
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008 967

TABLE I
RESULTS FOR KNOWN PATTERNS OF FINITE SIZE

self-assembly for nanomanufacturing. In the second set of experi-
ments, the Sierpinski triangle, bar code (including line1 and line2),
chessboard, and binary counter have been selected as patterns. The-
oretically, these types of pattern can grow infinitely based on self-
assembly rules. Synthesis, however, can only be applicable to a finite
pattern. Therefore, in this set of experiments, a limited pixel area of
the pattern is selected and provided as input to the program.

Table I shows the results, inclusive of the selected pixel area size,
the number of tiles in the trivial tile set, the number of tiles in the
valid tile set (as obtained by synthesis), and the percentage reduction in
tile types. For a pattern (i.e., line1), the program produces the optimal
tile set. However, for most of the patterns, the reduction in tile types is
similar in performance to random tiles.

VI. CONCLUSION

In this paper, the synthesis problem for generating a tile set for
a finite pattern in DNA self-assembly has been presented as a com-
binatorial optimization problem referred to as the PATS problem. A
graph model has been proposed for analyzing the tile sets assem-
bling a specified patterns. The PATS problem has been analyzed by
utilizing the proposed graph model. Two greedy algorithms (referred
to as PATS_Tile and PATS_Bond) have been proposed for the PATS
problem. Both algorithms are greedy and have the same execution
complexity O(l4) for a square pattern of size l × l. Self-assembly from
the tile sets synthesized by the proposed algorithms was verified by the
Xgrow simulation. The PATS problem and the proposed algorithms
only utilize the rule tiles in the tile set. The design of seed and bound-
ary tiles also needs to be addressed in future research to fully charac-
terize the self-assembly process. Moreover, the tile synthesis problem
analyzed in this paper relies on aTAM as model. aTAM has been
extensively analyzed in the technical literature; it is however important
to assess whether the assumptions of aTAM (for example, the nonro-
tational property of the tiles) limit its widespread application and, if
required, its modification to account for other self-assembly scenarios
as encountered in different chemical and biological processes (for ex-
ample, the case in which horizontal and vertical bonds are correlated).

REFERENCES

[1] R. Compano, L. Molenkamp, and D. Paul, “Technology roadmap for
nanoelectronics,” Eur. Commission IST programme, Future and Emerging
Technologies, 2000. [Online]. Available: cordis.europa.eu/ist/fet/
nidqf.htm

[2] C. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly:
Building complex nanoarchitectures,” ChemPhysChem, vol. 7, no. 8,
pp. 1641–1647, 2006.

[3] S.-H. Park, R. Barish, H. Li, J. Reif, G. Finkelstein, H. Yan, and
T. LaBean, “Three-helix bundle DNA tiles self-assemble into 2D lattice or
1D templates for silver nanowires,” Nano Lett., vol. 5, no. 4, pp. 693–696,
2005.

[4] P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and
patterns,” Nature, vol. 440, no. 7082, pp. 297–302, Mar. 2006.

[5] S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck, C. Dwyer, and
T. H. LaBean, “Finite-size, fully-addressable DNA tile lattices formed by
hierarchical assembly procedures,” Angew. Chem., Int. ed. Engl., vol. 45,
no. 5, pp. 735–739, Jan. 2006.

[6] W. Hu, K. Sarveswaran, M. Lieberman, and G. Bernstein, “High-
resolution electron beam lithography and DNA nano-patterning for mole-
cular QCA,” IEEE Trans. Nanotechnol., vol. 5, no. 3, pp. 312–316,
May 2005.

[7] C. Mao, W. Sun, and N. C. Seeman, “Designed two-dimensional DNA
Holliday junction arrays visualized by atomic force microscopy,” J. Amer.
Chem. Soc., vol. 121, no. 23, pp. 5437–5443, 1999.

[8] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-
assembly of two-dimensional DNA crystals,” Nature, vol. 394, no. 6693,
pp. 539–544, Aug. 1998.

[9] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, “Logical computa-
tion using algorithmic self-assembly of DNA triple-crossover molecules,”
Nature, vol. 407, no. 6803, pp. 493–496, Sep. 2000.

[10] S.-H. Park, H. Yan, J. Reif, T. LaBean, and G. Finkelstein, “Electronic
nanostructures templated on self-assembled DNA scaffolds,” Nanotech-
nology, vol. 15, no. 10, pp. S525–S527, Oct. 2004.

[11] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean,
“DNA-templated self-assembly of protein arrays and highly con-
ductive nanowires,” Science, vol. 301, no. 5641, pp. 1882–1884,
Sep. 2003.

[12] J. Lund, J. C. Dong, Z. X. Deng, C. D. Mao, and B. A. Parviz, “Electri-
cal conduction in 7 nm wires constructed on λ-DNA,” Nanotechnology,
vol. 17, no. 11, pp. 2752–2757, Jun. 2006.

[13] E. Winfree, Xgrow homepage. [Online]. Available: www.dna.caltech.
edu/Xgrow/

[14] P. W. K. Rothemund, N. Papadakis, and E. Winfree, “Algorithmic self-
assembly of DNA Sierpinski triangles,” PLoS Biology, vol. 2, no. 12,
p. e424, Dec. 2004. DOI: 10.1371/journal.pbio.0020424.

[15] E. Winfree and R. Bekbolatov, “Proofreading tile sets: Error correction
for algorithmic self-assembly,” in Proc. 9th Int. Workshop DNA Comput.,
2003, pp. 108–126.

[16] X. Ma, On the complexity of DNA self-assembly processes, 2007. Internal
Report, NEU, available upon request.

Accelerating Assertion Coverage
With Adaptive Testbenches

Bhaskar Pal, Ansuman Banerjee,
Arnab Sinha, and Pallab Dasgupta

Abstract—We present a new approach to bias random test generation
for accelerating assertion coverage. The novelty of the proposed approach
is that it treats the design under test as a black box and attempts to
steer the simulation toward coverage points that are relevant for targeted
assertions purely through external control. We present this approach over
three different models with varying degrees of observability and control.
The results demonstrate a significant speedup in assertion coverage as
compared to randomized simulation.

Index Terms—Design verification, functional coverage, test generation.

Manuscript received June 16, 2007; revised October 31, 2007. The work of
P. Dasgupta was supported in part by the Department of Science and Tech-
nology, Government of India. This paper was recommended by Associate
Editor R. F. Damiano.

The authors are with the Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur 721302, India (e-mail: pallab@cse.
iitkgp.ernet.in).

Digital Object Identifier 10.1109/TCAD.2008.917975

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: Princeton University. Downloaded on August 19, 2009 at 15:33 from IEEE Xplore. Restrictions apply.

968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

I. INTRODUCTION

Capacity limitations continue to impede widespread adoption of
formal property verification technology, but assertions are widely
used in dynamic property verification (DPV), where assertions are
monitored over simulation traces on traditional simulation-based veri-
fication environments.

DPV is essentially bug hunting, i.e., the goal is not to prove a
property formally but to keep looking for bugs over simulation traces.
Therefore, an assertion is not covered unless the testbench drives
the simulation to those scenarios (typically corner-case scenarios) for
which the property was developed. Writing directed tests for covering
specific assertions is time-consuming and goes against the industry
trend of developing constrained random testbench architectures, pri-
marily to avoid the task of writing thousands of directed tests. In
this paper, we present a technique for biasing a randomized testbench
with respect to a given property (one at a time) so that it reaches the
scenarios that are relevant to that property in less time.

In our model, we choose to treat the design under test (DUT) as a
black box and formulate the problem as a game between the DUT and
the testbench, where the testbench wins when the simulation reaches a
scenario relevant to the given property. Our decision to treat the DUT
as a black box is motivated by two factors.

1) Our method is not affected by the implementation of the DUT.
For example, the DUT may be in a nonsynthesizable language.

2) The size of the DUT is not an issue for us as long as it can be
handled by the simulation tool.

Our approach is a novel alternative to existing test-generation
methods that parse the DUT to trace a path to a given scenario.
Methods such as property-specific test generation [1], counter-
example-guided test generation [2], [3], sequential automatic test
pattern generation [4], [5], and model-based test generation [6] use
DUT-specific information to reach corner-case scenarios quickly. On
the other hand, the task of analyzing the DUT leads to capacity
issues and restrictions on the language used for the DUT. Our goal
is not to compete with these methods in the space where they work
but to present an alternative technology that is easily scalable, can
be integrated easily with other automated approaches (which utilize
design data) and existing simulation platforms [7], and can handle a
DUT in any language that is supported by the simulation environment.

Since we choose to treat the DUT as a black box, our algorithms for
test generation vary with two factors:

1) observability: the DUT signals that are visible to the test
generator during simulation;

2) controllability: the DUT signals that can be controlled directly/
indirectly by the test generator.

We present algorithms for three different models in the next three
sections, which differ in terms of observability and controllability. We
demonstrate the result for all the three models in Section V.

II. MODEL 1: DIRECT VACUITY

In the direct vacuity model, we assume that the assertions are de-
fined over the signals appearing at the interface between the testbench
and the DUT. In other words, each signal of the targeted assertion is
observable, and the inputs to the DUT are controllable. The goal is
to decide the inputs at each time step so that the trace satisfies the
assertion nonvacuously.

The definition of vacuity is not uniform, and verification engineers
use various metrics for assertion coverage. In many tools, an assertion
in implication form is said to be covered whenever the antecedent
part of the implication matches. For example, consider the following
property (in SVA [12]), for an arbiter with input r and output g, which

says that if the request r is asserted, then the grant g must be asserted
in the next two cycles, unless r is lowered in between

property P;
@(posedge clk) r |− > ##1 (g or (!g && !r) or

((!g && r) ##1 g)) ;
endproperty

Obviously, the above assertion is vacuously satisfied in all traces where
r is never asserted. Some tools will report the assertion to be covered
each time r is asserted, because r satisfies the antecedent of the
implication. This is not a formal definition of vacuity since we could
write the same property without using the implication—in which case,
the context of the property would become implicit.

Implication vacuity also overlooks a very important fact which is
demonstrated by the scenario when the testbench drives r at cycle t
but does not get the grant g in the next cycle, t + 1. In this case, the
testbench must drive r again to test whether the arbiter asserts g at
t + 2. On the other hand, if the testbench lowers r at t + 1, then the
property will be satisfied vacuously. In other words, the coverage of
a temporal property (like P) may continue over many cycles, and we
have a coverage hit only when the response of the DUT eventually
decides the truth of the property.

Driving a nonvacuous scenario may therefore be seen as a game
between the DUT and its testbench. In each cycle (round of the game),
the testbench must choose the values of the inputs to the DUT in such
a way that the truth of the assertion is not solely determined by the
values of the input signals but depends on the response of the DUT in
the next cycle. The property is satisfied nonvacuously if the response
of the DUT eventually decides the truth of the assertion. In this paper,
we shall refer to this game as the vacuity game. We introduced the first
formal methods on direct vacuity games (DVGs) in [8].

In all forms of vacuity games, we must realize that the testbench has
to drive many other signals (in a protocol-compliant manner) that do
not appear in a given assertion—a task which is hard to automate. We
therefore propose to embed our methods within an existing testbench
architecture so that the testbench queries our methods in each cycle
for only the input values that are relevant to the target assertion. Our
methods randomly choose (to achieve proper distribution of stimulus)
among the input valuations that are relevant in that cycle. This way, we
have integrated our methods with existing layered testbench architec-
tures and have achieved considerable success.

A. Formal Model

Formally, we define a module J as a design block having a set of
inputs I , a set of outputs O, an initial block INIT, and a description B.
The execution of the initial block produces the values of the output
variables at the beginning of the simulation. The formal properties are
specified in linear temporal logic (LTL). A detailed description of this
formal model can be found in [8].
Definition 1: X-guarded LTL formula. An LTL property is

X-guarded if all its terms start with the X operator. �
For example, the property P = ((X p)U(X X q)) ∧ (X F r)

is an X-guarded formula since the X-pushed form of P , PX =
X((p U(X q)) ∧ (F r)), starts with an X operator whose scope
covers the whole formula.

The task of monitoring the truth of a given LTL property along a
simulation run works as follows. If we are required to check an LTL
property ϕ from a given time step t, we rewrite the LTL property
into a set of propositions over the signal values at time t and a set of
X-guarded LTL properties over the run starting from time t + 1.

The property checker reads the signal values from the simulation
at time t and substitutes these on the rewritten properties and derives a

Authorized licensed use limited to: Princeton University. Downloaded on August 19, 2009 at 15:33 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008 969

new property that must hold on the run starting from t + 1 by dropping
the leftmost X operator from each X-guarded term.

To check the property p U(q U r) at time t, we rewrite it as

(r ∨ (q ∧ X(q U r))) ∨ (p ∧ X (p U (q U r))) .

If the simulation at time t gives p = 0, q = 1, and r = 0, then by
substituting these values, we obtain the property X(q U r). Therefore,
at time t + 1, we need to check the property q U r. We repeat the same
methodology on q U r at time t + 1.

For automatic test generation, we may choose the values of the
input signals at each time step t while monitoring the property. The
following definition is useful to characterize our goal.
Definition 2: Vacuous input vector. An input vector Î is vacuous at

a given state with respect to a property ϕ iff ϕ becomes true at that
state on input Î regardless of the values of the remaining variables. �

For each property, our target is to drive a sequence of inputs such
that a nonvacuous success/failure of the property is reported.

B. Test-Generation Algorithm

To develop the formal algorithms, let us study the interaction be-
tween the DUT J and its testbench with respect to a given property L.
The execution of the INIT block is the first move of the DUT. If
the initial state is sufficient to satisfy or refute L, then we have
a nonvacuous success or failure. Otherwise, there must exist some
nonvacuous input vectors with respect to L. The test generator must
choose one such assignment and simulate J with that input and study
the response of J (that is, the values of the outputs) in the next cycle.
If L gets satisfied or refuted, then we have a nonvacuous success or
failure; else, we repeat the same in the next cycle.

The procedure SimulateMain outlines our algorithm for intelligent
test generation for a module J and a target-uncovered property L. It
calls procedure GenStimulus to produce a nonvacuous input vector
with respect to L. For the input variables occurring in L, it chooses
a nonvacuous assignment. For the rest of the input variables, a random
assignment is made since their valuations do not affect the vacuity of
the property.

Algo. 2.1: Procedure SimulateMain
InputVector Î SimulateMain(Output: Ô, property: L)
Step 1: Rewrite L in terms of present state Boolean propositions and

X-guarded temporal properties
Step 2: Substitute the values of the output variables from Ô in the

non X-guarded terms of L to obtain L̂

Step 3: If L̂ = TRUE, return with nonvacuous success
Step 4: If L̂ = FALSE, return with nonvacuous failure
Step 5: Î = GenStimulus(L̂)

Step 6: Obtain L′ from L̂ by substituting Î in the non X-guarded
terms of L̂ and dropping the leftmost X from each X-
guarded temporal property

Step 7: Set L = L′

Step 8: Return Î

Algo. 2.2: Procedure GenStimulus
Input_Vector GenStimulus(property: L)
//L is a property over I & X-guarded terms over I

⋃
O

Step 1: Rewrite L as a conjunction of clauses, where each clause is
a disjunction of Boolean formulas and X-guarded terms

Step 2: Set P = the Boolean formula obtained from L after drop-
ping the X-guarded terms

Step 3: If P is satisfiable, Î = random input vector refuting P else
Î = any random input vector

Step 4: Return Î

Example 1: Consider the LTL property below for an arbiter

P : G (r ⇒ X (g ∨ (r ⇒ X(g))))

with input r and output g. Initially, g is low. With this value, P
is neither true nor false. GenStimulus is called with P , which is
rewritten as

((¬r ∨ X (g ∨ (r ⇒ Xg))) ∧ X(P))

as the argument, which returns a nonvacuous input vector r = 1.
The arbiter is simulated with this input vector. In response, suppose
that the arbiter does not assert g in the next cycle. In this situation,
GenStimulus is again called with the following argument:

((¬r ∨ X(g)) ∧ (¬r ∨ X (g ∨ (r ⇒ Xg))) ∧ X(P)) .

GenStimulus returns a nonvacuous input vector r = 1, and the arbiter
is simulated. Now, the arbiter must assert g in the next cycle. �

III. MODEL 2: INDIRECT VACUITY

In the direct vacuity model, the targeted assertions are defined
over signals that appear in the interface between the DUT and the
testbench. However, in practice, verification engineers also write as-
sertions to verify internal properties of the DUT over signals that
are neither driven nor read by the testbench. For example, the top-
level testbench for a processor typically drives a characteristic stream
of instructions, but the verification task includes checking properties
over internal events in the pipeline. Each instruction causes a known
set of internal events in the pipeline, and only a specific sequence of
instructions may lead the simulation toward specific scenarios (such
as hazards) that are relevant to a given property of the pipeline.
Our goal is to find such sequences of instructions on-the-fly during
simulation.

Formally, let H = {h1, h2, . . . , hN} be a set of instructions. An
instruction hi, which is driven at cycle t, causes a known set of events
between cycle t and cycle t + δi.

The events caused by an instruction are defined over a set of internal
signals I . In our model, we assume that the exact sequence of events
caused by an instruction is known a priori. However, the assertions to
be checked are defined over I ∪ O, where O is the set of other signals
over which the testbench has no control. In other words, the valuation
of O is decided by the DUT. Therefore, this is again a game that is
similar to the one studied in the previous section, except that the values
of the signals in I cannot be directly assigned by the testbench but
may be indirectly controlled by driving appropriate instructions into
the DUT. Since the values of O are decided by the DUT (which we
choose to treat as a black box), the desired sequence of instructions
has to be decided on-the-fly during simulation.

The events caused by hi can be specified in terms of a formula

δi∧
k=0

T k
i

where T k
i is a valuation of some signals in I at time t + k when hi is

driven at time t. Since this specification is entered by the verification
engineer, we need to check whether the specification is consistent
before we use it in our test-generation algorithm.

Formally, for any two instructions hi and hj , if any of the following
family of formulas are unsatisfiable, we reject the specification as
inconsistent:

∃a∃b(0 ≤ a ≤ δi) ∧ (0 ≤ b ≤ δj) ∧ (a �= b) ∧ T a
i ∧ T b

j .

Authorized licensed use limited to: Princeton University. Downloaded on August 19, 2009 at 15:33 from IEEE Xplore. Restrictions apply.

970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

A. Test-Generation Algorithm

While targeting a nonvacuous matching for a given property, the
testbench should not drive an instruction which causes a sequence
of internal events that satisfies the property vacuously. Since each
instruction hi scheduled at time t causes internal events spanning from
time t to time t + δi, we must look ahead at least δi time steps to check
whether the property becomes vacuously true if hi is scheduled at
time t. The following procedure performs this task.

Algo. 3.1: Procedure FindInstruction(A, H)
// A denotes the targeted assertion and H—the set of instructions
// Let ∆ = max{δi, i = 1, N}
Step 1: Rewrite A in terms of the Boolean propositions over the next

∆ cycles and temporal terms prefixed by ∆ or more X
operators

Step 2: Substitute the valuations caused by previous instructions in
A to get L

Step 3: Let P ← ¬L ∧Cons (formally defined below)
Step 4: If P is satisfiable

ĥ ← An instruction at t from an assignment satisfying
P else Print: No Solution and Abort

Step 5: return ĥ

The term Cons of Step 3 expresses a few constraints about the
system. First, we assume that only one instruction can be driven in
each time step. This is expressed by the constraint

M : mutex{hi|i = 1, . . . , |H|}.

We also introduce the condition for each externally controllable inter-

nal event

Cj :

∆∧
k=0

((
it+k
j

)
↔

∨
x,y

(
hx

y

))

such that t ≤ x ≤ (t + k) and y = 1 to |H| and instruction hy gener-

ates input event ij at time t + k when scheduled at time x. Intuitively(
it+k
j

)
↔

∨
x,y

(
hx

y

)
expresses the required condition for internal event ij to occur at time

t + k. The constraint Cons of Step 3 is defined as follows:

Cons :

(|I|∧
j=1

Cj

)
∧ M.

Theorem 1: FindInstruction never returns a vacuous instruction
with respect to the targeted assertion A.

Proof: (Cons ⇒ L) becomes valid when (Cons ∧ ¬L) is un-
satisfiable. Hence, we choose an instruction for which (Cons ∧ ¬L)
remains satisfiable. �

IV. MODEL 3: CONTEXT-DRIVEN VACUITY

Verification engineers advocate the use of auxiliary state machines
(ASMs) in the development of formal property specifications [9]. The
ASMs define the macrostates of the protocol between the DUT and the
environment, and the formal assertions are typically local properties
defined in the context of these macrostates of the ASMs.

Fig. 1. ASMs.

We motivate the use of ASMs with a simple intuitive example and
then explain the problem of generating tests to sensitize an assertion
which has been written using the ASM states as its context. We shall
refer to such assertions as context-triggered properties.
Example 2: Consider the specification of a master interface partic-

ipating in a simple bus protocol with an arbiter and a slave device.
Fig. 1 shows two ASMs for describing the macrostates of the protocol.
M1 describes the state of the master during bus access in terms of
req (request to arbiter) and gnt (grant from arbiter). M2 describes a
more detailed state of the master during the transfer using the signal
rdy (slave ready). Note that the ASMs involve a small fragment of
the DUT interface signals. For our master interface, the following
are other signals: 1) rw (indicating the nature of current transfer,
write or a read); 2) validaddr (indicating the validity of the bus
address); 3) abort (transfer terminated by the slave); and 4) delayed
(delayed transfer).

The specification includes the following properties.

1) P0: If the transfer waits due to nonavailability of slave while the
abort signal is low, then the delayed signal should be asserted in
the next cycle.

2) P1: If the master is in the ADDR cycle in a write transfer,
validaddr must be asserted in the next cycle.

Both properties are context-triggered. P0 applies only when the master
is in the waiting phase, whereas P1 applies only when the master is in
the ADDR cycle. It is easy to code these properties using the ASMs,
as shown in the following:

P0 :G(WAIT ∧ ¬abort ⇒ X delayed)

P1 :G(TRANSFER ∧ ADDR ∧ rw ⇒ Xvalidaddr).

Let us now consider the task of developing the same properties without

using the ASMs. The main problem here is that the context states
(such as WAIT, TRANSFER, and ADDR) cannot be characterized
by Boolean propositions over the interface signals and require an
encoding of the history of the protocol. For example, one might be
tempted to express P1 as

G ((req ∧ gnt) ∧ X(req ∧ rdy ∧ rw) ⇒ XXvalidaddr) .

The antecedent part of the implication attempts to express the context

TRANSFER ∧ ADDR. In this form, the antecedent appears nonintu-
itive. Moreover, the antecedent does not capture those scenarios where
the DUT reaches the TRANSFER state after stuttering in one or more
WAIT states. It is easy to see that a more accurate encoding of all
possible history will make the antecedent almost unreadable and prone
to coding errors. �

Authorized licensed use limited to: Princeton University. Downloaded on August 19, 2009 at 15:33 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008 971

The task of reaching a nonvacuous scenario for a context-triggered
property consists of two parts. The first part is to guide simulation
toward the states of the ASM which sensitize the context of the
property. On reaching the context, the second part is similar to a
DVG, except that we have to consider the constraints imposed by the
transitions of the ASM also.
Example 3: Consider a context-triggered property defined over the

states S1 and S2 of an ASM as given in the following:

G ((S1 ∧ a ∧ X(S2)) ⇒ XX(b)) .

The signal a is an input to the DUT, and the signal b is an output of the
DUT. Let C(S1, S2) denote the transition condition which enables the
ASM to switch from S1 to S2.

To check this property nonvacuously, the simulation must first reach
a state representing S1. On reaching S1, the testbench must drive the
signal a, and also, it must enable the transition from S1 to S2 by
choosing a valuation of the signals that satisfies C(S1, S2). In other
words, the testbench must choose a valuation of the signals it drives
such that a ∧ C(S1, S2) remains satisfiable. �

A. Test-Generation Algorithm

Given a context-triggered property L, we execute the following two
games for reaching nonvacuous scenarios for L.

1) Game 1: Generate test vectors to cosimulate the ASM with
the DUT and guide the simulation toward states satisfying the
triggering context for L.

2) Game 2: Once the triggering context for L is reached, we play
a DVG augmented by the constraints imposed by the ASM
transitions.

The ASM states that satisfy the triggering context of L are extracted
from L before Game 1 starts. Thereafter, Game 1 is played with the
ASM as the reference. In each step of Game 1, the testbench asks the
test generator for a valuation of the signals controlling the transitions
between the ASM states. The following algorithm shows the steps of
Game 1 for a given context-triggered property L.

Algo. 4.1: Procedure Game1Move
InputVector Î Game1Move(Ô, Ŝ, J , ASM)
// Ô denotes the present outputs of the DUT
// Ŝ denotes the present ASM state of the DUT
// Q denotes the triggering context of L
Step 1: If Ŝ satisfies J , Return with success //Context reached
Step 2: Select a successor S′ of Ŝ in the ASM that is on some simple

path to states satisfying Q.
Let C(Ŝ, S′) denote the enabling condition for (Ŝ, S′)

Step 3: Substitute the values in Ô in C(Ŝ, S′).
Step 4: Return any valuation of Î that does not refute C(Ŝ, S′)
Once Game 1 returns with success, we start Game 2. The steps of
Game 2 are shown in Algorithm 4.2. Let C(Si, Sj) denote the
enabling condition for the transition from state Si to state Sj in
the ASM.

Algo. 4.2: Procedure Game2Move
InputVector Î Game2Move(Ô, Ŝ, L, ASM)
Step 1: Rewrite L in terms of the present-state Boolean propositions

and X-guarded temporal properties to get L′

Step 2: Replace each term of the form X(S′) in L′ with C(Ŝ, S′)

to get L̂

Step 3: Execute Step 2 to Step 8 of Algo 2.1 with L̂.

Fig. 2. Coverage progress in PLB and OPB (direct vacuity).

V. EXPERIMENTAL RESULTS

We have applied the test methodologies on various test cases. For
each case, we performed the verification in two phases. In Phase 1,
we ran simulation using a standard constrained random testbench
(CDR) for a large number of simulation cycles. At the end of this,
we identified the set of uncovered properties. In Phase 2, we have used
our methodologies targeting each of these properties. We show that
Phase 2 achieves the verification closure much faster than continuing
with Phase 1 for more number of cycles.

A. Results: Direct Vacuity

Table I shows the result of our tool for an industry standard assertion
IP for the IBM CoreConnect BUS protocol [10]. It has two primary
buses, namely, OPB and PLB (component details are given in Table I).
In Phase 1, we have simulated the components with the CDR testbench
for 21200 (for PLB) and 16150 simulation (clock) cycles (for OPB).
The simulation takes 24 and 35 min for OPB and PLB, respectively. In
Fig. 2, G2 and G4 show the coverage progresses of the CDR testbench
for PLB and OPB. In both cases, a certain coverage is reached (nearly
70%) very quickly (within 6000 cycles for OPB and 8000 cycles
for PLB). However, after that, the rate of increase in coverage became
marginal. After Phase 1, 11 and 20 properties remained uncovered in
OPB and PLB.

In Phase 2, we have used DVG as well as the CDR testbenches
for the set of uncovered properties. In Fig. 2, G1 and G3 show the
relative coverage progresses of the DVG testbench for PLB and OPB.
The coverage improved dramatically when using our proposed (DVG)
approach. Columns 11 and 12 of Table I show the required simulation
cycles and time (in DVG) for covering the set of uncovered properties.
The CDR testbench is also simulated for another 8850 cycles (13 min)
for OPB and 13 800 cycles (22 min) for PLB in Phase 2 but with
marginal growth in coverage.

B. Results: Context-Driven Vacuity

We have used the context-driven vacuity game (CDVG) on the
same experimental setup explained in Section V-A. As before (see
Section V-A), in Phase 1, the bus components have been simulated
with the CDR testbench for 16 150 (for OPB) and 21 200 simulation
(clock) cycles (for PLB). Similar to Fig. 2, in Fig. 3, G2 and G4
show the coverage progresses of the CDR testbench for PLB and
OPB. After Phase 1, 11 and 20 properties remained uncovered in OPB
and PLB.

Authorized licensed use limited to: Princeton University. Downloaded on August 19, 2009 at 15:33 from IEEE Xplore. Restrictions apply.

972 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

TABLE I
RESULTS ON IBM CORECONNECT

Fig. 3. Coverage progress in OPB and PLB (context-driven vacuity).

TABLE II
RESULTS ON DLX PIPELINE

In Phase 2, we have used the CDVG scheme as well as the CDR
testbench for covering the set of uncovered properties. In Fig. 3, G5
and G6 show the relative coverage progresses of the CDVG testbench
for PLB and OPB. Columns 13 and 14 of Table I show the number
of simulation cycles and time (using CDVG) for covering the set of
uncovered properties.

C. Results: Indirect Vacuity

We have applied our methodology for validating properties on a
five-stage DLX processor pipeline (based on models in [11]). We have
tested common critical hazard conditions (e.g., data, structural (STRH)
and control (CNTRH) hazards). For data hazards, we have consid-
ered both data-forwarding (DF) (DHWDF) and no DF (DHADF)
schemes. We also considered out-of-order execution (OOE). VCS [7]
is used as the simulator, and SystemVerilog [12] is used for testbench
modeling. Column 2 (Table II) refers to the number of properties
taken for the experiments. Columns 3 and 4 compare the number
of simulation cycles required to cover these properties nonvacuously
using our approach (GenTest) with that of coverage-driven random
one (RandS). The last column shows the % improvement by our tool.
For each property, we have considered at least five different nonva-
cuous instruction sequences. On complicated scenarios (e.g., OOE),
our tool achieves a significant improvement on the simulation time
(see Table II).

VI. CONCLUSION

Dynamic assertion-based verification remains widely used as
model-checking techniques remain capacity-limited. Typically, con-
strained random simulation covers a lot of assertions in quick time
but takes significant amount of time before reaching rare corner-case
scenarios that are relevant to some critical assertions. In this paper, we
have presented methods for guiding simulation toward such scenarios.
These methods should be used at a time when the rate of gain in
assertion coverage begins to decline.

The novelty of our approach is in treating the DUT as a black
box and guiding simulation purely by external control. This helps in
integrating our methods easily with existing simulation platforms.

REFERENCES

[1] A. Gupta, A. E. Casavant, P. Ashar, A. Mukaiyama, K. Wakabayashi, and
X. G. S. Liu, “Property-specific testbench generation for guided simula-
tion,” in Proc. ASP-DAC/VLSI Des., 2002, pp. 524–534.

[2] K. Heon-Mo and P. Mishra, “Functional test generation using property
decompositions for validation of pipelined processors,” in Proc. Des.
Autom. Test Eur., 2006, vol. 1, pp. 1–6.

[3] A. Gargantini and C. Heitmeyer, “Using model checking to generate
tests from requirements specifications,” in Proc. 7th ESEC/FSE, 1999,
pp. 146–162.

[4] J. A. Abraham, V. M. Vedula, and D. G. Saab, “Verifying properties using
sequential ATPG,” in Proc. IEEE ITC, 2002, pp. 194–202.

[5] M. Hsiao and J. Jain, “Practical use of sequential ATPG for model check-
ing: Going the extra mile does pay off,” in Proc. 6th HLDVT Workshop,
2001, pp. 39–44.

[6] O. Luethje, “A methodology for automated test generation for LISA
processor models,” in Proc. 12th Workshop Synth. Syst. Integr. Mixed Inf.
Technol., Kanazawa, Japan, Oct. 18/19, 2004, pp. 266–273.

[7] VCS of Synopsys. [Online]. Available: http://www.synopsys.com/
products/simulation/simulation.html

[8] A. Banerjee, B. Pal, S. Das, A. Kumar, and P. Dasgupta, “Test generation
games from formal specifications,” in Proc. DAC, 2006, pp. 827–832.

[9] P. Dasgupta, A Roadmap for Formal Property Verification. New York:
Springer-Verlag, 2006.

[10] IBM CC Spec. [Online]. Available: www-306.ibm.com/chis/techlib/
techlib.nsf/techdocs/

[11] DLX Spec. [Online]. Available: http://www.opencores.org/pdownloads.
cgi/list/aspida

[12] SystemVerilog 3.1a Language Reference Manual. [Online]. Available:
www.eda.org/sv/SystemVerilog 3.1a.pdf

Authorized licensed use limited to: Princeton University. Downloaded on August 19, 2009 at 15:33 from IEEE Xplore. Restrictions apply.

