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Overview of Talk

** intel 80-core research prototype

*¢* Support for Fine Grained Parallelism

¢ Partitioning, Isolation and QoS in Interconnects




Router Design
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Teraflops Research Processor
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Goals:

Deliver Tera-scale performance

- Single precision TFLOP at desktop
power

- Frequency target 5GHz

Prototype two key technologies
- On-die interconnect fabric
- 3D stacked memory

Develop a scalable design
methodology

- Tiled design approach

- Mesochronous clocking

- Power-aware capability



Tiled Designh & Mesh Network
Assemble & Validate

One tile
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Step and repeat
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Key Ingredients for Teraflops on a Chip

ti
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~—H = |Crossbar latency router
Core “T2| Router Y
Communication i
Tec h n O | Og y 6-read, 4-write 32 entry RF 1

High performance

CIOCklng Dual FPMACs _
i [Normalize] orlﬂi
Power 0 Brocessing Engine (PE]
management
techniques _osnm
eight metal
CMOS

intel)




Industry leading NoC

8x10 mesh

Router Architecture

Meso-chronous clocking

Bisection bandwidth of 320GB/s
40GB/s peak per node

4byte bidirectional links

6 port non-blocking crossbar ?
Crossbar/Switch double-pumped to To 3D
reduce area SRAM

Source routed
Wormhole switching ‘ ,
2 virtual lanes

On/off flow control
Synchronizers

Key enabler for tile based approach

- Tile clock @ 5Ghz To neighbors

Phase-tolerant synchronizers at tile
interface

High bandwidth, Low-latency
fabric




Router Archltecture
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Double- pumped Crossbar Router
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Stg 5 Work in ISSCC 2001
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Mesochronous Interface (MSINT)

4-deep FIFO
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Low Power Clock Distribution
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Fine Grain Power Management

e Modular nature enables fine- 21 sleep regions per tile (not all shown)
grained power management A

e New instructions to
sleep/wake any core as
applications demand

e Chip Voltage & fre
- = — — —{07-1.3V_0-5.8G
i Dynamic sleep 1 |

STANDBY: I

* Memory retains data |
* 50% less powerltile |
FULL SLEEP: l
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*80% less powerftile

1680 dynamic power gating regions on-chip




Leakage Savings

e NMOS sleep transistors[u Est. breakdown @ 1.2V 110C
Regulated sleep for (- 82mw |,

memory arrays >70mW [ ikl
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Router Power

Activity based power management

Individual port enables

- Queues on sleep and clock gated when port idle
1000

/Portq 1-4 \ y ;020\(/:’ 5.1GHz "]l' 924mW
Router Port 0 800 1

Lanes0 &1
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(Register File) P
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Number of active router ports
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Estimated Power Breakdown

Communication Power

Links Crossbar
17% 15%

MSINT Clocking
6% 33%
Arbiters Queues
+ Control +
% Datapath

22%

4GHz, 1.2V,
110°C

- Significant _
(>80%) power Iin
router compared to
wires

- Router power
(!:rlmarlly in
rossbar and
Buffers

» Clocking power
w/fwded clock can
be expensive




Energy efficiency of Interconnection
networks

* Topology work :
O low diameter:

* Router micro-architecture
O Minimize dynamic buffer usage :

O Reduce Buffers :

* Clocking schemes :
Synchronous vs. GALS (Async, Meso-chronous)




Fine-Grained
Parallelism
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Flavors of Parallelism

Support multiple types of parallelism
- Vector parallelism

- Loop (non-vector) parallelism

- Task parallelism (irregular)

» A single RMS application might use multiple types
of parallelism

> Sometimes even nested

Need to support them at the same time




Asymmetry

Sources of Asymmetry
- Applications
- MCA: Heterogeneous cores, SMT, NUCA Cache Hierarchies

fine-grained parallelism can mitigate performance asymmetry

On 8-core MCA
8 Tasks

On 8-core MCA
32 Tasks



Platform Portability

Consider a 8-core MCA

a4X
speedup

8X
speedup

4X
speedup

a4X
speedup

8X
speedup

5.3X
speedup



Platform Portability Cont’'d

MCA with 64 cores
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- 1024 Tasks --r==---
1 1 1 ]
8 16 24 32 40 48 56 64
\ Cores Y

Requires finer-granularity parallelism

Even an order of magnitude



Problem Statement

Fine-grained parallelism needs to be efficiently
supported in MCA

- Several key RMS modules exhibit very fine-grained
parallelism

- Platform portability requires application to expose
parallelism at a finer granularity

- Account for asymmetries in architecture

Carbon : Architectural Support for Fine-Grained
Parallelism, Kumar et al
ISCA 2007




Loop-Level parallelism

Most common form of parallelism
supported by OpenMP, NESL

Requires dynamic load balancing
! |
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Task-Level Parallelism

Irregular structured parallelism

- Trees to complex dependency graphs
i I

30

20
) I
0

watson world

Significant performance
potential

e 15-329% for Backward
solve

e Up to 2419% for Canny




Typical Parallel Program

A B CDE FGH Task = unit of
H . ﬁg}g@

I:gpo_ Task depe||11dence
Sparse
matrix

gr

Example module:
forward solve

Use task parallelism



Typical Parallel Run-Time System

=

Run-time system creates tuple
to represent task

- GPUs, conventional S/W (e.qg.,
TBB) do this today

Multiple implé€




Need for Hardware Acceleration

Software “"Enqueue” & “"Dequeue” is slow
- Serial access to head/tail

Additional overhead for smart ordering of tasks
- Placement, Cache/data locality, process prioritization, etc.

Overheads increase with more threads

For “frequent” enqueue/dequeue
" resource checking overhead is wasteful
" hardware does a fine job w/scheduling

" allow fall-back to software on hardware
queue limit (overflow/underflow)

— Accelerate data structure accesses & task ordering
with H/W




uArch Support for Carbon

Local Task Unit (LTU)
Prefetches and buffers tasks

Global Task Unit (GTU)
Task pool storage




Performance: Loop/Vector
Parallelism

I [deal
________________________________________________________________________________________________ mmmm Carbon
. —1 Optimized Loop Software

\_ 0 Gauss Seidel Dense MMM Dense MVM Sparse MVM Scaled Vector Add )

e Significant performance benefit over optimized S/W
o 889%0 better on average
e Similar performance to “Ideal”
o 3% worse on average
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Performance: Task-Level

Parallelism

a )
I |[deal
mmmm Carbon

C— Optimized TaskQ Software

\_ 0 Binomial Tree Game Physics Cholesky Backward Solve Forward Solve Canny Edge Detector Y

e Significant performance benefit over optimized S/W
o 989% better on average
e Similar performance to “Ideal”
o 2.7% worse on average
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Task Queuing in the Interconnect

* Arrangement of GTU and LTU suffices for apps
studied

* But, long vectors running on MCA can be tricky
O requires dynamic resource discovery
O Vector length breaks




Partitioning,
Isolation and QoS
in Interconnects




Virtualization and Partitioning of on-chip Resources

Virtualize: interconnect, cache, memory, 1I/0, etc
Partition : Cores, private caches, dedicated interconnect

Data mining \ OLTP Networking
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Domain isolation for performance
and security

Allow “arbitrary” shaped domains

Shared Channel Reservation

Application Isolation enforced by Interconnect




Isolation with Fault Tolerance

Reconfigure
Partitions

Good cores become un-usable

Enable Fault Discovery & Repartitioning
intel)




Route Flexibility

Motivation
- Performance isolation Q Q Q
- Fault-tolerance [1 0] ]
- Topology independence 00 | k'\ 0 Q Q Q 0
- Load-balancing and O 0 [ O-0 Q Q Q 0
- Improved network efficiency 00001
2 big cores, 12 small cores, 4 MCs O O O O
LEDR at InputPort h
p Challenge:
' low area/timing overhead
Tahble at Output Port - tO aCh|eve I"OUtIng

_ flexibility

a 100 200 300 400 500

Route Table size per router {Bytes)




Fair BW Allocation
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Summary

- Energy efficient interconnects that scale
are important for future multi-cores

- Interconnect can play a part in thread
scheduling

- Application consolidation in many-core
requires close cooperation with run-time.

- Efficient support required for route
flexibility




Thanks!

Questions?




