
1

Sum of Squares Optimization
and

Its Applications

Amir Ali Ahmadi
Princeton University 

Dept. of Operations Research and Financial Engineering (ORFE)

ORF 363

Fall 2024



2

Optimization over nonnegative polynomials

Basic semialgebraic set:

-This problem is fundamental to many areas of applied/computational mathematics.
-It is the problem that “SOS optimization” is designed to solve.

nonnegative over a given basic semialgebraic set?



Why would you want 
to do this?!

▪Let’s start with five application domains…
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1. Polynomial optimization

▪Many applications: the optimal power flow problem, low-rank matrix 
factorization, dictionary learning, training of deep nets with polynomial 
activation function, sparse regression with nonconvex regularizes, etc.

▪Intractable in general (includes all NP-complete problem)
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2. Optimization under input uncertainty

How to make optimal decisions when input to optimization problem is uncertain/noisy?

Example: The Markowitz portfolio optimization problem

In practice estimated from past 
data/ML model. Optimal portfolio 
sensitive to this input.

Accounting for uncertainty:



6

Shape-constrained regression; e.g., monotone and/or convex regression

3. Statistics and machine learning

Shape constraints act as regularizer, improve test performance, 
make model more interpretable and trustworthy 

Example 1: Shape constraints natural in most applications

Example 2: “ML for fast real-time convex optimization”
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Imposing monotonicity 



4. Certifying properties of dynamical systems



Example: certifying stability

Ex.

Locally asymptotic stability (LAS) of 
equilibrium points

𝑉 𝑥 > 0 
𝑉 𝑥 ≤ 𝛽 ⇒ ሶ𝑉(𝑥) = 𝛻𝑉 𝑥 𝑇𝑓 𝑥 < 0

Lyapunov’s theorem (and its converse):

The origin is LAS if and only if there exists a 
𝐶1 function 𝑉: ℝ𝑛 → ℝ that vanishes at the 
origin and a scalar 𝛽 > 0 such that
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Example: certifying collision avoidance

needs safety verification

unsafe (or forbidden) set

Safety guaranteed if we find a “Lyapunov function” such that:

(vector valued polynomial)

(both sets basic semialgebraic)



5. Automated theorem proving in geometry

Newton Gregory

Discussion/bet in 1694

Newton proved to be 
correct in 1953!13 spheres impossible iff the following system is infeasible:  
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Outline

• Global nonnegativity

– Sum of squares (SOS) and semidefinite programming

– Two applications

– Hilbert’s 17th problem

• Nonnegativity over a region

– Putinar’s Positivstellensat

– Two applications

• Recap and further reading
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How would you prove nonnegativity?

Ex. Decide if the following polynomial is nonnegative:

▪Not so easy! (In fact, NP-hard for degree ≥ 4)

▪But what if I told you:

Natural questions:
•Q1: Is it any easier to test for a sum of squares (SOS) decomposition?
•Q2: Is every nonnegative polynomial SOS? 
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Sum of squares and semidefinite programming

Q1: Is it any easier to decide SOS?

▪Yes!  Can be reduced to a semidefinite program (SDP)

▪Can also efficiently search and optimize over SOS polynomials

▪As we will see, this latter property is very important in 
applications…

[Lasserre], [Nesterov], [Parrilo]
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Semidefinite programming (SDP)

• A broad generalization of linear programs 

• Can be solved to arbitrary accuracy in polynomial time (e.g., using interior 
point algorithms) [Nesterov, Nemirovski], [Alizadeh]

Feasible set called a “spectrahedron”:
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SOS→SDP

(It follows that checking membership or optimizing a linear function over the set of 
SOS polynomials is an SDP)

Thm:
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Example



Let’s revisit two of 
our applications!



1
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Optimization over 
nonnegative 
polynomials

Sum of squares 
(SOS) 

programming

Semidefinite 
programming 

(SDP)
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1) Nonconvex unconstrained minimization
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2) Automated proof of global asymptotic stability
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Automated proof of global asymptotic stability
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Motzkin (1967):

Robinson (1973):

Hilbert’s 1888 Paper

n,d 2 4 ≥6

1 yes yes yes

2 yes yes no

3 yes no no

≥4 yes no no Fr
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Q2: SOS 

? Nonnegativity



24

The Motzkin polynomial

How to prove it is nonnegative?

How to prove it is not SOS?
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Hilbert’s 17th Problem (1900)

p nonnegative 
?

Q. 

▪Artin (1927): Yes!
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Outline of the rest of the talk…

• Global nonnegativity

– Sum of squares (SOS) and semidefinite programming

– Two applications

– Hilbert’s 17th problem

• Nonnegativity over a region

– Putinar’s Positivstellensatz

– Two applications

• Recap and further reading
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Positivstellensatz

20th century1927 19931974 1991

Schmudgen

Artin

Stengle

Putinar
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Putinar’s Positivstellensatz (1993)

▪ This is algebraic certificate of positivity

▪ Leads to an SDP hierarchy for polynomial optimization
(the ``Lasserre hierarchy’’)

▪ Degree bounds on SOS multipliers based on the coefficients 
(though in special cases, better degree bounds possible)

easy direction
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How did I plot this?



Let’s end with a couple 
applications:

• Finance

• Control

Optimization over 
nonnegative 
polynomials

Sum of squares 
(SOS) 

programming

Semidefinite 
programming 

(SDP)
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Distributionally robust optimization

▪Three months starting Feb 1, 2020

What’s the probability that Zoom’s stock goes bust?
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Sum of squares optimization can compute this probability!



33

Stabilizing a humanoid robot on one foot

(w/ Majumdar and Tedrake)

30 states        14 control inputs    Cubic dynamics
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Certifying collision avoidance

needs safety verification

unsafe (or forbidden) set

Safety guaranteed if we find a “Lyapunov function” such that:

(vector valued polynomial)

(both sets basic semialgebraic)
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Real-time collision avoidance certificates

(w/ Majumdar)

Dubins car model

Run-time: 20 ms



Recap: “See an inequality? Think SOS!”

Automated SOS-based proofs via SDP!

Many applications!

Optimization Control Learning



Want to learn more?

37aaa.princeton.edu
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