faiititese: . An E Jolution of
/' General Purppse Processing:
figL 'Logic Computing

Joel Emer
Intel Fellow

Princeton — April 2, 2009

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL
PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.
All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

This document may contain information on products in the design phase of development. The information here is subject to change without notice.
Do not finalize a design with this information.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Wireless connectivity and some features may require you to purchase additional software, services or external hardware.

Nehalem, Penryn, Westmere, Sandy Bridge and other code names featured are used internally within Intel to identify products that are in
development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names
in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate Performance of Intel
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

Intel, Intel Inside, Pentium, Xeon, Core and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2009 Intel Corporation.

&

(intel
2

The “"Black Swan” Theory

_ - .,,ﬁ" ST -
Event has appeared by | BlaCk Swan ook,
complete surprise = | Event =,
~
.~ Event has a major | ~ Eventis explicable
| impact : _ in retrospect

Source: Wikipedia |
| :

(intel
Note: The theory was described by Nassim Nicholas Taleb in his 2007 book The Black Swan
3

Black Swans in Computing

S 00 = P e P = T O 00 = P e el P

[l b b b b b e

First Spreadsheet, 1983
VisiCalc Advanced Version

Source: Wikipedia

intel WIMP, 1980 e iR
Window, Icon, Menu, Pointing device e PRiEEr el TpinlEE

Another Black Swan

The Rise of the Internet

Breeding Black Swans

Power is the limiter
200 MHz

Performance

100 MHz

. >
Today Source: Intel

(intel. Demand architectural innovations to fill in the gap

6

Architecture Evolution:;

Addressing the Gap

Multi-threading Multi-core Many Core

CPU = e

Fully
Programmable

Partially
* Fixed functions: GPU, video encoders, encryption Programmable

Throughput Performance -

Programmability

Fixed Function

MIPS

Today’s White Swan in Computin

{ \

1.E+06 r
/
/
1.E+05 F ,"
[}
/
1.E+04 F ['4
V4
/
1.E+03 | S XTOE MIPS
~2W
1.E+02 ! ! ! '
1995 2000 2005 2010 2015
TCP Offload Engine
260K Transistors Source:
Intel Labs

Special Purpose Accelerators

Field Programmable Gate Arrays (FPGA)

Rl]O|O

And Or
> 00 0 00
ST —_— 01 0 01
e LUT | h 3 10 | 0 10
— Latc .
11 1 11

i

— RAM

(intel. A fixed function compromise

Evolving reconfigurable logic usage

| Logic replacement

>»Low design cost and effort
»For low volume applications

» Often replaced wit

-

ASIC as volume increases

e

Algorithmic Computation

»Offloads a general purpose processor
»Used for many algorlthms
»ASIC replacement not expected

Performance Acceleration with
accelerators*

FPGA-based

Applications

HW (FPGA)

SW Only

Hough & inverse Hough processing

2 zeconds of processing thme
ER20Mhe

370x faster

12 minutes processing te
Pentium 4 - 3Ghz

AES 1MB data processinglcryptography rate
Encryption
Cecryption

424 msM19.7T MBis
424 msMHE.7T MBis

13x faster

5,558 m=s { 1.51 MB/=s
5,562 m=s § 1.51 MB/s

Smith-Waterman
ssearch3d from FASTA

100 sec FPGA processing

64x faster

6461 sec processing time

Opteron

Multi-dimensional hypercube search

1.0 Seq FPGAGRTATMRAEZ ViFtex I

113x faster

1189.5 Sec
Crpteron - 2.2 Ghz

Monte-Carlo Analysis
64,000 paths

10 sec of Processing @200 Mhz
FPGA system

10x faster

100 sec processing time
Optercn - 2.4 Ghz

EJM Financial Analysis
5 million paths

242 sec of Processing @61 Mhz
FPGA system

26x faster

6300 sec processing time
Pentium 4 — 1.5 Gha

Black-Scholes

18 msec FPRGAGE110Mbz Virtex -4

203x faster

* Chart from Celoxica

3.7 Sec 1M iterations
COpteron - 2.2 Ghz

HPC Accelerator Whitepaper Rev 0.9 (Intel), September 14, 2006, by Steve Duvall, Tom Marchok

Fine grain parallelism and state

« Example: numerically solving partial differential
equation — Laplace’s equation

e In traditional cores : L
- Max parallel degree: p (threads) \ i
- K2/p cycles to do one iteration

+ InRL : n
— Max parallel degree: '=>;¢= = 2 e R
— 2 cycles to do computation in one iteration: one m E
for all “ ”, one for all “x” — = =
- Note: the sequential version of this - :
algorithm is not suitable in traditional cores with S w :
cagche—breakotheulaevbof spat?adl Ioocaality0 - ~ SIS S

\ /

12

Source: Intel Labs, Tao Wang

The Good — —

- local state elements allows parallel state access
eCustom communication - explicit direct inter-module communication

eFlexible flow control - control flow based on arbitrary state machine

The Bad and the Ugly

Insufficient capacity

»Being overcome by Moore’s Law
»Addressable in system architecture

 Slower Cycle Time

»Parallelism is already offsetting lower frequency
»Being addressed by higher-level/asynchronous fabrics

e .y

 Difficult to Program and Debug

>»Applications typically must develop everything
>»No computation or system architecture
[intel“ »No standard environment

Is there space for RL on-die?

[\

Montecito

E =
1 B JEEE
| o= 5
TR L m
2 cores

28.5M Transistors each
24MB L3 Cache
1550M Transistors

Architecture: Black Swan Enabler

Architectures provide:

Environmental stability within/across generations
»Existing applications continue to wor

Consistency across a larger number of units

Encouragement to create reusable foundations
»Tool chains, Operating systems and libraries

(intel“ Enticement for application innovation

-

Precompiled RL Library

e Sequencing

RL architecture

Virtual Virtual Message
Memory Devices Passing

* Physical Memory Model iA Core

e Internal State
LB \{

2 2

e ey
ol ol
22

22
e

AydoaeldiH
94N303YI2IY T

/ggm?

-aries

—_

System
Architecture

Compute
Architecture

Fabric
Architecture

(inteD)
. An architectural Approach to Reconfigurable Logic

RL fabric architectures

52 TOWS

FPGA with flexible i 32

routing/logic block 2 -

Row-based RL 3
32 blocks/row for 32-bit ops

Coarse-grain RL 4
Array of ALUs with fixed functions

CPU and RL Compute Architectures

Sets of sequential

Small/Fast (registers))
Large/Slow (Memory) s,
_,====
i and non-sequential
*’E" operations
==T_=\=—=== e ——
Does the RL have local stat ’=E==, i%‘
Can the RL access memor iE Eﬁ
A fixed set of data types A\ J
N o
How are RL operations
sequenced?

and operations (ISA
e

Custom RL Iogiv

A CPU architecture is a specification of the interface
between the machine language and the hardware.

19

RL Compute Architecture Alternatives

Architectural semantics

Possible name of this

Example of what RL functions

Async /:f:ﬁ-,:f; Coﬂ::)(t kind of architecture as
0 0 0 Functional RFU new bit manipulation instruction
0 0 1 Stateful RFU ?ncsf:thI*TthjilgrEing data reduction
0 1 0 memory-enabled RFU memory-memory vector unit
0 1 1 memory-enabled stateful register-based vector unit including
RFU scatter-gather
1 0 0 functional accelerator ?
1 0 il asynchronous RL accelerator data-fed outboard accelerator
1 il 0 streaming RL accelerator network adapter

peer RL processor

full function RL processor

RL Architecture Hierarchy

How do we sequence RL?

Synchronous

>»Use RL operations inside a conventional pipeline. E.g.,
as a separate function unit

»Control handled by standard control instructions

Asynchronous

>A standalone logical state machine
-Implemented directly in RL
-Allowing direct control input from any module

In-pipeline core-RL architecture (Type 0-3)

K-
:0¢

Rename/Alloc

gtirement Unit
ReOrder Buffe

Schedulers

Branch
MM X/SSE

. \ / \ 4
(lntel L L1 D-Cacheand DTLB

Peer computing RL architecture (Type 7)

==
r

Implementation alternatives

Integer| !

Tightly coupled
Normally reconfigurable
instructions

(intel“

24

| GRPU™ |~

Chip

CPU RL

Medially coupled
Normally computing
blocks

Loosely coupled
Normally complex
application

A Processing Black Swan?

eSequential, coarse parallel or un-
pipelined algorithms

algorithms or complex flow control

eCustom operations, e.g. odd data sizes

RL Development Model

System Environment Evolution

Software — Then

e Languages
- Binary
- Assembly

 No Standardized
System Environment

- Raw Devices

* No Distributed
Computing Paradigms

Software — Now

Languages
- C++
- Python
- AJAX

Rich System Environment

- Device Abstractions
- File Systems
— Character Devices

= \lirtual Memory
= EXception Handling

e “Communication Paradigms
- Shared Memory
- Message Passing
- Remote Procedure Calls

Evolving RL Systems

FPGAs — now

Languages
- Verilog (~Assembly)
- VHDL (~Assembly)

No Standardized System
Architecture

- Raw Devices

No Distributed
Computing Paradigms

FPGAs - looking forward

e Languages
- C/C++
- Bluespec

» Standardized System Architecture
= \FPGA virtual platform

e Communication Paradigm
- Streams
— Remote Request Response

Bluespec Model

—=)

—=)
—)

Operations on custom datatypes described as
method calls on objects (classes) that are
instantiated

Sequencing controlled by ‘guarded atomic
actions’ (rules with conditions) that execute a
set of operations entirely or not at all

Known technology can generate high-quality HW

Reed Solomon Results

e iy Q=L Tl A R RS s [o s a - B
S5 1101V 1€ 1] 1 L] M0 HE 223 1 o1 = T—

|
|

Xilinx IP Catapult-C Bluespec

IIIIIIII-IIIIIIIII-IIIIIIIII-IIIIIIIIIII-IIIIIIIIIII-III"‘

Frequency (MHz) 145.3 108.5

ngher is better

Source: MIT, Abhinav Agarwal, Alfred Ng - CSG

5
D

Virtual Platform

Front Panel

RRR Client + Server
Channel IO
Kernel Drivers

Software

FPGA Modules
Fetch Decode Exe
Func
Control Model

Virtual Platform

Platform Interface

RRR Client + Server
Channel IO

Physical Device Drivers

Hardware

Source: Intel, Angshuman Parashar - VSSAD

Hybrid Instruction Emulation

<
O
& Execute Execute
Functional
i Cache
(@)
¥ @ e
.......................... c.z()u...g.»%.......%t........... ..OO................................. (N K /S
g8 Eaa E
£ ¢
Emulation Memory Emulation
9_) Server ’ Server . Server
©
: \ / \ /
o) . .
“5 Instruction Instruction
W Simulator Simulator
> Time —
/“““)‘““_
(Intell sSource: Intell Michael Adler - VSSAD T T O T

32

Summary

A perspective on the role of general purpose computing in application
Innovation

Some possibilities for reconfigurable l0gic-based computing as a
component of the general purpose computing environment

liieiEuture |
NEXT EXIT N J _

.; &

New opportunities for application of
code generation and optimization

-

33

2

Acknowledgements

Arvind

Michael Adler

Azam Barkatullah
Angshuman Parashar
Michael Pellauer

Tao Wang

ZhiHong Yu

Questions?

