators and the ∧ operator over the ∨ operator
to obtain a disjunction of terms, where each term consists of a conjunction of

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:13

Boolean literals, X-guarded Boolean literals, and X-guarded temporal formulas.
For example, p U q can be rewritten as follows after two levels of unfolding:

(q) ∨ (p ∧ X q) ∨ (p ∧ X p ∧ X X (p U q)).

Since a temporal formula has a finite number of members in its closure [Clarke
E. M., Grumberg O., and Peled D. A. 1999], it follows that for every temporal
property such a decomposition begins to produce similar X-guarded subformu-
las after a well defined number of unfolding steps. During the unfolding process
we check whether such a fixpoint has been reached.

Once we have the disjunction of the terms, we drop the terms that contain
any temporal operator other than X and call the remaining formula as UM .
Dropping terms from the disjunction ensures that UM is at least as strong as U .
UM contains only Booleans and X-guarded Booleans, which is appropriate for
Step 2(b) and Step 2(c).

Example 7. Consider the property U = (p U q) ∨ X F (¬p). After one step
of unfolding the property looks like:

U1 = q ∨ (p ∧ X (p U q)) ∨ X F (¬p).

Dropping the present state variables and removing an X from the remaining
sub formulas of U1 generates:

U ′ = (p U q) ∨ F (¬p).

Since U ′ is not equivalent to U , we have not yet reached the fixpoint. After the
next step of unfolding of U ′ and then dropping the present state variables and
removing an X from the remaining sub formulas yields:

U ′′ = (p U q) ∨ F (¬p),

which is equivalent to U ′. Since any further decomposition will generate the
same formula, this is the fixpoint. After two steps of unfolding the property U
becomes:

U2 = q ∨ (p ∧ X (q ∨ p ∧ X (p U q)))
∨X (¬p ∨ X F (¬p)).

It can be rewritten in the form of disjunction of the terms as follows:

(q) ∨ (p ∧ X q) ∨ (p ∧ X p ∧ X X (p U q))
∨ (X (¬p)) ∨ (X X F (¬p)).

Now, dropping the terms containing any temporal operators other than X yields
the following set of terms as UM :

UM = {q, p ∧ X (q), X (¬p)}.
It may be noted that UM may contain variables belonging to APR − APA. In
order to obtain the uncovered architectural intent, we need to eliminate these
variables. This is done in Step 2(b).

THEOREM 3. The property represented by the set of terms UM closes the cov-
erage hole for FA.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:14 • A. Sinha et al.

In Step 2(b) of the coverage algorithm, we universally eliminate the variables
in APR − APA from the property UM .

THEOREM 4. The property represented by the set of terms UM after universal
abstraction closes the coverage hole for FA.

Our target is to represent this coverage gap as a set of properties that are
structurally similar to FA. We achieve this objective by distributing the terms
in UM into the structure of FA. The following theorem shows that this approach
is theoretically sound.

THEOREM 5. The property UM ∨ FA is at least as weak as UM and closes the
coverage gap for FA.

The remainder of this section presents the methodology for distributing the
terms in UM into the structure of FA. The intuitive idea is to push the terms to
the sub formulas having similar variables. However, UM may also contain some
terms that contain variables from APA other than those in FA. Let us denote
these variables by EV (for entering variables).

The Function Push Term(F , UM , θ) pushes the terms in UM into the syntac-
tic structure of property, F . To intuitively explain the working of this function,
consider a case where F is of the form f ⇒ g . Let Var(f) and Var(g) denote
the set of variables in f and g , respectively. We compute the universal abstrac-
tion of UM with respect to Var(g) and recursively push the restricted terms
(containing only variables in Var(g)) to g . We then compute the universal ab-
straction of UM with respect to Var(f) ∪ EV and recursively push the restricted
terms to f . The decision to push terms containing entering variables to the
left of the implication is heuristic (but correct, since we could push them either
way). Pushing the entering variables in the other side may give us another
form of the uncovered architectural intent (and we may like to present both
forms).

In case F is of the form f ∧ g , we push each term of UM to both f and g .
In case F is of the form fUg or Ff or Gf, we maintain the list of vari-

ables of UM with F for later use by the variable weakening algorithm (Step
2(d)).

The third argument, θ of the function Push Term specifies whetherUM should
be considered in disjunction with F (in which case θ = 1) or in conjunction
with F (denoted by θ = 0). At the root level, we always have θ = 1 (since we
compute FA ∨ UM). However the semantics of negation sometimes require us
to recursively call Push Term() with θ = 0.
The functions UABS() and XABS() are as follows:

UABS(ϕ, SV): This function takes a set of terms, ϕ, and a set of variables SV
as input and universally eliminates the set of variables given by APA −SV
from ϕ. It returns the property given by the union of the abstracted set of
terms.

XABS(ϕ): This function takes a set of terms, ϕ, extracts those terms that are
within the scope of one or more X operators, and returns these terms after
dropping the most significant X operator.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:15

Algorithm 2. Push Term(F , UM , θ)

case (F ≡ (f ⇒ g)) :

if (θ = 1) { Push Term(f , ¬UABS (UM , Var(f) ∪ EV), 0);
Push Term(g , UABS (UM , Var(g)), 1); }

if (θ = 0) { Push Term(f , ¬UM , 1);
Push Term(g , UM , 0) ; }

case (F ≡ (f ∨ g)) :

if (θ = 1) { Push Term(f , UABS (UM , Var(f) ∪ EV), 1);
Push Term(g , UABS (UM , Var(g)), 1); }

if (θ = 0) { Push Term(f , UM , 0);
Push Term(g , UM , 0); }

case (F ≡ (f ∧ g)) : { Push Term(f , UM , θ);
Push Term(g , UM , θ); }

case (F ≡ (¬ f)) : Push Term(f , ¬UM , ¬θ);

case (F ≡ (X f)) : { UM−X = XABS (UM);
Push Term(f , UM−X , θ); }

case (F ≡ (G f) or (F f) or (f U g)) :
Maintain the list of variables of UM with F for later
use by variable weakening algorithm (Step 2(d));

case (F ≡ p ∈ AP T) :
if(θ = 1) Replace p by p ∨ UM ;
if(θ = 0) Replace p by p ∧ UM ;

THEOREM 6. Push Term(FA, UM , 1) returns a property FU that closes the cov-
erage hole.

Example 8. Let us consider the architectural property A and the RTL prop-
erty R, given as follows, where r1, r2, g1, g2 ∈ APA.

A : r1 ⇒ X (g1 U g2)
R : (r1 ∧ r2) ⇒ X (g1 U g2).

After step 2(b) of Algorithm 1 we have the following set of terms for UM :

UM = {¬r1, X (g2), r1 ∧ r2 ∧ ¬X (g2)}
The distribution of the above terms into the parse tree of A by Algorithm 2 is
shown in the Figure 4.

After the execution of the Push Term algorithm FU is represented in the
following form:

FU : (r1 ∧ ¬r2) ⇒ X (g1 U g2).

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:16 • A. Sinha et al.

Fig. 4. Working of algorithm Push Term.

Fig. 5. Master interface of MyBus protocol.

We also have the sole element g2 in the variable list corresponding to the node
U . This list is to be used in Step 2(d) of the intent coverage algorithm.

4. INTENT COVERAGE WITH AUXILIARY STATE MACHINES

In this section, we present the new design intent verification problem for spec-
ifications containing auxiliary state machines and formal properties. We start
with a demonstration of the use of auxiliary state-machines in developing
formal specifications. In Section 4.5 we discuss the generic extensions of the
problem.

4.1 Auxiliary State-Machines in Formal Property Specifications

Consider a Bus protocol (MyBus protocol) that supports multiple master de-
vices, multiple memory-mapped slave devices, and a single arbiter. The Bus
has 64-bit multiplexed address and data lines. During a transfer, address and
data are time multiplexed on these 64 lines, with address and data appearing
in alternate cycles. We focus on the behavior of a specific master device, M,
which is the highest priority device on the Bus. The interface of M is shown in
Figure 5.

The master interface is IDLE when M does not intend to perform a transfer.
When the master intends to start a transfer, it raises its request line, req. On
receiving the gnt, M decides whether it wants to start a locked transfer. In
case of a locked transfer, it asserts the lock signal in the next cycle (INIT).
Irrespective of the transfer types, M floats a valid transfer with the address
in the Bus and waits (from the next cycle onwards) for the rdy signal from the
slave device. We refer this phase of the transfer as the ADDRESS cycle.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:17

Fig. 6. A sample transfer.

Fig. 7. State-machine for a MyBus transfer.

The rdy signal from the slave indicates that the slave is ready for the trans-
fer. On receiving this signal, the master enters the DATA cycle and does the
following:

(1) In the case of a write, it floats the data on the Bus.

(2) In the case of a read, it expects the slave to produce the data on the Bus.

The intent to read/write is indicated by a R/W signal—high indicates write,
low indicates read. After each data cycle, the master may start another address
cycle by floating the next address on the Bus. At any point in time, the mas-
ter can return to the IDLE state by lowering the req line, which signals the
end of the transfer to the arbiter. In case of any locked transfer, M also de-
asserts the lock signal. A sample transfer is shown in Figure 6. Other transfer
related information (e.g., width, length of the transfer) are conveyed by a vector
TransInfo.

Figure 7 show the abstract state-machine for the MyBus master device. The
state-machine contains only sufficient information that carries it through the
major phases of the protocol. For example, the status of the gnt line are not
indicated in the DATA and ADDR cycles. We encode this state machine in
terms of a 3-bit variable, fsm state.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:18 • A. Sinha et al.

Next, we present one sample architectural property based on the auxiliary
state-machine. We also assume that M always starts locked transfer after re-
ceiving the grant.

— A1: If the master is forced to continue in the ADDRESS cycle by the slave
(rdy is de-asserted), it should not change the address floated in the Bus until
it receives the rdy signal from the slave. This property (modeled in LTL) is
as follows.

G((f sm state = ADDR ∧ ¬rd y) ⇒ X (DADDR == Prev ADDR)).

Prev ADDR is a vector that stores the address value of the previous cycle.

— A2: If the master is in the INIT cycle, it should assert its lock signal and drive
a valid transfer information in the next cycle. The valid transfer information
is encoded by a proposition called ValidTrans. This property is as follows.

G((f sm state = INIT) ⇒ (lock ∧ X (ValidTrans))).

The MyBus protocol will be the running example in our discussion. We will
modify the state-machine to show different aspects of the problem, as and when
required.

4.2 Formal Characterization

Auxiliary state-machine based design intent verification essentially checks
whether the RTL specs (R) covers the architectural properties (A), where A
is specified using an auxiliary state-machine T . The states of T are encoded
with a set (APT) of auxiliary state-bit variables. In the example presented in
the previous subsection, IDLE, WAIT, INIT, DATA, and ADDR are the states. The
transitions are enabled by the different conditions over the input/output vari-
ables.

The inputs to the problem are as follows.

(1) The architectural specification A is a set of LTL properties over APA ∪APT ,
where APA and APT are the sets of architectural signals and the auxiliary
state-bits, respectively.

(2) The RTL specification R is a set of LTL properties over APR, where APR is
the set of the RTL signals.

(3) The auxiliary state-machine T , where the states are different valuations of
APT and the transitions are enabled by boolean constraints over APA.

In our discussion, we assume that the formal properties are defined over a
single auxiliary state-machine T . The approach can easily be generalized to
specifications having multiple auxiliary state-machines by defining T to be the
product of the individual state-machines. Since the auxiliary state-machines
are user defined and small, the product computation is not expensive.

The verification problem is as follows:

—To determine whether the RTL specification covers the architectural speci-
fication, consisting of architectural properties defined over auxiliary state-
machines.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:19

—If the answer to the previous question is no, then to determine a set of ad-
ditional properties that represent the coverage gap (that is, these properties
together with the RTL specification succeed in covering the architectural
specification).

The following example will illustrate the gap in a formal property.

Example 9. Consider the following architectural and RTL properties for
the auxiliary state-machine.

Arch. spec (A): We consider architectural property A2 given as follows.

G((f sm state = INIT) ⇒ (lock ∧ X (ValidTrans)).

RTL spec (R): Whenever, M receives the grant, it drives valid transfer in-
formation after two cycles.

G((¬gnt ∧ X (gnt)) ⇒ (XXX(ValidTrans))).

In this case, the governing equation is,

R ⇒
((∧

j

TAj

)
⇒ A

)
.

It is easy to appreciate that the RTL property covers the following path
WAIT → INIT → ADDR partially. The property has not covered the lock status
requirement in the state INIT. Therefore, the expected gap will be, whenever
the current and the next state of the auxiliary state-machine is INIT, in the same
cycle lock will be asserted. Formally,

G((f sm state = INIT) ⇒ (lock)).

An auxiliary state-machine T can be transformed to a set of LTL properties.
For example, the auxiliary state-machine of Figure 7 can be represented as
follow:

P1 : G(X (IDLE) ⇔ (IDLE ∧ ¬req ∧ ¬gnt) ∨ (ADDR ∧ ¬req)

∨(DATA ∧ ¬req))

P2 : G(X (DATA) ⇔ (ADDR ∧ req ∧ rd y))

P3 : G(X (ADDR) ⇔ (ADDR ∧ req ∧ ¬rd y) ∨ (INIT)

∨(DATA ∧ req))

P4 : G(X (INIT) ⇔ (WAIT ∧ gnt) ∨ (IDLE ∧ req ∧ gnt))

P5 : G(X (WAIT) ⇔ (WAIT ∧ ¬gnt) ∨ (IDLE ∧ req ∧ ¬gnt)).

The initial state can be explicitly specified as a Boolean (such as IDLE):

T = IDLE ∧ P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5.

The following theorem shows us an intuitive way to answer the first question.

THEOREM 7. The RTL specification, R, covers the architectural specification
A, iff the temporal property R ∧ ¬(T ⇒ A) is unsatisfiable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:20 • A. Sinha et al.

Algorithm 3. Coverage Algorithm

Find Coverage Gap(FA, R, T)

(1) compute U = FA ∨ ¬(R ∧ T)

(2) If ¬(U) is not false then
(a) Unfold U to create a set of uncovered terms, UM , that approximates the coverage

gap;
(b) Use universal quantification to eliminate signals belonging to APR − APA,
(c) Push the terms of UM into FA to obtain FU .

(3) Return FU ;

PROOF. The property R ∧ ¬(T ⇒ A) represents the set of runs that refutes
the architectural intent but are passed by the RTL properties. If this property is
false then these runs are not present in the complete RTL specification. Hence
all runs passed by R are present in T ⇒ A and thus the RTL specification
covers the architectural intent. On the other hand, if R ∧ ¬(T ⇒ A) is true,
then there exists a run which is passed by the RTL specs but will be refuted by
the architectural specs and hence the RTL specs do not cover the architectural
intent.

Theorem 7 answers the primary coverage question by checking the validity
of R ⇒ (T ⇒ A).

R ⇒ (T ⇒ A)

⇒ (R ∧ T) ⇒ A. (3)

If the answer to the primary coverage question is negative, then we need to
deduce the coverage gap. This is performed by extending our original coverage
algorithm.

4.3 Coverage Algorithm

The goal of our algorithm is to present a structure preserving form of the cov-
erage gap. Our algorithm takes each formula FA from the architectural intent
consisting of A and T , and finds the coverage gap, G, for FA, with respect to the
RTL properties R. Since R is required to cover every property in A, we target
each property of A individually. The following algorithm uses U to represent
the RTL coverage hole between R and a given architectural property FA.

Algorithm 3 is similar in philosophy to the one presented in Section 3, ex-
cept that we need to handle Step 2(c) in a totally different way. If we directly
use the Push Term algorithm presented in Section 3, in our case (where the
architectural specs is defined over auxiliary state-machines), the gap is typi-
cally produced in a nonintuitive form. We apply a state-bit renaming heuristic
to solve the problem, as described in the next subsection.

4.4 The State-bit Renaming Heuristic

The following example demonstrates the problem with generalizing our original
Push Term algorithm to specifications with auxiliary state-machines.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:21

Fig. 8. The architectural state-machine.

Example 10. Let the architectural and RTL properties be given as follows,

A : (r1 ∧ ¬s) ⇒ X (g1 ∪ g2) ∧ X (s) (4)

R : (r1 ∧ r2) ⇒ X (g1 ∪ g2), (5)

where, r1, r2, g1, g2 ∈ APA and s is the only state-bit for the auxiliary state-
machine shown in Figure 8.

The auxiliary state-machine is transformed into the following LTL proper-
ties.

T1 : G(X (s) ⇔ (s ∧ (r1 ∨ r2)) ∨ (¬s ∧ (r1 ∨ r2)) (6)

T2 : G(X (¬s) ⇔ (s ∧ ¬r1 ∧ ¬r2) ∨ (¬s ∧ ¬r1 ∧ ¬r2)). (7)

Now, we test the validity of the following equation:

R ∧ (T1 ∧ T2) ⇒ A.

The architectural property is silent regarding the atomic proposition r2, and
hence it is easy to appreciate that there exists a gap between the specifications
(since the RTL specifies nothing when (r1 ∧ ¬r2) holds true). Applying left-
insertion heuristic (as described in Basu et al. [2006]), SpecMatcher gives the
following coverage gap:

FU : G((r1 ∧ ¬r2 ∧ ¬s ∧ X (s)) ⇒ X ((¬g1 ∧ ¬s) ∨ (g1 ∪ g2))). (8)

Clearly, this representation of the coverage gap is incomprehensible. How
to represent the gap more succinctly and meaningfully? Before addressing this
question, we analyze the steps in the original Push Term algorithm.

Analysis of Push Term Algorithm. Without loss of generality, we assume
left-insertion strategy throughout the discussion. The algorithm defines Var(f)
(the variables in formula f) and the entering variables (EV), (variables belong-
ing to (APA−FA), where FA is the set of variables in the architectural formula).
In case(F ≡ (f ⇒ g)), the variables either in Var(f) or in EV enter the left-
subtree of the formula (shown in Figure 9).

This insight helps us in understanding the genesis of such a complicated
gap. The antecedent of the implication in equation 8 contains both the terms
s and X (s), making the equation more complex, because the presence of the
current and the future values of the state-bit on the same side of the implication

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:22 • A. Sinha et al.

Fig. 9. The entering variables enter the left subtree in case: (F ≡ (f ⇒ g)).

bears no physical significance. In order to avoid these situations, we propose
the following: In all the specifications and the state-transitions, replace the X-
guarded terms of the state-bits with new variable names. For example, A in
Example 10 becomes,

A′ : (r1 ∧ ¬s) ⇒ X (g1 ∨ g2) ∧ next s. (9)

We have replaced X (s) (in A) with next s (in A′
). Now, since next s /∈ (Var(f) ∪

EV), it will not enter the same subtree as s does. Applying this change in our
algorithm, we obtain the following gap which is more meaningful to the verifi-
cation engineer.

F ′
U : G(¬s ∧ (r1 ∧ ¬r2) ⇒ X (g1 ∪ g2)). (10)

Handling the Gap. Consider the properties in Example 9. on the perspective
of the factored state machine (refer Figure 7).

A : G((fsm state = INIT) ⇒ (lock ∧ X (ValidTrans))

R : G((¬gnt ∧ X (gnt)) ⇒ (XXX(ValidTrans))).

In this case, the governing equation is,

R ⇒
((∧

j

TAj

)
⇒ A

)
.

Next, we discuss the adopted approach in order to meaningfully present the
gap. The steps for presenting the gaps are elaborated below.

(1) Rename the X -guarded architectural state-bits in A according to State-bit
Renaming Heuristic.

(2) Execute the regular Push Term algorithm and perform universal abstrac-
tion of the state bits in the obtained complex gap. Those bits disappeared,
and hence, a weaker gap is obtained. The final gap, in terms of the variable
fsm state and interface signals, is presented as follows:

G((fsm state = INIT) ⇒ (lock)).

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:23

It is easy to appreciate this gap, since the given RTL property indicates
the path from state WAIT to ADDR partially in the architectural auxiliary state
machine.

4.5 Generic Extensions

We start with the simplest LTL property based intent coverage problem and
gradually broaden the scope of the problem.

—Case 1: Both the architectural specs (A) and the RTL specs (R) are LTL
properties, with APA ⊆ APR. We check the validity of

R ⇒ A, (11)

and the gap (if present) is represented following the Push Term
algorithm.

—Case 2: The architectural state-machine (TA) and the LTL architectural
specs based on it (A) are given. The RTL specs (R) are also given in LTL. The
architectural specs (A) are on (APA ∪ APTA). Moreover, (APA ⊆ APR) and
(APTA ∩ APR = φ). In this case, we check the validity of,

R ⇒ (TA ⇒ A) (12)

and the gap (if present) is represented following the State-bit Renaming
Heuristic described in Subsection 4.4.

—Case 3: Next, suppose there is an underlying state-machine for the RTL
also. Let it be TR. The RTL specs are on (APR ∪ APTR). Besides, (APTR ∩
APA = φ). In this case, we check the validity of:

(TR ⇒ R) ⇒ (TA. ⇒ A). (13)

—Case 4: We further assume that there are n RTL modules. For each module,
suppose there exists a state-machine (TRi ∀i = 1 to n). Let the RTL specs
be R1, . . . , Rn. In order to verify the design intent, we check the validity
of, ∧

i

(TRi ⇒ Ri) ⇒ (TA ⇒ A). (14)

—Case 5: Lastly, suppose the architectural state-machine is factored in m
state-machines (e.g. TAj , j = 1 to m). In that case, we check the validity of
the following: ∧

i

(TRi ⇒ Ri) ⇒
((∧

j

TAj

)
⇒ A

)
. (15)

5. DESIGN INTENT VERIfiCATION WITH CONCRETE MODULES

In the original version of the design intent coverage problem, the RTL specs
consisted solely of properties over the submodules, M1, . . . , Mk of M . In the
problem considered in this section, the RTL specs has two parts, namely a set
of properties, R over some of the submodules and the RTL of the remaining
modules. We shall refer to these remaining modules as concrete modules. Here,
we define a state as a valuation of the signals at a given time. A run is an infinite
sequence of states over time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:24 • A. Sinha et al.

Our coverage problem is as follows:

—To determine whether the RTL specification covers the architectural intent,
and

—If the answer to the previous question is no, then to determine a set of ad-
ditional temporal properties that represent the coverage gap (that is, these
properties together with the RTL specification succeed in covering the archi-
tectural intent).

The following theorem answers the first question.

THEOREM 8. The RTL specification consisting of the properties R and con-
crete modules M, covers the architectural intent A, iff the temporal property ¬A
∧ R is false in M.

PROOF. The property ¬A ∧ R represents the set of runs which refutes the
architectural intent but are passed by the RTL properties. If this property is
false in M, then these runs are not present in the complete RTL specification.
Hence all runs passed by R and M are present in A, and thus the RTL spec-
ification covers the architectural intent. On the other hand, if ¬A ∧ R is true
in M, then there exists a run that is passed by the RTL specification but will
be refuted by the architectural specs, and hence the RTL does not cover the
architectural intent.

The theorem shows that the primary coverage question can be answered by
model checking the property ¬A ∧ R in M. This is feasible when M is a set of
small modules. The following example demonstrates the essence of the coverage
problem.

Example 11. Figure 10 shows the architecture of a simple Memory Arbi-
tration Logic (MAL) in the presence of a cache. There are two request inputs,
r1 and r2, for two independent on-chip requesting modules. The priority arbiter
Pr A arbitrates between r1 and r2 and asserts either n1 or n2 in the next cycle.
The module L1 is a cache access logic. The input, hit, to this logic indicates a
cache hit. In case of a cache miss, L1 asserts the wait signal which masks the
arbitration decision through the logic M1. The outputs d1 and d2 are inputs to
the requesting devices, respectively. When the page becomes available in the
cache, d1 or d2 is asserted accordingly. In the figure ‘A’ represents an AND gate,
‘O’ an OR gate and ‘L’ a latch.

The architectural intent requires that r1 has higher priority than r2. This
means that if r1 comes before r2 then it is never the case that r2 has its
page available before r1. This intent can be expressed by the following LTL
property:

A = G(¬ wait ∧ r1 ∧ X (r1 U r2) → X (¬d2U d1)).

Suppose we are unable to verify A on the whole design2. We must therefore
refine the specification. Let us assume that we are given the RTL for M1 and

2This is a toy example which is unlikely to run into capacity issues, but we use this assumption to

demonstrate our approach in simple terms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:25

Fig. 10. Memory Arbitration Logic (MAL).

L1 and the following properties for Pr A:

R1 = G(r1 → X n1) R2 = G(¬r1 ∧ r2 → X n2).

Our primary coverage problem is to determine whether the architectural
intent A is covered by the RTL modules and the properties of Pr A. In this case,
the answer is positive. Consider the scenario as shown in the timing diagram
in Figure 11. Here, r1 is asserted in time 0 and de-asserted in time 1. The input
r2 is asserted in time 1. Also consider the case where the wait signal is initially
low. Now n1 will be asserted in time 1. Here, there can be two different scenarios
depending on whether there is a hit or miss. If hit occurs, d1 will be asserted
in the next cycle and hence the architectural intent is not violated. If there is a
miss (as shown in the Figure 11(b)) then wait will be high, which would prevent
g2 being asserted in time 2. The wait signal would remain high until the data
comes to the cache and hit is asserted, which would assert d1 in the same cycle,
thus preventing A being violated.

Formally, our tool answers this primary coverage question by checking the
truth of the property NU = (R1 ∧ R2) ∧ ¬(A) in the model consisting of M1 and
L1. The model checker returns a negative answer, and therefore the answer to
the coverage question here is positive.

5.1 Computing the Coverage Gap

In this section, we address the more complex problem of computing and rep-
resenting the coverage gap. One way to demonstrate that a coverage gap ex-
ists is to produce a counter-example run, that is, a run that satisfies the RTL

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:26 • A. Sinha et al.

Fig. 11. Timing diagram.

Fig. 12. Mem Arbitration Logic (With GAP).

specification but refutes the architectural intent. However, this only reflects a
fraction of the coverage gap. On the other hand, our aim is to find the set of
missing temporal properties in the RTL specification, which when included in
the RTL specification closes the coverage gap.

Example 12. Let us consider a slight variant of the MAL described in Ex-
ample 1 as shown in Figure 12. Now the request lines r1 and r2 are connected to
M1 and the outputs n1 and n2 of M1 are used to drive Pr A. The outputs of Pr A
are connected to the grant inputs g1 and g2 of L1. The new RTL properties of
Pr A would be:

R ′
1 = G(n1 → Xg1) R ′

2 = G(¬n1 ∧ n2 → Xg2).

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:27

In this scenario, the architectural property A is not covered by the RTL specifi-
cation. For example, whenever we have the scenario where r1 is asserted for one
cycle and r2 asserted in the next cycle, and if there is a miss for r1 but a hit for
r2, then d2 will be asserted before d1. Thus the architectural intent is not guar-
anteed by the RTL specification. Specifically, the coverage gap lies only on those
scenarios where the data for a later r2 is in the cache, while the data of a pre-
vious r1 is not. In other words, the coverage gap can be accurately represented
by the following property that considers exactly the above scenarios:

U = G(¬wait ∧ r1 ∧ X (r1U (r2 ∧ X ¬hit)) → X (¬d2Ud1)).

We have (R1 ∧ R2 ∧ U)∧ ¬(A) is false in L1 and hence closes the coverage gap.
In general, our aim will be to determine the weakest set of temporal properties
that close the coverage gap between the RTL specification and the architectural
intent. This intent is formally expressed below.

In order to determine the coverage hole, we generate the temporal formula,
which exactly represents the RTL concrete module M (as demonstrated in
Example 2).

The following theorem characterizes the coverage hole.

THEOREM 9. The coverage hole in the RTL specification is unique and is
given by A ∨ ¬(R ∧ TM).

PROOF. Let RH = A∨¬(R∧ TM). It is easy to see that ((R∧ TM)∧RH) ⇒ A,
and therefore RH closes the coverage hole.

Let R′
H be a property such that R′

H is weaker than RH and (R∧R′
H ∧TM) ⇒

A. Since R′
H 	⇒ RH , there exists a run, π , that satisfies R′

H but not RH .
Suppose π satisfies R ∧ TM . Then, by the definition of R′

H , π satisfies A.
But if π satisfies A, then π must satisfy RH (by the definition of RH). This is a
contradiction.

Otherwise, suppose π does not satisfy R ∧ TM . Therefore, π satisfies ¬(R ∧
TM), and again π must satisfy RH (by the definition of RH). Again, we have
a contradiction. Therefore, RH is the unique weakest property that closes the
coverage gap.

We now consider the problem of computing the uncovered architectural in-
tent, defined as follows.

Definition 8. (Uncovered architectural intent). An uncovered architec-
tural intent is a property AH over APA, such that (R∧TM ∧AH) ⇒ A, and there
exists no property A′

H over APA such that AH ⇒ A′
H and (R∧ TM ∧A′

H) ⇒ A.
In other words, we find the weakest property over APA that closes the coverage
hole.

5.2 Representing the Coverage Hole

Theorem 9 gives us a formalism for computing the coverage hole, but does
not convey the missing properties in a meaningful way. Our aim is to present
the coverage hole and the uncovered architectural intent to the designer in

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:28 • A. Sinha et al.

a form that is syntactically close to the architectural intent and is thereby
amenable to visual comparison with the architectural intent. The following
example highlights this intent.

Example 13. We consider the coverage of A by R ′
1,R ′

2 and the concrete
modules M1 and L1 as given in Example 12. By Theorem 9, the coverage gap
between A and R ′

1, R ′
2, M1 and L1 is given by the property:

ϕ = A ∨ ¬(R ′
1 ∧ R ′

2 ∧ TM1
∧ TL1

),

which does not convey meaningful information to the designer. On the other
hand, consider the property U of Example 12:

U = G(¬wait ∧ r1 ∧ X (r1U (r2 ∧ X ¬hit)) → X (¬d2Ud1)).

U is stronger than ϕ, but represents the coverage gap more effectively than ϕ

because the designer can visually compare U with A and see what remains to
be covered.

Our tool is based on two key algorithms. The first algorithm computes the
bounded terms in the coverage gap and then pushes them into the syntac-
tic structure of the architectural properties to obtain the uncovered part. The
second algorithm takes architectural properties having unbounded temporal
operators and systematically weakens them into structure-preserving decom-
positions and checks the components that remain to be covered.

5.3 Coverage Algorithm

The core idea behind our algorithm is to present a structure-preserving form of
the coverage gap. Our algorithm takes each formula FA from the architectural
intent A and finds the coverage gap, G, for FA, with respect to the RTL proper-
ties R and the concrete Models M. Since R and M are required to cover every
property in A, we use this natural decomposition of the problem. The Cov-
erage Algorithm presented in Das et al. [2006] implements this idea. There,
we have used U to represent the RTL coverage hole RH and M to represent
the concrete module in the RTL specification. In fact, in that algorithm we
compute

U = FA ∨ ¬(R ∧ TM)

before applying the Push Term heuristic. Here, we explain its operation with
the help of the design in Example 12.

In the design described in Example 12, A = G(¬ wait ∧ r1 ∧ X (r1 U r2) →
X (¬d2U d1)), R ′

1 and R ′
2 are the RTL properties of Pr A. L1 and M1 constitute

the concrete modules M . The first step of the algorithm generates the tempo-
ral properties TL1 and TM1 corresponding to L1 and M1, respectively. M1 is a
combinational block and thus TM1 is generated by nesting a global operator G
above the Boolean function it implements:

TL1 = G((r1 ∧ wait ↔ g1) ∧ (r2 ∧ wait ↔ g2)).

For generating TM1, our algorithm first generates the FSM for M1 and then
generates TM1 from it:

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:29

Fig. 13. Pushing the terms in UM .

TM1 = (¬g1 ∧ ¬g2 ∧ ¬wait) ∧ G[(g1 ∧ hit ′ ∧ d ′
1)

∨ (g1 ∧ hit ′ ∧ d ′
2) ∨ (¬(g1 ∧ hit ′) ∧ ¬d ′

1) ∨ (¬(g1 ∧ hit ′) ∧ ¬d ′
1)

∨ (g1 ∧ ¬hit ′ ∧ wait ′) ∨ (g1 ∧ ¬hit ′ ∧ wait ′) ∨ (¬(g2 ∧ ¬hit ′)
∧ ¬d ′

1) ∨ (¬(g2 ∧ ¬hit ′) ∧ ¬d ′
1)].

The first step of Algorithm 3 generates U = A∧ R ∧ TM where TM = TM1 ∧ TL1.
Since ¬U is false in M , in steps 2(a), U is unfolded upto its fixpoint [Clarke
et al. 1999]. After unfolding and abstracting out the local RTL variable d , we
obtain UM as follows:

UM = {¬r1 ∧ X r2 ∧ XX¬hit ∧ X d1,
¬r1 ∧ X r2 ∧ XX¬hit ∧ X ¬d2 ∧ XXd1}.

The distribution of these terms into the parse tree of A is done in the step 2(c)
of the algorithm, as shown in Figure 13. This step determines that the gaps lie
inside the unbounded operator until(U).

Step 2(d) of Algorithm 1 uses heuristics to decompose the property into
weaker fragments, and then return those fragments that are not covered by
the RTL specification. This step is useful when the coverage gap lies in prop-
erties having the unbounded temporal operators, like G, F , and U . We explain
the method with the following property:

ϕ: G((a U b) ⇒ (c U d)).

Suppose we want to weaken the property by augmenting a new literal ¬e with
the variable instance c. The choice of the ‘e’ is guided by the variable that
reaches the temporal operator during the execution of step 2(c). Here, we have
to weaken the variable instance c for weakening of ϕ. So we need to replace the
variable instance with the disjunction of the variable and the new literal. The
resulting weakened property may be any one of the following:

ϕ′: G((a U b) ⇒ ((c ∨ ¬e) U d))
ϕ′′: G((a U b) ⇒ ((c ∨ e) U d)).

Here, ϕ = ϕ′ ∧ ϕ′′, and it may be the case that RTL covers ϕ′ but not ϕ′′, in which
case we report ϕ′′ as the coverage gap.

Returning to our example, the until operator to the left of the implica-
tion operator is weakened using X ¬hit, and we obtained the following gap

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:30 • A. Sinha et al.

Table I. Runtimes of SpecMatcher for Concrete Modules

Time (sec)

No. of Primary TM Gap

Circuit RTL Coverage building Finding

properties Question Time Time

Memory Arb. Logic 26 4.7 2.3 26.1

Intel Design 12 8.2 0.9 15.2

ARM AMBA AHB 29 12.07 9.8 22.5

Paper Ex. (Figure 10) 2 0.18 0.06 1.2

Table II. Runtimes of SpecMatcher for Auxiliary state machines

Circuit No. of Time (sec)

RTL Properties Primary No. of states Gap Finding Time

ARM AMBA AHB 29 14.17 13 25.7

MyBus Example 2 0.18 5 1.2

property:

U = G(¬wait ∧ r1 ∧ X (r1U (r2 ∧ X ¬hit)) → X (¬d2Ud1)).

U closed the the gap between the architectural specification and the RTL.

6. RESULTS ON SPECMATCHER

SpecMatcher is our tool for verifying design intent coverage. Table I and II show
the runtime of our tool on several designs with concrete modules and with aux-
iliary state machines respectively. For each design, we selected architectural
properties, which requires contributions from multiple submodules. For exam-
ple, ARM AMBA AHB is a bus protocol involving master, slave and arbiter
devices. The time break-ups show the time spent (on a 2GHz P4) by the tool in
each of the major steps of the coverage algorithm.

7. CONCLUSION

The design intent coverage approach is a novel attempt toward extending the
frontiers of FPV (formal property verification) by enabling the coverage of sys-
tem level properties by the collection of module level properties. In this work,
we have extended this methodology to work for other hybrid specifications
where the module level specification can contain RTL descriptions and/or the
module/system level properties can be annotated with auxiliary state-
machines. This enhancement certainly enables the design intent methodology
to work with wider range of specification models. We have also shown the
applicability of our proposal on several bus protocols.

APPENDIX

A: SYNTAX AND SEMANTICS OF LTL

The formal syntax and semantics of LTL [Clarke E. M., Grumberg O., and Peled
D. A. 1999] is defined over a Kripke structure. Formally, we define a Kripke
structure as a tuple, K = 〈AP , S, τ, s0, F〉, where:

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

Design Intent Coverage Revisited • 9:31

— S is a finite set of states,

—AP is a set of atomic propositions labeling S,

—τ ⊆ S×S is the transition relation, which must be total (for all states si ∈ S,
there exists a state sj ∈ S such that (si, sj) ∈ τ),

—s0 ⊆ S is the set of start states,

—F : S → 2AP is a labeling of states with atomic propositions true in that
state.

A path, π , in the Kripke structure is an infinite sequence of states, s0, s1, . . . ,
such that for all i, si ∈ S, and (si, si+1) ∈ τ . s0 is called the starting state of π .
We use π j to denote the suffix of π starting from sj .
The formal syntax of LTL is as follows:

—Each atomic proposition in AP is a LTL formula.

—If f and g are LTL formulas, then so are ¬ f , f ∧ g , X f , f U g .

The formal semantics of LTL is as follows (f and g are LTL formulas; p is an
atomic proposition; π = s0, s1, . . . is a path in K):

—π |= p iff p ∈ F(s0)

—π |= ¬ f iff π 	|= f
—π |= f ∧ g iff π |= f and π |= g
—π |= X f iff π1 |= f
—π |= f U g iff ∃ j , such that π j |= g and ∀i, i < j we have πi |= f

ACKNOWLEDGMENTS

The authors would like to thank all the reviewers for critically judging our work
and substantially improving the value and the quality of this article.

REFERENCES

BASU, P., DAS, S., BANERJEE, A., P. DASGUPTA, P. P. C., MOHAN, C., FIX, L., AND ARMONI, R. 2006. Design

intent coverage—a new paradigm for formal property verification. Comput.-Aid. Des. Int. Circ.
Syst. 25, 10, 1922–1934.

CHOCKLER, H., KUPFERMAN, O., KURSHAN, R. P., AND VARDI, Y. M. 2001. A practical approach to

coverage in model checking. In Proceedings of the Conference on Computer Aided Verification.

66–78.

CHOCKLER, H., KUPFERMAN, O., AND VARDI, M. Y. 2001. Coverage metrics for temporal logic model

checking. In Proceedings of the Conference on Tools and Algorithms for the Construction and
Analysis of Systems. 528–542.

CHOCKLER, H., KUPFERMAN, O., AND VARDI, Y. M. 2003. Coverage metrics for formal verification. In

Proceedings of the 12th Advanced Research Working Conference on Correct Hardware Design and
Verification Methods. Lecture Notes in Computer Science, vol. 2860, Springer, 111–125.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press.

DAS, S., BASU, P., DASGUPTA, P., AND CHAKRABARTI, P. P. 2006. What lies between design intent

coverage and model checking? In Proceedings of the Conference on Design, Automation and Test
in Europe. European Design and Automation Association, Munich, Germany, 1217–1222.

DASGUPTA, P. 2006. A Roadmap for Formal Property Verification. Springer.

HOSKOTE, Y., KAM, T., HO, P. H., AND ZHAO, X. 1999. Coverage estimation for symbolic model

checking. In Proceedings of the Design Automation Conference. 300–305.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

9:32 • A. Sinha et al.

KATZ, S., GRUMBERG, O., AND GEIST, D. 1999. Have i written enough properties?”—a method of com-

parison between specification and implementation. In Proceedings of the Conference on Correct
Hardware Design and Verification Methods. 280–297.

PNUELI, A. 1977. The complexity of propositional linear temporal logics. In Proceedings of the
Foundations of Computer Science. 46–57.

PSL. Property Specification Language (PSL). www.eda.org/vfv/docs/PSL-v1.1.pdf. PSL.

SISTLA, A. P. AND CLARKE, E. M. 1985. The complexity of propositional linear temporal logics. J.
ACM 32, 3, 733–749.

SVA. SystemVerilog 3.1a Language Reference Manual. www.eda.org/sv/SystemVerilog 3.1a.pdf.

SVA.

Received July 2007; revised February 2008; accepted August 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 1, Article 9, Pub. date: January 2009.

