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Overview of Talk

 intel 80-core research prototype

 Support for Fine Grained Parallelism

 Partitioning, Isolation and QoS in Interconnects

Overview of Talk
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80-Core Prototype:
Router Design
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Teraflops Research Processor

Goals:
Deliver Tera-scale performance
- Single precision TFLOP at desktop 

power

- Frequency target 5GHz

Prototype two key technologies
- On-die interconnect fabric

- 3D stacked memory

Develop a scalable design 
methodology
- Tiled design approach

- Mesochronous clocking

- Power-aware capability

I/O Area

I/O Area

PLL

single tile

1.5mm

2.0mm

TAP

2
1

.7
2

m
m

I/O Area

PLL TAP

12.64mm

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip) 

1.2 Million (tile)

Transistors

275mm2 (full-chip) 

3mm2 (tile)

Die Area

8390C4 bumps #

65nm, 1 poly, 8 metal (Cu)Technology

100 Million (full-chip) 

1.2 Million (tile)

Transistors

275mm2 (full-chip) 

3mm2 (tile)

Die Area

8390C4 bumps #



5

Tiled Design & Mesh Network

Router

Compute  

Element

One tile

Assemble & Validate 

Step and repeat 
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Key Ingredients for Teraflops on a Chip
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Power 
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36bits

R

CE

5GHz

To 3D

SRAM

Tile

To neighbors

Synchronizers

Industry leading NoC
8x10 mesh
- Bisection bandwidth of 320GB/s
- 40GB/s peak per node
- 4byte bidirectional links
- 6 port non-blocking crossbar
- Crossbar/Switch double-pumped to 

reduce area

Router Architecture
- Source routed
- Wormhole switching
- 2 virtual lanes 
- On/off flow control

Meso-chronous clocking
- Key enabler for tile based approach
- Tile clock @ 5Ghz
- Phase-tolerant synchronizers at tile 

interface

High bandwidth, Low-latency 
fabric
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Five port, 5-stage, two lane, 16-FLIT FIFO, 100GB/s

Shared crossbar architecture, two-stage arbitration
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Circular FIFO, 4-deep
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Low Power Clock Distribution

Global mesochronous clocking, extensive clock gating
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Fine Grain Power Management

• Modular nature enables fine-
grained power management

• New instructions to 
sleep/wake any core as 

applications demand

• Chip Voltage & freq. control 
(0.7-1.3V, 0-5.8GHz)

1680 dynamic power gating regions on-chip

Dynamic sleep

STANDBY: 

• Memory retains data

• 50% less power/tile

FULL SLEEP: 

•Memories fully off

•80% less power/tile

21 sleep regions per tile (not all shown)

FP 
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Router

Data Memory

Instruction

Memory

FP 
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90% 

on sleep

FP 
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Router

10% on sleep
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pass traffic)
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Instruction
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Leakage Savings
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Router Power

Activity based power management

Individual port enables

- Queues on sleep and clock gated when port idle
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Clocking

33%

Queues 

+ 

Datapath
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+ Control
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Links
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MSINT

6%

Crossbar
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Communication Power

4GHz, 1.2V, 
110C

Estimated Power Breakdown

• Significant 
(>80%) power in 

router compared to 
wires

• Router power 
primarily in 

Crossbar and 
Buffers

• Clocking power 
w/fwded clock can 

be expensive
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Energy efficiency of Interconnection 
networks

• Topology work :

o low diameter: 
Concentrated Mesh, Balfour et al, ICS 2006
Flattened Butterfly, Kim et al, Micro 2008
Multi-drop Express Channels, Grot et al, HPCA 2009

• Router micro-architecture

o Minimize dynamic buffer usage : 
Express Virtual Channels, Kumar et al, ISCA 2007

o Reduce Buffers :
Rotary Router : Abad et al, ISCA 2007  
ViChaR, Nicopoulos et al, Micro 2006

• Clocking schemes :
Synchronous vs. GALS (Async, Meso-chronous)



17

Support for 
Fine-Grained 
Parallelism
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Flavors of Parallelism

Support multiple types of parallelism

- Vector parallelism

- Loop (non-vector) parallelism

- Task parallelism (irregular)

 A single RMS application might use multiple types 
of parallelism

 Sometimes even nested

Need to support them at the same time
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On 8-core MCA

32 Tasks

On 8-core MCA

8 Tasks

Asymmetry

Sources of Asymmetry

- Applications

- MCA: Heterogeneous cores, SMT, NUCA Cache Hierarchies

fine-grained parallelism can mitigate performance asymmetry

Significant inefficiency due to load imbalance

Less load imbalance  25% better performance



20 20

32 Tasks

8  Tasks

Platform Portability
Consider a 8-core MCA

4X 
speedup

On 4 cores

8X 
speedup

On 8 cores

4X 
speedup

On 6 cores

4X 
speedup

On 4 cores

8X 
speedup

On 8 cores

5.3X 
speedup

On 6 cores
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Platform Portability Cont’d

Requires finer-granularity parallelism

Even an order of magnitude

MCA with 64 cores
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Problem Statement

Fine-grained parallelism needs to be efficiently 
supported in MCA

- Several key RMS modules exhibit very fine-grained 
parallelism

- Platform portability requires application to expose 
parallelism at a finer granularity

- Account for asymmetries in architecture

Carbon : Architectural Support for Fine-Grained 
Parallelism, Kumar et al
ISCA 2007



23 23

Loop-Level parallelism

Most common form of parallelism
supported by OpenMP, NESL

Requires dynamic load balancing

Significant performance 
potential

• 13-271%  
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Computation per iteration (tile)

can vary dramatically 
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Task-Level Parallelism 

Irregular structured parallelism

- Trees to complex dependency graphs

Significant performance 
potential

• 15-32%  for Backward 
solve

• Up to 241% for Canny
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Typical Parallel Program

void task(node)

{

Do(node);

foreach child of node

Enqueue(task,child);

}

A

B C D E

F G H

Task dependence 
graph

A B C D E F G H

Sparse 
matrix

Non-
zero

Example module: 
forward solve

Use task parallelism

Task = unit of 
work
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Typical Parallel Run-Time System
void task(node)

{

Do(node);

foreach child of node

Enqueue(task,child);

}

taskchild - -

T1 T2

Software 
data 

structure

(Holds 
tasks)

Tn

Run-time system creates tuple 
to represent task

- GPUs, conventional S/W (e.g., 
TBB) do this today

taskchild - -

T2 Tn

Multiple implementation 
options
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Need for Hardware Acceleration

Software “Enqueue” & “Dequeue” is slow
- Serial access to head/tail 

Additional overhead for smart ordering of tasks
- Placement, Cache/data locality, process prioritization, etc.

Overheads increase with more threads

For “frequent” enqueue/dequeue

 resource checking overhead is wasteful

 hardware does a fine job w/scheduling

 allow fall-back to software on hardware 
queue limit (overflow/underflow)

 Accelerate data structure accesses & task ordering 
with H/W
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uArch Support for Carbon

GTUC1

$1
C2

C7

Cn
$m

$5

Core

L1 $ LTU

Global Task Unit (GTU)

Task pool storage

Local Task Unit (LTU)

Prefetches and buffers tasks
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Performance: Loop/Vector 
Parallelism

• Significant performance benefit over optimized S/W
 88% better on average

• Similar performance to “Ideal”
 3% worse on average

Loop
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Performance: Task-Level 
Parallelism

• Significant performance benefit over optimized S/W
 98% better on average

• Similar performance to “Ideal”
 2.7% worse on average
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Task Queuing in the Interconnect

• Arrangement of GTU and LTU suffices for apps 
studied

• But, long vectors running on MCA can be tricky

o requires dynamic resource discovery

o Vector length breaks 
Dynamic Warp Formation and Scheduling for Efficient GPU 
Control Flow, Fung et al (Micro „07)
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Partitioning, 
Isolation and QoS
in Interconnects
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Analytics

Virtualization and Partitioning of on-chip Resources

Virtualize: interconnect, cache, memory, I/O, etc
Partition : Cores, private caches, dedicated interconnect

Focus:
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Domain isolation for performance 
and security

Shared Channel Reservation

Application Isolation enforced by Interconnect

Allow “arbitrary” shaped domains

2

1

3
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Isolation with Fault Tolerance

1

3

1

2 3

1

Good cores become un-usable

2Reconfigure 
Partitions

Enable Fault Discovery & Repartitioning
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Route Flexibility

Motivation

- Performance isolation

- Fault-tolerance

- Topology independence 

- Load-balancing and 

- Improved network efficiency
2 big cores, 12 small cores, 4 MCs

Challenge: 
low area/timing overhead 

to achieve routing 
flexibility

Logic Based Distributed Routing 
in NoC, Flich & Duato, Computer 
Arch Letters, Jan 2008
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Summary

• Energy efficient interconnects that scale 
are important for future multi-cores 

• Interconnect can play a part in thread 
scheduling 

• Application consolidation in many-core 
requires close cooperation with run-time.

• Efficient support required for route 
flexibility
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Thanks!

Questions?


