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Optimization over nonnegative polynomials

Definition by example: How to pick ¢4, ¢,, c; so to make

p(xq,%x5) = c1x7 — 6x3x, — 43 + c,x2x% + 10x% + 12x,x5 + c3x5

nonnegative over a given basic semialgebraic set?

Basic semialgebraic set: {x € R™| g;(x) = 0, hj(x) = 0}

Ex: x; — 2x;x5 =0
x7 4+ 3x;x, — x5 >0

-This problem is fundamental to many areas of applied/computational mathematics.

-It is the problem that “SOS optimization” is designed to solve.
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Why would you want
to do this?!

| et’s start with five application domains...

5 1
IIIIIIIIIIIII



1. Polynomial optimization
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*Many applications: the optimal power flow problem, low-rank matrix
factorization, dictionary learning, training of deep nets with polynomial
activation function, sparse regression with nonconvex regularizes, etc.

"|ntractable in general (includes all NP-complete problem)
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2. Optimization under input uncertainty

How to make optimal decisions when input to optimization problem is uncertain/noisy?

The Markowitz portfolio optimization problem

T
s.t. /“ Az 2)5 (retura) U. = {
L2 <s (risk)
Ax70 Z‘It
e

i € R™: meanvector X € S™*": covariance
of the returns matrix of the returns

In practice estimated from past
data/ML model. Optimal portfolio
sensitive to this input.
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Shape-constrained regression; e.g., monotone and/or convex regression

Shape constraints act as regularizer, improve test performance,
make model more interpretable and trustworthy

3. Statistics and machine learning
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Yy
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Shape constraints natural in most applications Q:“\\\Q\\\\\\‘

Zestimate

$514,690

2
Zillow $511,403

Zestimate

5 beds - 4 baths - 2,623 sqgft

Parking @ Year Built
2 spaces 1992

. : : . Op(x
Monotonicity of a polynomial p(x4, ..., x,,) with respect to feature j: };( )

. Ll . L x'

“ML for fast real-time convex optimization” J

g(b) = min fo(x)

st. fi(x)<b;ji=1,...m
x € ()

fOJ
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., fm convex functions, (1 a convex set.

>0,Vx €EB

Goal: learn g(b) offline from training
set; evaluate it online very fast

g:R™ = Ris
- convex

yTV?g(b)y = 0,Vb,Vy

J

- nonincreasing w.r.t. all arguments

dg(b)

<
b, 0,Vb,Vj
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Imposing monotonicity

e For whatvalues of a, b is the following polynomial monotone over [0,1]?

p(x) = x*+ax3 + bx? — (a + b)x

a=-1,b=-3
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4. Certifying properties of dynamical systems

Questions about
properties of
dynamical systems

(e.g., stability, safety)

onwversiry 2500 REE

Lyapunov
theory
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Example: certlfymg stablllty
: = f(z) f:R"—>R" 1 R

3 1 A
—I%—El'zl;xz

EX. &1=—29+ 5

T9 = 3T — T1X9

Locally asymptotic stability (LAS) of
equilibrium points

Lyapunov’s theorem (and its converse):

The origin is LAS if and only if there exists a
C! function V: R™ — R that vanishes at the
origin and a scalar § > 0 such that

V(ix)>0
VX)) <B=2VEx) =VV)Tf(x) <0 //

V

™ HE (If V(x) < 0 everywhere, then globally stable.)



Example: certifying collision avoidance

i=fl) [

(vector valued polynomial)

S . needs safety verification

Z/{ " unsafe (or forbidden) set

(both sets basic semialgebraic)

Safety guaranteed if we find a “Lyapunov function” such that:

B(S)<0 5
B > 0 B = (VB(x), f(x)) <0
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5. Automated theorem proving in geometry

e Kissing number in dimension n: largest number of n-dimensional non-overlapping
spheres that can simultaneously touch (or “kiss”) a common unit sphere.

k, =6 ky =? ks > 12 Newton Gregory

8

k; =12 k;=1
Discussion/bet in 1694
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Newton proved to be
13 spheres impossible iff the following system is infeasible: correct in 1953!

x?—l—y?—l—z?:ﬁl,i:l,...,w ~

(551' — ﬂfj)g + (y?; — yj)2 + (zi — :/:3,-)2 >4, ; JJ'('I)JO Q.fllav
i,je{l,...,lS}Q : & l { ]-‘-?? 9. D<o
' g

H
9y (1) 7

Joo (V7 °
infeasible
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Outline

e Global nonnegativity
— Sum of squares (SOS) and semidefinite programming
— Two applications
— Hilbert’s 17t problem
e Nonnegativity over a region
— Putinar’s Positivstellensat

— Two applications

e Recap and further reading
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

p(z) = zf— 679+ 223713 + 6:1:%:::3 + 9:1:15132 6:1:1:1:213
—14z1 7972 + 4175 + 523 — Txixs + 1675

*Not so easy! (In fact, NP-hard for degree = 4)

=But what if | told you:
plE) = (x% — 3x1x9 + 173 + 2x§)2 + (z123 — :1:2:63)2
+(4z3 — z2)2.

Natural questions:
°Q1: Is it any easier to test for a sum of squares (SOS) decomposition?

*Q2: Is every nonnegative polynomial SOS?

PRINCETON ~ ms 13
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Sum of squares and semidefinite programming

[Lasserre], [Nesterov], [Parrilo]

Q1: Is it any easier to decide SOS?

=Yes! Can be reduced to a semidefinite program (SDP)

=Can also efficiently search and optimize over SOS polynomials

=As we will see, this latter property is very important in
applications...
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Semidefinite programming (SDP)

* A broad generalization of linear programs

* Can be solved to arbitrary accuracy in polynomial time (e.g., using interior
point algorithms) [Nesterov, Nemirovski], [Alizadeh]

min. I (C X)
XeS™"
5. Te (Aix)=bi it

Dafa f0 SDP: C, Ay — AneS . by —bmeR

Feasible set called a “spectrahedron”:
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Notes:  Te (CX)= ZCin;j
9

X};o: IJTXHA 70 Vjeﬁh
()

E’ﬂcwalues of X are ye.
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SOS->SDP

Thm:
"

A polynomial p of degree 2d is SOS if and only if 3Q > 0 such that R

p(x) = Q

T .
where z = [l,xl, ey Xy X1 X2, x,,‘,f] is the vector of monomialsof degree up to d.

(It follows that checking membership or optimizing a linear function over the set of
SOS polynomials is an SDP)

Proof: (=) Suppose 3Qgo st pay=2Z MQ2 @) Va-

Wy Q- VT}/ = P@): 2V V) = l/ Vv 2(-:1” Z. V; 2;(1.))
ey

L@) Suppost. pv) s S0S5. =@

w

4d LA (8 r
3u,,_,u,eWLn“ Dot P () = Z(ﬁfa(ﬂ] - L( ) 03 (v g@) z@]( z(a).

1=1 1=\
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Example
{—f’(’:[):. 10’14_2 '1.3--_7"11..,. Lt'_x_,_.l_r] Is p SOS ?

-
) Egﬁr g“-—-"*-\ ,-—-E.E:) Find Q,);o s.t.
=" W W[ ~lo | -
" [ ‘1] [1" hr 9™ s R0
/ Ly 95 Ju sl « b0 ¥295=-7
VI 2%1:4) %-‘-L’
SDP Solver ou*PuT: Q.—. Hq. 2 =467 _-;k' ro 2.“][0 2 |
2 5 - e flz oo
-6 -1 (0 L
3
2 pe) = 27 (1) VW&Q):”U&«]”Z [“ < '] '
2 [ -3 )|«
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Let’s revisit two of
our applications!




Optimization over
nonnegative
polynomials

Sum of squares
(SOS)

programming

Semidefinite
programming
(SDP)
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1) Nonconvex unconstrained minimization

2 Pc'l.l'a
Find: /sz nf 4'11-% L -!3-16-1- 'IJ—“’J{{-“'}*-!-"‘J “ )

(A9eR” .

T g
Pui= 57 & h g
Belk > SDP! c.

1. A, ~-¥ S0S
B st p(nY) f&s < Pa- == |

p=4*x"2-2.1%x"4+ (1/3) *x 6+1*x*y-4*y~2+4*y~4+x~2*y; solvertime: 0.6 (s)
solvesos (sos (p—gam) , —gam, [], [gam]) -

p_sos =
p sos=double (gam)

-2.921560950963582

[inf,z,Q]=solvesos(p-p _sos);

sdisplay(z{1}) HsCar = D At Hstar =
[v,d]=eig(double(Q{1})); - =
zxstar=v(:,1)/v(1,1);

xstar=[zxstar(3);zxstar(2)] 1.832899614475561F -2 .921559422066406F
p_at xstar=replace(p,[x,y],[xstar(l),xstar(2)]) —0.927931478421273
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2) Automated proof of global asymptotic stability

ab

05
> ol
edu= on behalf of
05
Tue 2/9/2021 1:13 PM
To: Amir Ali Ahmadi A+
Hi Amir Ali, st

| hope life and career are going well. . . | ‘ ‘ | . ‘ |

| have a question that | assume might take little more than 5-10 of your time but please feel free to let me know if it would actually take more.

Today in class we got into an interesting discussion with students about what a strict Lyapunov function would be for the system

dx/dt = -x +y*3
dy/dt = x

A non-strict Lf.. is easy, V = x*2/2 + y*4/4, with dV/dt = - x*2. One could then deduce g.a.s. by a Barbashin-Krasovskii/Lasalle argument, but that's not
satisfactory.

| started constructing a strict one in real time and it quickly got out of hand, necessitating higher and higher powers and many cross terms. | inevitably
thought of you and your {(and Pablo's) SOS program that would spit out a good strict V within seconds.

If you can plug in this system and let me know what comes out, I'd appreciate it, and my 40-50 students in class would learn a few things (complexity of
Lyapunov functions, automated options for finding them, etc.).

Best rei ards
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Find V(19) of depree 4 si-

— e "1 1_ j "‘I
v (w9) SOS
x -V (uy) = - {VV(ny), [~L+¥) > 505
gty &
L > A -%
sdpvar = v
rdot=-x+y"3; »» sdisplay(clean (double (c) '*m,le-3))
ydot=-x; 1.00000084865*x"2-0.333330248293*x*y+0.166665124147*y"2+0.500118633025*y"4

[V,c,ml=polynomial ([x:v],4,2):

Vdot=3acobian (V, [x,v]) * [®dot:ydot]: _ (3 | l 2 4
FF=[sas (V) ,sos (-Vdot) ] v (%JUB =X - -—513 +"g’3 + Jf 3
solvesos (FE, [1,[1,[c])

¢ L .
= ('x--_lé_:’) +% JZ'_I_ —% ?Lf (heyl(,e, Pohﬁ‘v’f. Jc«ﬁ(mﬁa)

>/ '3"% (xl{'jt) + ‘Lz— %q (henc,e ra:l-'al[} than[ecl,)

2 ‘ | | | ‘ ‘ ‘ \/(’l,:ﬂ = - 5/3 ) —-—% 94 (hence naaaﬁ've Jefii-"l*t)
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Hilbert’s 1888 Paper
?
Q2: SOS < Nonnegativity

nd| 2 4 | 26
1 |yes|yes|yes

YES | yeS | no

2
3 |yes| no | no

From Logicomix-

>4 |yes| no | ho

Motzkin (1967):

M (X0)= X2, + 2% - 320 o+ 1
Robinson (1973):

R (1“’1"’13) = 1'1(11‘1)1-& 1, (X-1) ¢ % (%3~ )

+ X Lahy (A + Ay s A3 -—9-)
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The Motzkin polynomial

M(xz,y) = $2y4 + :B4y2 +1— 3$2y2

How to prove it is nonnegative?

(@ +y" + 1) M(z,y) = (2y — y)° + (xy” — )" + («y* = )"+

1 3

- E(:ﬂy“3 — 2%y)% + Z(ﬂfy‘3 + 2y — 233'9)2

How to prove it is not SOS?

() w

L, coetb W) <°

{ Jseoedf(9)) 3o V4508
)

{2 (1){(1?}\ e

M
Can ‘F/nJJ/‘ with SDP.

Two sets i p

24
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Hilbert’s 17t" Problem (1900)

2
gi

?
Q. P nonnegative = p — Z
q:

)
"Artin (1927): Yes!
"Implications:

= p > 0 = Jh sos such that p. h sos

= Reznick: (under mild conditions) can take h = (3, x%)"

= Certificates of nonnegativity can always be given with sos
(i.e., with semidefinite programming)!

= \We'll see how the Positivstellensatz generalizes this even
further...

(3 PRINCETON ==
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Outline of the rest of the talk...

Global nonnegativity

— Sum of squares (SOS) and semidefinite programming
— Two applications

— Hilbert’s 17t problem

Nonnegativity over a region

— Putinar’s Positivstellensatz

— Two applications

Recap and further reading

IIIIIIIIIII
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Positivstellensatz

p(x) >0,vx € R"

Stenle

If p(x) > 0,Vx € R", 7
then3 sos g s.t.p - q sos. I

1927

20ﬂ1century| 1974 | | 1991 || 1993 |

PRINCETON mm~
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p(x) >0,
Vx €S ={x]|gi(x) =0}

Schmudgen

Putinar

27



Putinar’s Positivstellensatz (1993)

p(x) >0onS={xeR* gi(x) =20,i=1,..., m}

easy direction ﬂ U under the “Archimedean condition”
(slightly stronger than compactness of S)

de > 0 and SOS polynomials s¢(x), ..., Sy, () such that
p(x) — € = so(x) + 2;5:(x)gi(x).

This is algebraic certificate of positivity

Leads to an SDP hierarchy for polynomial optimization
(the “"Lasserre hierarchy’’)

Degree bounds on SOS multipliers based on the coefficients
(though in special cases, better degree bounds possible)

PRINCETON mm
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How did | plot this?

e For what values of a, b is the following polynomial monotone over [0,1]?

p(x) = x*+ax®+ bx* — (a+ b)x

___________________________________________________

---------------------------------------------------------

Theorem. A polynomial p(x) of degree 2d is monotone on [0,1]
if and only if

p'(x) = xs1(x) + (1 = x)s2(x),

where s;(x) and s,(x) are some SOS polynomials of degree 2d — 2.
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Optimization over

Let’s end with a couple omneath
[ ] ® | . I
applications: oolynomials
e Finance
Sum of squares
(SOS)
Y Control orogramming

Semidefinite

programming
(SDP)

: 1 |
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Distributionally robust optimization

What'’s the probability that Zoom’s stock goes bust?

"Three months starting Feb 1, 2020

160 1

Pi— Py
P

=
ko
=

price ()

=Empirical moments m;, = E[r*]:
my1 = 0.0068, mo = 0.0034,

ms =2x10"% my=5x%x 107"

=
[
L=

=

B0

M o ® 0 1 { M
day

*The distribution of r is supported on [-0.4,0.4] but is otherwise unknown
=\What is the probability that Zoom’s stock return will be below -0.1 today?

="\Want the worst-case probability over all distributions whose first 4

moments are within 10% of those computed from data.
PRINCETON m 31
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Sum of squares optimization can compute this probability!

a = inf
q,7,8,7Y
4
st qlx) = ZQkxk is a degree-4 (univariate) polynomial,
k=0

§(x)

r(x),s(x) are quadratic polynomials that are sos,
. . .

4
Qo+ > qemy <y Vmy € 0.9 me, 1.1 my] for k=1,....4, -0.4  -od 04

h—1
q(x) — (0.4° — 2%) s(x) is sos, I_—_> q(z

q(x) =1 —(0.44+2)(—0.1 —x)r(x) is sos. |:> q(x

Va € [-0.4,0.4]
Vi e [-0.4, —0.1]'

z) =
e
P(r € [-0.4,—0.1]) = E[1{_g4-01]] = l{-04-01] < q(x) Vx E[ 0.4,0.4]

= E[1[-04,-01]] < Elq(x)] = Z QM <Y

In fact, we always have q" (r) ~1p 04, 01)(r)

P(r € [-0.4,—0.1]) = a P(re[-0.4,— 0-1]) <a
Cptimizer terminated. Time: 0.17
alpha =

1
0.2073
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Stabilizing a humanoid robot on one foot

= f(z,u) 30 states 14 control inputs Cubic dynamics

Vix) >0
V) <SB=2VE) =) Tf(x,u) <0

PRINCETON mm (W/ Majumdar and Tedrake) 33
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Certifying collision avoidance

. | s | s s s s
v ' ' b} ' ' '

! ' ' L) ' ' ' '

—— i ! : \\ ! ! ! !
— T ' ' 3 ! ! !

; : : \ : / ;

i ' ' ‘\. ' | '

P T T S e :

- ' Y ' ' '

: : Y : : |

' ' oty ' ' @

| ; PN ; ; !

(vector valued polynomial)

__________________________________________________________________________________________________________________________________

e

"____.--——:--—-..-_..,_p
-

needs safety verification |

U :

(both sets basic semialgebraic) [~ R

Safety guaranteed if we find a “Lyapunov function” such that:

B(S)<0 ,
BU) > 0 B =(VB(x), f(x)) <0
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Real-time collision avoidance certificates

(w/ Majumdar)

Dubins car model

Run-time: 20 ms

Wi HORFE
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Recap: “See an inequality? Think SOS!”

Isp(x) =00on{g;(x) =20,..,9,(x) = 0}?

‘?uﬂ: ' /
RN

Optimization
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Automated SOS-based proofs via SDP!

Many applications!

Control

Learning




Want to learn more?

Imperial College Press Optimization Series @

Moments, Positive
Polynomials and
Their Applications

..........
IHEEENEE TN

IEERARAS S .

Jean Bernard Lasserre

SUMS OF SQUARES, MOMENT MATRICES AND Applications of sums of squares
OPTIMIZATION OVER POLYNOMIALS
MONIQUE LAURENT* Georgina Hall
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