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Abstract—This paper studies optimization of the minimum
mean square error (MMSE) in order to characterize the structure
of least favorable prior distributions. In the first part, the paper
characterizes the local behavior of the MMSE in terms of the
input distribution and finds the directional derivative of the
MMSE at the distribution PX in the direction of the distribution
QX.

In the second part of the paper, the directional derivative
together with the theory of convex optimization is used to
characterize the structure of least favorable distributions. In
particular, under some mild regularity conditions, it is shown that
the support of the lease favorable distributions must necessarily
be very small and is contained in a nowhere dense set of Lebesgue
measure zero. The results of this paper produces both sufficient
and necessary conditions for optimality, do not rely on Gaussian
statistics assumption, and are not sensitive to the dimensionality
of random vectors. The results are evaluate for the univariate
and multivariate random Gaussian cases, and the Poisson case.
Finally, as one of the applications, we show how our result can
be used to characterize capacity of Gaussian MIMO channels
with an amplitude constraint.

I. INTRODUCTION

The minimum mean square error (MMSE) of estimating an
input random vector X ∈ Rn from a noisy observation/output
Y ∈ Rk is defined as

mmse(X|Y) , inf
f(·):f is measurable

E
[
‖X− f(Y)‖2

]
. (1)

In this paper we study the problem of maximizing the MMSE
in (1) over the set of input distributions on X for a fixed
transition distribution PY|X. Specifically, we will work with
the following two types of sets: 1) the set of distributions with
a compact support; and 2) the set of distributions with finite
generalized moments (e.g., second moment, third absolute
moment, logarithmic moments etc.). The distributions that
achieve the worst-case MMSE (i.e., maximize the MMSE) are
called least favorable prior distributions.

The problem of finding least favorable prior distribution
is interesting from both estimation theoretic and information
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theoretic points of view. Firstly, in estimation theory, maxi-
mization of the MMSE over a set of distributions with compact
support is directly relate to the problem of characterizing a
minimax estimator. [1]. Specifically, a conditional expectation
(optimal Bayes) estimator evaluated with a least favorable
prior distribution is also a minimax estimator.

Secondly, in information theory, in view of the I-MMSE
relationship [2] that connects the MMSE and the mutual
information for the case of additive Gaussian noise, the
least favorable distributions are often also capacity achieving
distributions (i.e., maximize mutual information). For example,
in [3] such an approach was used to characterize the capacity
achieving distribution of a Gaussian noise channel with a small
(but nonvanishing) input amplitude constraint.

Unlike previous works, the approach we take in this work
is based on the theory of convex optimization and allows us to
produce systematic and very general results. For instance, our
approach produces both sufficient and necessary conditions
for optimality, does not rely on the assumption of Gaussian
statistics, and is not sensitive to the dimensionality of random
vectors X and Y. Our approach also parallels the variational
approach, used in information theory [4], [5], for finding
capacity achieving distributions.

A. Past Work

The theory of finding least favorable prior distributions
has received considerable attention under the assumption of
univariate and/or Gaussian statistics. For the univariate case
under some mild condition, Ghosh in [6], while not explicitly
stated, has shown that, with the support constraint, the least
favorable priors distribution are discrete with finitely many
points. However, as was pointed out in [6] it is not clear
how to generalize the argument to the multivariate case. In
contrast, the approach taken in this paper is insensitive to the
dimensionality.

In [7] for the Gaussian case, capitalizing on the result
of Ghosh, the authors demonstrated necessary and sufficient
conditions for the optimality of a two point prior distribution.
In addition, the authors in [7] also provided sufficient condition
for the optimality of a three point prior. In contrast, the
methodology used in this paper produces both sufficient and
necessary condition that can be tested against any N -point
prior.

For the multivariate Gaussian case, with a sufficiently small
ball constraint, in [1] it has been shown that the least favorable
prior is distributed on the boundary of the ball. For a com-
prehensive overview of the minimax estimation of a bounded



mean the interested reader is referred to [8] and reference
therein.

B. Outline and Paper Contributions

Our contributions are as follows:
1) In Section II we review important properties of the

MMSE needed in our analysis.
2) In Section III we characterize the local behavior of the

MMSE in terms of the input distribution and find the
directional derivative of the MMSE at the distribution
PX in the direction of the distribution QX.

3) In Section IV we apply theory of convex optimization to
maximize the MMSE and present:
• In Section IV-A, Theorem 4 presents required theorems

from convex optimization;
• In Section IV-B, Theorem 5 presents required theorems

of analytic functions;
• In Section IV-C looks at the case of the compact

support constraint. In Theorem 6 it is shown that a least
favorable input distribution exists for an arbitrary PY|X
and derived necessary and sufficient conditions for the
optimality. Moreover, Proposition 1, under some mild
conditions, characterizes the structure of the support
of least favorable prior distribution and shows that
the support must be a nowhere dense set of Lebesgue
measure zero;

• In Section IV-D, Proposition 3 and Proposition 4 look
at univariate and multivariate Gaussian noise cases and
recover and expand on some known results; Propo-
sition 5 shows how our results can be applied to
characterize capacity of MIMO channels. Surprisingly,
Proposition 5 also characterize capacity of the MIMO
amplitude channel in a regime where the number of
antennas goes to infinity;

• In Section IV-E, Proposition 6 looks at the Poisson
noise case; and

• Section IV-F, looks at least favorable priors under the
generalized moment constraints.

4) Section VI concludes the paper.
Due to space limitations, some of the proofs are omitted

and can be found in an extended version of this paper [9].

C. Notation

Throughout the paper we adopt the following notational
conventions:
• Deterministic scalar quantities are denoted by lowercase

letters and deterministic vector quantities are denoted by
lowercase bold letters; matrices are denoted by bold up-
percase letters; random variables are denoted by uppercase
letters and random vectors are denoted by bold uppercase
letters;

• We denote an n-dimensional ball of radius R centered at 0
as B0(R) , {x ∈ Rn : ‖x‖ ≤ R};

• For a random vector X with distribution PX we define the
expected value as E[X] =

∫
xdPX(x). When we need to

emphasize that X is distributed according to PX we use the
notation EPX

[X];
• We say that a random vector Y ∈ Lp if E[‖Y‖p] <∞;
• We denote the set of all possible probability distributions

on S ⊂ Rn as F∞(S); and
• A point x ∈ Rn is said to be a point of increase of a

distribution PX, if for any open subset O ⊂ Rn containing
x, PX(O) > 0. We denote the set of points of increase of
PX as E(PX) ⊆ Rn. Observe that PX(E(PX)) = 1. In fact,
E(PX) is the minimal closed subset of Rn whose probability
is 1.

II. THE MMSE

In this section we overview some important properties of
the MMSE.

A. Fundamental Theorems of the MMSE Estimation

Theorem 1. (Fundamental Theorems of the MMSE Estima-
tion.)

1) (Orthogonality Principle.) For any f : Rn → Rk such
that f ∈ L2

E[(X− E[X|Y])T f(Y)] = 0. (2a)

2) (Pythagorean Theorem.) For any f : Rn → Rk such that
f ∈ L2

E
[
‖X− E[X|Y]‖2

]
= E

[
‖X− f(Y)‖2

]
− E

[
‖f(Y)− E[X|Y]‖2

]
. (2b)

3) (Conditional Expectation is the Optimal Estimator.)

mmse(X|Y)

= inf
f(·):f is measurable and f∈L2

E
[
‖X− f(Y)‖2

]
= E

[
‖X− E[X|Y]‖2

]
. (2c)

B. The MMSE as a Functional

Throughout the paper we will treat the MMSE as an
operator (or a functional) on the space of joint distributions
PXY. To emphasize that the MMSE is a function of the pair
(PX, PY|X) we use the following notation

mmse(PX, PY|X) , mmse(X|Y). (3)

Continuity properties of the MMSE would play a key role in
our analysis and, therefore, we need the following definitions.

Definition 1. A function f : F 7→ R is said to be upper-
semicontinuous (resp. lower-semicontinuous) at a point x0 ∈
F if

lim sup
x→x0

f(x) ≤ f(x0)

(
resp. lim inf

x→x0

f(x) ≥ f(x0)

)
. (4)

A function f is continuous at x0 if it is both upper and lower
semicontinuous at x0.

We summaries operator properties of the MMSE in the next
theorem.

Theorem 2. (Operator Properties of the MMSE [10].)



1) (Concavity.) PXY 7→ mmse(PX, PY|X) is a concave
functional of PXY. Therefore, the MMSE is also concave
in PX (resp. PY|X) if PY|X (resp. PX) is fixed.

2) (Upper Semicontinuity.)
• PXY 7→ mmse(PX, PY|X) is upper semicontinuous over
M(S) where

M(S)

= {PXY : ∀PY|X and PX ∈ F∞(S) where S is bounded}.
(5)

• Let Y = X + N where E[‖N‖2] < ∞, then PX 7→
mmse(PX, PY|X) is upper semicontinuous.

3) (Continuity.) Let Y = X + N where N has a continuous
and bounded density and E[‖N‖2] < ∞, then PX 7→
mmse(PX, PY|X) is continuous.

III. LOCAL BEHAVIOR OF THE MMSE IN TERMS OF THE
INPUT DISTRIBUTION

Let PX be the distribution of X. In this section, we study
the local behavior of the MMSE as a function of PX.

Definition 2. (The Gâteaux Derivative.) Let F be a convex
topological space. For any two distributions P ∈ F and Q ∈
F we define theGâteaux derivative of a function g : F → R
at P in the direction of Q as

∆Qg(P ) , lim
λ→0

g ((1− λ)P + λQ)− g (P )

λ
. (6)

The Gâteaux derivative is simply a generalization of a con-
cept of directional derivative and is an important optimization
tool. The following theorem finds the Gâteaux derivative of
the MMSE with respect to the input distribution.

Theorem 3. (The Gâteaux Derivative of the MMSE.) For any
PX, QX and PY|X the Gâteaux derivative of the MMSE is
given by

∆QX
mmse(PX, PY|X)

= mmseQX
(PX, PY|X)−mmse(PX, PY|X), (7a)

where

mmseQX
(PX, PY|X) , EQX

[
‖X− EPX

[X|Y]‖2
]
. (7b)

Proof: Let Pλ = (1− λ)PX + λQX. From the definition
of Gâteaux derivative in (6) we have to look at

mmse(Pλ, PY|X)−mmse(PX, PY|X)

= EPλ
[
‖X− EPλ [X|Y]‖2

]
− EPX

[
‖X− EPX

[X|Y]‖2
]

a)
= EPλ

[
‖X− EPX

[X|Y]‖2
]
− EPX

[
‖X− EPX

[X|Y]‖2
]

− EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

b)
= (1− λ)EPX

[
‖X− EPX

[X|Y]‖2
]

+ λEQX

[
‖X− EPX

[X|Y]‖2
]
− EPX

[
‖X− EPX

[X|Y]‖2
]

− EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

= λEQX

[
‖X− EPX

[X|Y]‖2
]
− λEPX

[
‖X− EPX

[X|Y]‖2
]

− EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]
, (8)

where the steps follow from: a) Pythagorean identity in (2b);
and b) using the property that expected value is a linear
operator on a set of distributions. Next by dividing (8) by
λ and taking λ→ 0 we have that

∆QX
mmse(PX, PY|X)

= mmseQX
(PX, PY|X)−mmse(PX, PY|X)

− lim
λ→0

EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

λ
, (9)

Next, we show that the third term in (9) is zero or that

lim
λ→0

EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

λ
= 0. (10)

In order to simplify the notation, we assume that PY|X is an
absolutely continuous distribution PY|X with a density fY|X
and the conditional expectation can be written as

EPX
[X|Y = y] =

EPX

[
XfY|X(y|X)

]
fY(y;PX)

,
q(y;PX)

fY(y;PX)
,

where fY(y;PX) is an output distribution induced by the input
X ∼ PX that is

fY(y;PX) =

∫
fY|X(y|x)dPX(x).

Next, we re-write (9) as follows:

EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

λ

=
1

λ
EPλ

[∥∥∥∥ q(Y;PX)

fY(Y;PX)
− q(Y;Pλ)

fY(Y;Pλ)

∥∥∥∥2
]

=

EPλ
[∥∥∥ q(Y;PX)fY(Y;Pλ)−q(Y;Pλ)fY(Y;PX)

fY(Y;PX)fY(Y;Pλ)

∥∥∥2
]

λ

a)
=

EPλ
[∥∥∥λ(q(Y;PX)fY(Y;QX)−q(Y;QX)fY(Y;PX))

fY(Y;PX)fY(Y;Pλ)

∥∥∥2
]

λ

b)
=
λ2EPλ

[
‖q(Y;PX)fY(Y;QX)−q(Y;QX)fY(Y;PX)‖2

f2
Y(Y;PX)f2

Y(Y;Pλ)

]
λ

= λ

∫
‖q(y;PX)fY(y;QX)− q(y;QX)fY(y;PX)‖2

f2
Y(y;PX)fY(y;Pλ)

dy,

(11)

where the steps follow from: a) using that fY(Y;Pλ) =
(1 − λ)fY(Y;PX) + λfY(Y;QX) and q(Y;Pλ) = (1 −
λ)q(Y;PX) + λq(Y;QX) which leads to

q(Y;PX)fY(Y;Pλ)− q(Y;Pλ)fY(Y;PX)

= (1− λ)q(Y;PX)fY(Y;PX) + λq(Y;PX)fY(Y;QX)

− (1− λ)q(Y;PX)fY(Y;PX)− λq(Y;QX)fY(Y;PX)

= λ(q(Y;PX)fY(Y;QX)− q(Y;QX)fY(Y;PX)); and



b) using the absolute scalability of the Euclidian norm. Next
observe that

gλ(y) ,
λ ‖q(y;PX)fY(y;QX)− q(y;QX)fY(y;PX)‖2

f2
Y(y;PX)fY(y;Pλ)

=
‖q(y;PX)fY(y;QX)− q(y;QX)fY(y;PX)‖2

f2
Y(y;PX)

· λ

(1− λ)fY(y;PX) + λfY(y;QX)
,

is a monotonically increasing function of λ ∈ (0, 1) for every
y since

d

dλ

λ

(1− λ)fY(y;PX) + λfY(y;QX)

=
fY(y;PX)

(λfY(y;QX) + (1− λ)fY(y;PX))
2 ≥ 0.

Therefore, by the monotone convergence theorem we can
exchange the limit and the expectation

lim
λ→0

EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

λ

=

∫
lim
λ→0

λ ‖q(y;PX)fY(y;QX)− q(y;QX)fY(y;PX)‖2

f2
Y(y;PX)fY(y;Pλ)

dy

= 0. (12)

This concludes the proof for the case when PY|X is an
absolutely continuous distribution. Evidently, the case when
when PY|X does not have a pdf or pmf is handle in above by
replacing fY|X with dPY|X. This concludes the proof.

It is interesting to note that Theorem 3 holds with no
assumption on the distribution PX, QX and PY|X. This is
because the interchange of limit and expectation in (12) was
done by using the monotone convergence theorem instead of
more ubiquitous dominate convergence theorem.

IV. OPTIMIZATION OF THE MMSE

In this section we apply the directional derivative found
in Theorem 3 to characterize distributions that maximize the
MMSE. Unlike the previous approaches, the approach laid out
in this paper is systematic and produces both sufficient and
necessary conditions for optimality. Moreover, the approach is
fairly general and works for a large class of channels PY|X.

We begin by introducing necessary mathematical tools.

A. Optimization Theorems

We will need the following optimization theorem in our
analysis.

Theorem 4. (Optimization Theorems.)
1) (Extreme Value Theorem [11, Section 2.13].) For any com-

pact topological space F and any upper semicontinuous
function f : F 7→ R

sup
F∈F

f(F ) = max
F∈F

f(F ). (13)

Moreover, the solution is unique if f is strictly concave.

2) (Necessary Condition for Optimality [11, Section 7.4].) Let
F be a convex topological space and let f : F 7→ R have
a Gâteaux derivative ∆Qf(F ) as defined in (6). Suppose
that F ? ∈ F is a maximizer of f , then

∆Qf(F ?) ≤ 0, ∀Q ∈ F . (14)

3) (Necessary and Sufficient Condition for Optimality). The
condition in (14) is also sufficient if in addition the function
f is concave on F .

4) (KKT Conditions [11, Section 8.3].) Let F be a convex
topological space, and let f : F 7→ R be a concave
function on F and g : F 7→ R a convex function on F .
Assume there exists a point F ∈ F such that g(F ) < 0.
Let

µ = sup
F∈F and g(F )≤0

f(F ). (15)

Then, there is a constant λ ≥ 0 such that

µ = sup
F∈F

(f(F )− λg(F )) . (16)

Furthermore, if the supremum in (15) is achieved by F0, it
is achieved by F0 in (16) and

λg(F0) = 0. (17)

B. Analytic Function and the Size of the Uniqueness Set

Part of our analysis will require identifying the size of
sets on which two analytic functions can agree without being
identical everywhere (i.e., uniqueness sets) and the following
theorem would be used.

Theorem 5. (Identity Theorem for Real-Analytic Functions
[12].) Let X ⊂ Rn and let f, g : X → R be two real-analytic
functions on X that agree on some set E ⊂ X . Then, f and
g agree on X if one of the following conditions is satisfied:

1) E is an open set;
2) E is a set of positive Lebesgue measure; or
3) n = 1 and E has a limit point in X .

C. Bounded Input: General Case

In this section we seek to find

sup
PX∈F∞(S)

mmse(PX, PY|X). (18)

In order to apply the optimization theorems, summarized
in Theorem 4, we will need the following result about the
properties of F∞(S).

Lemma 1. For a compact S ⊂ Rn the set F∞(S) is
sequentially compact.

Proof: Note that since all probability measure are sup-
ported on a compact set, they are automatically uniformly
tight. Therefore, by Prohorov’s theorem [13] F∞(S) is se-
quentially compact.



Theorem 6. For any PY|X and for any S ⊂ Rn which is
compact

sup
PX∈F∞(S)

mmse(PX, PY|X) = max
PX∈F∞(S)

mmse(PX, PY|X).

(19a)

Moreover, let P ?X be an optimal input distribution in (19a),
then a necessary and sufficient condition for the optimality of
P ?X is given by

mmseQX
(P ?X, PY|X) ≤ mmse(P ?X, PY|X), ∀QX ∈ F∞(S).

(19b)

Proof: The proof of (19a) follows from using the fact
that PX 7→ mmse(PX, PY|X) is an upper semicontinuous
function, as shown in Theorem 2, and using that F∞(S) is a
sequentiall compact set, as shown in Lemma 1, and applying
property 1) from Theorem 4. Finally, the statement in (19b)
follows from property 2) and property 3) in Theorem 4, and
where the derivative expression of the MMSE in Theorem 3.

In this work we seek to make statements about the size of
the support of the optimal input distribution. Therefore, it is
convenient to re-write the condition in (19b) in an equivalent
term as conditions that involve statements about the support
of the optimal input distribution.

Proposition 1. P ?X is an optimal input distribution in (19a) if
and only if the following two conditions hold:
1) For all x ∈ S

E
[
‖X− EP?X [X|Y]‖2|X = x

]
≤ mmse(P ?X, PY|X); and

(20a)

2) For all x ∈ E(P ?X) ⊆ S

E
[
‖X− EP?X [X|Y]‖2|X = x

]
= mmse(P ?X, PY|X). (20b)

Proof: To show that (20) implies (19b) simply take the
expected value in (20) with respect to QX. Next, we show that
(19b) implies (20).

Assume that P ?X is an optimal input distribution. Towards
a contradiction we assume that condition (20a) does not hold
which implies that there exists some x1 ∈ S such that

E
[
‖X− EP?X [X|Y]‖2|X = x1

]
> mmse(P ?X, PY|X). (21)

Next let QX = δx1
and by using (19b) we have that

mmseδx1
(P ?X, PY|X) = E

[
‖X− EP?X [X|Y]‖2|X = x1

]
≤ mmse(P ?X, PY|X). (22)

Clearly, (22) contradicts (21). The contradiction implies that
(20a) is a valid condition.

Now, towards a contradiction suppose that (20b) is not true.
By the condition in (20a) (which we just verified) and the
assumption that (20b) is not true, there exists a set S1 ⊆ E(P ?X)
of positive measure (i.e., P ?X(S1) = ε > 0) such that

E
[
‖X− EP?X [X|Y]‖2|X = x

]
< mmse(P ?X, PY|X),

x ∈ S1 ⊆ E(P ?X), (23a)

and

E
[
‖X− EP?X [X|Y]‖2|X = x

]
= mmse(P ?X, PY|X),

x ∈ E(P ?X) \ S1. (23b)

Clearly, we have that

mmse(P ?X, PY|X)

=

∫
R
E
[
‖X− EP?X [X|Y]‖2|X = x

]
dP ?X(x)

a)
=

∫
E(P?X)

E
[
‖X− EP?X [X|Y]‖2|X = x

]
dP ?X(x)

=

∫
E(P?X)\S1

E
[
‖X− EP?X [X|Y]‖2|X = x

]
dP ?X(x)

+

∫
S1

E
[
‖X− EP?X [X|Y]‖2|X = x

]
dP ?X(x)

b)
= (1− ε)mmse(P ?X, PY|X)

+

∫
S1

E
[
‖X− EP?X [X|Y]‖2|X = x

]
dP ?X(x)

c)
< (1− ε)mmse(P ?X, PY|X) + εmmse(P ?X, PY|X)

= mmse(P ?X, PY|X), (24)

where (in)-equalities follow from: a) using the property that
P ?X(Rn) = P ?X(E(P ?X)) = 1; b) using condition (23b); and c)
using condition (23a).

Clearly, (24) leads to a contradiction and, therefore, (20b)
is a valid condition. This concludes the proof.

Definition 3. (Dense and Nowhere Dense Sets.)
• A set A ⊂ X is said to be dense in X if every element
x ∈ X either belongs to A or is a limit point of A.

• A set A ⊂ X is said to be nowhere dense if, for every
nonempty open set U ⊂ X , the intersection U ∩ A is not
dense in U .

Proposition 2. Suppose that the function

g(x) , E
[
‖X− EPX

[X|Y]‖2|X = x
]
, (25)

satisfies the following two conditions for all PX ∈ F∞(S):
1) g(x) is non-constant on S; and
2) g(x) is a real-analytic function on S.
Then, the optimal input distribution in (19a) P ?X satisfies the
following properties:
• for S ⊂ Rn where n ≥ 1, E(P ?X) is a nowhere dense set of

Lebesgue measure zero; and
• for S ⊂ R, E(P ?X) has finite cardinality (i.e., optimal input

distribution is discrete with finitely many points).

Proof: If P ?X achieves the maximum in (19a), then
according to (20b)

g(x) = mmse(P ?X, PY|X),∀x ∈ E(P ?X). (26)

In other words, g(x) is constant on E(P ?X).
We first focus on the case of n > 1. Now towards a

contradiction suppose that E(P ?X) ⊆ S is not a nowhere



dense set of S. Then there exists some open set O such that
O∩E(P ?X) is dense in O. Moreover, by (26) g(x) is a constant
on O ∩ E(P ?X). Since, g(x) is continuous and O ∩ E(P ?X)
is dense on O we have that g(x) is constant on O by the
definition of continuity. Finally, since O is an open set of S
by property 1 of Theorem 5 we have that g(x) is constant on
all of S. However, this contradicts our assumption that g(x) is
non-constant on S and, therefore, E(P ?X) is a nowhere dense
set.

The conclusion that E(P ?X) has a Lebesgue measure zero
follows by assuming, towards a contradiction, that E(P ?X) is
a set of positive Lebesque measure. By (26) g(x) is constant
on E(P ?X) ⊂ S and using Theorem 5 we conclude that g(x)
must be constant on S.

Next, for the case of n = 1. Assume that E(P ?X) has an
infinite cardinality. Then by the Bolzano-Weierstrass theorem
there exists a subsequence on E(P ?X) that has a limit point in S.
Therefore, by property 3) of Theorem 5 the g(x) is a constant
function on S. However, this contradicts our assumption that
g(x) is non-constant on S. This concludes the proof.

The result of Proposition 2, for n > 1 show that the support
of the optimal input distribution is small in two ways. First,
the support is small in terms of measure theory and has zero
Lebesgue measure. Second, the support is small topologically
and is a nowhere dense which loosely speaking implies that
the elements of the support are not tightly clustered. An
interesting question, which we will address shortly, is whether
the size of the support is also small when measured in terms
of cardinality. For example, for n = 1 we already know that
this is the case and the support has finite cardinality. It turns
out that in general, for n > 1 the optimal support might not
be of finite or even countably infinite cardinality.

Next, we show that the conditions on g(x) in Proposition 2
are not very restrictive and work for a variety of settings (e.g.,
Gaussian noise).

Lemma 2. Let PY|X be such that Y = X+Z and where X
and Z are independent and suppose that the pdf of Z ∼ fZ(z)
is a complex-analytic functions on an open subset of Cn that
contains Rn. Moreover, assume that fZ(z) > 0 for all z ∈ R.
Then, g(x) defined in (25) is a real analytic function on Rn.

D. Bounded Input: Gaussian Noise Case

In this section we look at the case when PY|X is Gaussian.
We also need the following results.

Lemma 3. (Slope of the Optimal Estimator.) Let |X| ≤ A
and PY |X = N (x, 1). Then,

d

dy
E[X|Y = y] = Var(X|Y = y), ∀y ∈ R, (27a)

and

max
X:|X|≤A

Var(X|Y = y) ≤ A2

1 +A2
, ∀y ∈ R. (27b)

Proof: The identity in (27a) is well know in the literature,
for example see [15]. To show (27b) observe that

max
X:|X|≤A

Var(X|Y = y)

= max
X:|X|≤A and E[X2]≤A2

Var(X|Y = y)

≤ max
X:E[X2]≤A2

Var(X|Y = y). (28)

Next, by noting that the conditional expectation is a minimizer
of the conditional variance for every y, that is

Var(X|Y = y) = E
[
(X − E[X|Y ])2|Y = y

]
= inf
f(·)

E[(X − f(Y ))2|Y = y]

≤ E

[(
X − A2

1 +A2
Y

)2

|Y = y

]
, (29)

where the last upper bound follows by choosing possibly sub-
optimal function f(y) = A2

1+A2 y. It is not difficult to show that
the bound in (29) can only be achieved by XG ∼ N (0, A2).
This implies that

max
X:E[X2]≤A2

Var(X|Y = y) = E

[(
XG −

A2Y

1 +A2

)2

|Y = y

]

=
A2

1 +A2
, (30)

for all y ∈ R. Combining (28) and (30) concludes the proof
of (27b).

Proposition 3. (Univariate Gaussian.) Let PY |X(y|x) =
N (x, 1), then for the optimization problem

max
PX∈F∞([−A,A])

mmse(PX , PY |X), (31)

we have the following:

• The optimal input distribution in (31) is discrete with finitely
many points. Moreover, the the optimizing input distribution
is unique and symmetric;

• The maximizing input distribution always contains mass
points at {±A}; and

• A random variable X = {±A} equally likely is optimal if
and only if A ≤ ĀB ≈ 1.05647.

Proof: The fact that an optimal input distribution has
finitely many points follows from Proposition 2 and Lemma 2.
The uniqueness of the optimal input distribution follows from
the fact that for the Gaussian noise case the MMSE is a strictly
concave function [10]. The symmetry of the distribution fol-
lows from the symmetry of the Gaussian noise. Therefore, in
the remaining of this proof we assume that all of the random
variables have symmetric distributions.



To show that there must always be mass points at ±A we
first find and bound the derivative of g(x) as follows:

dg(x)

dx

=
d

dx
E
[
(X − E[X|Y ])2|X = x

]
=

d

dx
E
[
(x− E[X|Y = Z + x])2

]
a)
= E [2(x− E[X|Y = Z + x])(1−Var(X|Y = Z + x))]

= E [2(X − E[X|Y ])(1−Var(X|Y ))|X = x]

= E [2(X − E[X|Y ])|X = x]

− E [2(X − E[X|Y ])Var(X|Y )|X = x]

b)

≥ 2E [(X − E[X|Y ])|X = x]

− 2E [|X − E[X|Y ]| |X = x] · sup
y∈R

Var(X|Y = y)

c)

≥ 2E [(X − E[X|Y ])|X = x]

− 2E [|X − E[X|Y ]| |X = x] · A2

1 +A2
, (32)

where (in)-equalities follow from: a) using the identity
d
dyE[X|Y = y] = Var(X|Y = y) in (27a); b) using modulus
inequality and bounding Var(X|Y ); and c) using the bound
in (30) that supy∈R Var(X|Y = y) ≤ A2

1+A2 for all |X| ≤ A.
Next, we show that the derivative of g(x) around x = A is

strictly positive. We have that

dg(x)

dx

∣∣
x=A

a)

≥ 2E [(X − E[X|Y ])|X = A]

− 2E [|X − E[X|Y ]| |X = A] · A2

1 +A2
,

b
=

2

1 +A2
E [(A− E[X|Y ])|X = A]

c)

≥ 2

1 +A2
E
[
(A−A · 1{Y≥0}(Y )|X = A

]
=

2A

1 +A2
(1− P[Y ≥ 0|X = A])

=
2A

1 +A2
Q(A), (33)

where (in)-equalities follow from: a) using the bound in
(32); b) using the fact that E[X|Y ] ≤ A and, therefore,
|A − E[X|Y ]| = (A − E[X|Y ]); and c) using the bound
E[X|Y = y] ≤ A · 1{Y≥0}(y).

Since g(x) is analytic, according to (33) there exists an
interval around x = A such that the derivative of g(x) is
strictly positive on that interval. Therefore, we can always find
a δA (independent of the distribution on X) such that for all
x ∈ [A− δA, A]

dg(x)

dx
> 0. (34)

Next, we use this fact to show that collapsing probabilities on
the interval [A,A − δA] into mass points at A increases the
MMSE. For any distribution FX of X let

F̄X(x) =


FX(−A+ δA) −A ≤ x ≤ −A− δ
FX(x) −A+ δA < x < A− δA
limx↑A−δA FX(x) A− δA ≤ x < A
1 x ≥ A

.

Note the construction of F̄X(x) collapses the probabilities on
intervals of length δA around ±A of a distribution FX into
mass points at ±A. Moreover, observe that for any function
f(x) which is increasing on x ∈ [−A,−A+δ] and decreasing
on x ∈ [A− δA, A] we have that

EFX [f(X)] ≤ EF̄X [f(X)]. (35)

Next, observe that

mmse(FX , PY |X)
a)

≤ EFX [(X − EF̄X [X|Y ])2]

= EFX
[
E[(X − EF̄X [X|Y ])2|X]

]
b)

≤ EF̄X
[
E[(X − EF?X [X|Y ])2|X]

]
= mmse(F̄X , PY |X),

where inequalities follow from: a) using the suboptimal es-
timator for FX or the Pythagorean property in Theorem 1;
and b) using the inequality in (35) by noting that E[(X −
EF̄X [X|Y ])2|X = x] = g(x) which according to (34) is
function for x = [A,A− δA].

This concludes the proof of the fact that the optimal input
distribution must contain mass points at ±A.

To show optimality of X = {±A} for all A ≤ Ā we use the
necessary and sufficient condition for optimality given in (20).
Using the fact that for X = {±A} the conditional expectation
is given by E[X|Y = y] = A tanh(Ay) the condition in (20)
can be further simplified to

1√
2π

∫
e−

(y−x)2
2 (A2 tanh2(Ay)− 2Ax tanh(Ay))

+ e−
(y−A)2

2 A2 tanh(Ay)dy + x2 −A2 ≤ 0, ∀x ∈ [−A,A].
(36)

From (36) we see that by plugging x = A (or x = −A) the
necessary and sufficient condition for the optimality in (20b)
is satisfied. Moreover, from (36), the largest A such that the
second necessary and sufficient condition in (20a) is satisfied
is given by ĀB ≈ 1.05647.

For the case of n ≥ 1 we have the following generalization
of Proposition 3.

Definition 4. A random vector X with a distribution PX is
said to be spherically symmetric if for every orthogonal matrix
A we have that PX = PAX.

Proposition 4. (Multivariate Gaussian.) Let PY|X = N (x, I)
and let

C(r) = {x ∈ Rn : ‖x‖ = r}. (37a)



Then for the optimization problem

max
PX∈F∞(B0(R))

mmse(PX, PY|X), (37b)

we have the following:

• the optimal input distribution P ?X is unique and spherically
symmetric. Moreover,

E(P ?X) =

N⋃
i=1

C(ri), (38)

where N <∞ (finite) for some {ri}N1 ;
• C(R) ⊆ E(P ?X) for every R > 0;
• A uniform distribution over C(R) is optimal if and only if
R ≤ R̄ = Θ(

√
n).

Proof: The proof follows by mimicking the proof for the
univariate case. The details are omitted and can be found in
an extended version of this paper [9].

In Proposition 4, the constant that determines R̄ can be
difficult to evaluate, but it can be shown that it is sufficient to
take R̄ ≤

√
n.

Note that the result of Proposition 4 show that the optimal
input distribution can be supported on the set C(R) which
is a nowhere dense set of Lebesgue measure zero in Rn.
However, note that the set C(R) does have an uncountably
infinite cardinality. Therefore, for n > 1 the conclusion in
Proposition 2 is not superfluous and in general cannot be
strengthen and discrete inputs are in general not optimal for
n > 1.

Proposition 4 can be used to find the capacity of a MIMO
channel given an amplitude constraint as follows.

Proposition 5. (Amplitude Constrained MIMO.) For

max
X:X∈B0(R)

I(X;X + Z), (39)

where Z ∼ N (0, I), the optimizing input distribution is
uniformly distributed on the set C(R) = {x ∈ Rn : ‖x‖ = R}
(i.e., boundary of the ball) if R ≤

√
n.

Proof: Let X? ∼ P ?X be distributed on the boundary of
the ball of radius R. First, observe that trivially we have that

max
X:X∈B0(R)

I(X;X + Z) ≥ I(X?;X? + Z).

Next, we show the upper bound. Using the I-MMSE relation-
ship we have that

I(X;X + Z) =
1

2

∫ 1

0

mmse(X|Yγ)dγ, (40)

where Yγ =
√
γX + Z. Next, let W =

√
γX and let W? =√

γX? and observe that

max
X:X∈B0(R)

I(X;X + Z)

= max
X:X∈B0(R)

1

2

∫ 1

0

mmse(X|Yγ)dγ

≤ 1

2

∫ 1

0

max
X:X∈B0(R)

mmse(X|Yγ)dγ

=
1

2

∫ 1

0

max
X:X∈B0(R)

E
[
‖X− E[X|√γX + Z]‖2

]
dγ

=
1

2

∫ 1

0

max
X:X∈B0(R)

1

γ
E
[
‖√γX− E[

√
γX|√γX + Z]‖2

]
dγ

=
1

2

∫ 1

0

max
W:∈B0(

√
γR)

1

γ
E
[
‖W − E[W|W + Z]‖2

]
dγ

=
1

2

∫ 1

0

max
W:∈B0(

√
γR)

1

γ
E
[
‖W? − E[W?|W? + Z]‖2

]
dγ

(41)

=
1

2

∫ 1

0

mmse(X?|Yγ)dγ

= I(X∗;X∗ + Z),

where in (41) we have used that γ ≤ 1 and the result in
Proposition 4 that uniform distribution on the boundary of a
ball of radius

√
γR ≤

√
n. This concludes the proof.

Note that Proposition 5 characterizes, previously unknown,
capacity in the small amplitude regime (i.e., R ≤

√
n) in the

massive MIMO case (i.e., the number of antennas going to
infinity) [14].

E. Bounded Input: Poisson Noise Case

The Poisson random transformation is governed by the
following conditional distribution:

pY |X(y|x) =
1

y!
xye−x, x ≥ 0, y = 0, 1, ..., (42)

where we use the convention that 00 = 1. It is well known
that the conditional expectation is given by

E[X|Y = y] =
(y + 1)pY (y + 1;PX)

pY (y;PX)
, y = 0, 1, ..., (43)

where pY (y;PX) is the marginal probability mass function
(pmf) of Y induced by input distribution PX . Next, we
compute the MMSE for the binary input.

Lemma 4. Let X = {0, A} where PX [X = 0] = p0 and
PY |X be given as in (42). Then,

EPX [X|Y = y] =

{
A (1−p0)e−A

p0+(1−p0)e−A
y = 0

A y > 0
, (44a)

and

mmse(X|Y ) =
A2e−Ap0(1− p0)

p0 + (1− p0)e−A
. (44b)



Proof: The transition probabilities of interest are given
by

pY |X(y|0) = 1{Y=0}(y),

pY |X(y|A) =
1

y!
Aye−A,

and the marginal of Y is given by

pY (y) = p0pY |X(y|0) + (1− p0)pY |X(y|A)

= p01{Y=0}(y) + (1− p0)
1

y!
Aye−A. (45)

Therefore, by using (43) the estimator is given by

E[X|Y = y] =
(y + 1)pY (y + 1)

pY (y)

=

{
A (1−p0)e−A

p0+(1−p0)e−A
y = 0

A y > 0
. (46)

To compute the MMSE observe that

E[(X − E[X|Y ])2] = p0E[(X − E[X|Y ])2|X = 0]

+ (1− p0)E[(X − E[X|Y ])2|X = A].
(47)

Next, we individually compute the terms in (47) by plugging
in (46). The first term is given by

E[(X − E[X|Y ])2|X = 0] = E[(E[X|Y ])2|X = 0]

=

∞∑
y=0

(E[X|Y = y])2pY |X(y|0)

= (E[X|Y = 0])2

= A2

(
(1− p0)e−A

p0 + (1− p0)e−A

)2

,

(48)

and the second term is given by

E[(X − E[X|Y ])2|X = A]

=

∞∑
y=0

(A− E[X|Y = y])2pY |X(y|A)

= (A− E[X|Y = 0])2pY |X(0|A)

=

(
A−A (1− p0)e−A

p0 + (1− p0)e−A

)2

e−A

= A2

(
p0

p0 + (1− p0)e−A

)2

e−A. (49)

Combining (48) and (49) we have that the MMSE is given by

mmse(X|Y ) =
A2e−Ap0(1− p0)

p0 + (1− p0)e−A
.

This concludes the proof.

Proposition 6. (Poisson Noise Case.) Let PY |X be as in (42).
Then for the optimization problem

max
PX∈F∞([0,A])

mmse(PX , PY |X), (50)

we have the following:

• the optimal input distribution in (50) is discrete with finitely
many points; and

• a two point distribution {0, A} (i.e., E(P ?X) = {0, A}) is
optimal if and only if A ≤ Ā ≈ 0.9129 where Ā is the
solution of the equation 2e

x
2 (x−1)+xex−2 = 0 for x > 0.

Moreover, the optimal probability assignment is given by
P ?X [X = 0] = 1

1+e
A
2

, and the MMSE is given by

mmse(P ?X , PY |X) = A2 (P ?X [X = 0])
2

=
A2(

1 + e
A
2

)2 .

(51)

Proof: Let pY (y;PX) be the output pmf induced by the
input distribution PX

pY (y;PX) =

∫
1

y!
xye−xdPX . (52)

Note that the conditional expectation is given by Robins’
formula as

EPX [X|Y = y] =
(y + 1)pY (y + 1;PX)

pY (y;PX)
. (53)

Moreover, the function g(x) is given by

g(x) = E[(X − EPX [X|Y ])2|X = x]

=

∞∑
y=0

(x− EPX [X|Y = y])
2 x

ye−x

y!

= e−x
∞∑
y=0

(
x− (y + 1)pY (y + 1;PX)

pY (y;PX)

)2
xy

y!
. (54)

Clearly, the power series in (54) converges for all x ∈ R+

and g(x) is an analytic function on R+ for any PX . Also,
evidently g(x) is non-constant. Therefore, by Proposition 2
we have that the optimal input distribution is discrete with
finitely many points.

Next we check whether distribution on X = {0, A} with
PX [X = 0] = p0 is optimal by evaluating the necessary and
sufficient conditions in (20). To that end, observe that with the
estimator in (44a) g(x) simplifies to

g(x)

= E[(X − E[X|Y ])2|X = x]

= (x− E[X|Y = 0])2e−x +

∞∑
y=1

(x−A)2 1

y!
xye−x

= (x− E[X|Y = 0])2e−x + (x−A)2(1− e−x)

=

(
x−A (1− p0)e−A

p0 + (1− p0)e−A

)2

e−x + (x−A)2(1− e−x).

(55)

First, the condition in (20b) is equivalent to

eq. (44b) = eq. (48) = eq. (49), x ∈ {0, A}, (56)



With some algebra (56) implies that the only possible value
of p0 is given by

p2
0 = (1− p0)2e−A ⇔ p0 =

1

1 + e
A
2

. (57)

With the choice of p0 in (57) the MMSE in (44b) reduces to

mmse(X|Y ) =
A2(

1 + e
A
2

)2 . (58)

Second, the condition in (20a) requires that for all x ∈ [0, A]

eq. (55) ≤ eq. (58), (59)

which can be further simplified to(
x− A

1 + e
A
2

)2

e−x + (x−A)2(1− e−x) ≤ A2(
1 + e

A
2

)2 .

(60)

for x ∈ [0, A]. It is not difficult to check that the condition in
(60) fails if and only if the derivative of the function

h(x)

,

(
x− A

1 + e
A
2

)2

e−x + (x−A)2(1− e−x)− A2(
1 + e

A
2

)2 ,

(61)

at zero becomes positive which occurs at values of A given
by

2e
A
2 (A− 1) +AeA − 2 = 0. (62)

The solution to (62) is given by Ā ≈ 0.9129. Therefore, the
binary input {0, A} is optimal if and only if p0 is the given
in (57) and A ≤ Ā. This concludes the proof.

F. Generalized Input Moment Constraints

In this section we seek to find

sup
PX∈Fp(f ;α)

mmse(PX, PY|X) (63a)

where F(f ;α) = {PX : EPX
[f(X)] ≤ α} . (63b)

for some given f : Rn → R independent of PX and given
p, α ≥ 0. Observe that the set F(f ;α) is convex. In addi-
tion, we assume that f(X) is a non-negative monotonically
increasing function of ‖X‖ which by Markov inequality and
Prokhorov theorems implies that F(f ;α) is a sequentially
compact set. An example of f(·) that satisfies such a condition
is f(X) = ‖X‖r for any r > 0.

Theorem 7. Let the MMSE in the optimization problem in (63)
be an upper semicontinuous function. Then, the supremum in
(63a) is attainable by some input distribution P ?X. Moreover,
P ?X is optimal if and only if the following two conditions hold:
1) For all x ∈ Rn

E
[
‖X− EP?X [X|Y]‖2|X = x

]
− λ (f(x)− α)

≤ mmse(P ?X, PY|X); and (64a)

2) For all x ∈ E(P ?X) ⊆ Rn

E
[
‖X− EP?X [X|Y]‖2|X = x

]
− λ (f(x)− α)

= mmse(P ?X, PY|X). (64b)

Proof: First, in light of the facts that F(f ;α) is a convex
and sequentially compact set, and that the MMSE is an upper
semicontinuous function by property 1) of Theorem 4, we have
that the supremum in (63a) is attained by some distribution
P ?X. Since the MMSE is a concave function and the constraint
in (63b) is linear, using the KKT conditions in Theorem 4 we
have that the constrained optimization in (63) is equivalent to

sup
PX∈F

(
mmse(PX, PY|X)− λ (EPX

[f(X)]− α)
)
. (65)

Moreover, from (17) we have that λ > 0 this follows since
the constraint in (63b) is tight and EP?X [f(X)] = α.

Next, since the difference of concave and linear functions
is concave we have that the function in (65) is concave.
Therefore, applying property 3) of Theorem 4 to (65) we have
that the input distribution P ?X is optimal if and only if

mmseQX
(P ?X, PY|X)−mmse(P ?X, PY|X)

− λ (EQX
[f(X)]− α) ≤ 0, (66)

where we have used that the Gâteaux derivative of EPX
[f(X)]

is given by

∆QX
EPX

[f(X)] = EQX
[f(X)]− EPX

[f(X)],

and that for the optimal input distribution EP?X [f(X)] = α.
The proof is concluded by using the approach in Propo-

sition 1 to show that the condition (66) can be equivalently
represented as in (64).

Proposition 7. Let PY|X = N (x, I). Then for the optimiza-
tion problem in (63) we have the following:

• the optimal input distribution is unique and symmetric.
• if f(x) = ω

(
‖x‖2

)
, then the support of the optimizing input

distribution is bounded (i.e., E(P ?X) ⊆ B0(R) for some R >
0);

• if f(x) = ‖x‖2, then the optimal input distribution is given
by X ∼ N (0, αI); and

• if f(x) = o(‖x‖2), then the support of the optimizing
distribution is unbounded (i.e., there is no R ≥ 0 such that
E(P ?X) ⊆ B0(R) ).

Proof: We first work by assuming that f(x) = ω
(
‖x‖2

)
.

Next, towards a contradiction assume that the maximizing
distribution in (63) has an unbounded constraint. In other
words, there exists no R > 0 such that E(P ?X) ⊆ B0(R).



By using the KKT condition in (64b) we have that for all
x ∈ E(P ?X)

mmse(P ?X, PY|X) + λ (f(x)− α)

= E
[
‖X− EP?X [X|Y]‖2|X = x

]
a)
= E

[
‖Z− EP?X [Z|Y]‖2|X = x

]
b)

≤ 2(E
[
‖Z‖2

]
+ E

[
EP?X [‖Z‖2|Y]|X = x

]
)

c)

≤ 2n+ 2E
[
c
(
‖Y‖2 + EP?X [‖X‖2]

)
|X = x

]
= 2n+ 2c(n+ ‖x‖2 + EP?X [‖X‖2]), (67)

where the (in)-equalities follow from: a) using X −
EP?X [X|Y] = −(Z − EP?X [Z|Y]); b) using the bound ‖a −
b‖2 ≤ 2(‖a‖2 + ‖b‖2) and modulus inequality ‖E[U]‖ ≤
E[‖U‖] for any U; and c) using the bound EP?X [‖Z‖2|Y =
y] ≤ c(‖y‖2 + EP?X [‖X‖2]) for some fixed constant c > 0
[10, Lemma 4].

Observe that the inequality in (67) implies that for all x ∈
E(P ?X)

f(x) ≤ a1‖x‖2 + a2, (68)

for some fixed constant a1 > 0 and a2. Since, we are assuming
that E(P ?X) is unbounded that means that there exists a
sequence {xn}∞n=1 ⊆ E(P ?X) such that ‖xn‖ → ∞. However,
the existence of such a sequence together with the inequality in
(68) contradicts our assumption f(x) = ω

(
‖x‖2

)
. Therefore,

E(P ?X) must be bounded, and this concludes the proof for the
case of f(x) = ω

(
‖x‖2

)
.

The case of f(x) = ‖x‖2 (i.e., power constraint) is well
known in the literature for example see [15].

Finally, we look at the case of f(x) = o(‖x‖2). Towards
a contradiction we assume that E(P ?X) ⊆ B0(R) for some
R > 0. Using the KKT condition in (64a) we have that for all
x ∈ Rn \ B0(R)

mmse(P ?X, PY|X) + λ (f(x)− α)

≥ E
[
‖X− EP?X [X|Y]‖2|X = x

]
= ‖x‖2 − 2xTE

[
EP?X [X|Y]|X = x

]
+ E

[
‖EP?X [X|Y]‖2|X = x

]
a)

≥ ‖x‖2 − 2‖x‖
∥∥E [EP?X [X|Y]|X = x

]∥∥
b)

≥ ‖x‖2 − 2‖x‖R, (69)

where the inequalities follow from: a) using the bound
E
[
‖EP?X [X|Y]‖2|X = x

]
> 0 and applying Cauchy-Swartz

inequality for the inner product; and b) using the fact
that ‖X?‖ ≤ R and therefore

∥∥E [EP?X [X|Y]|X = x
]∥∥ ≤

E
[
EP?X [‖X‖ |Y]|X = x

]
≤ R. Clearly the condition in (69)

show f(x) = Ω(‖x‖2). However, this contradicts our as-
sumption that f(x) = o(‖x‖2). Therefore, E(P ?X) must be
unbounded. This concludes the proof.

It is important to point out that the proof of the case f(x) =
o(‖x‖2) in Proposition 7 does not require the assumption that

PY|X is Gaussian and holds under the general assumptions of
Theorem 7.

Observer that according to Proposition 7, in the case of
f(x) = ω

(
‖x‖2

)
, we have that the input distribution has a

bounded support and, therefore, we can apply the result of
Proposition 2 to conclude that the support is a nowhere dense
set of Lebesgue measure zero.

V. SINGLE CROSSING POINT PROPERTY

max
PX∈M2

(
mmse(PX, PY|X)− λmmse(PX, QY|X)

)
. (70)

where

M2 , {PX : KX � S} (71)

Then necessary condition for optimality is given by

mmseFX
(P ?X, PY|X)−mmse(P ?X, PY|X)

− λ(mmseFX
(P ?X, QY|X)−mmse(P ?X, QY|X)) ≤ 0, ∀FX ∈M2

(72)

VI. CONCLUSION

In this work we looked at the structure of the support
of least favorable prior distributions. We demonstrated that,
under some mild conditions, the support of the least favorable
distributions must be a nowhere dense set of Lebesgue mea-
sure zero. Our results also produce necessary and sufficient
conditions for the optimality and, in most cases, can be easily
evaluated as has been demonstrated by the Gaussian and the
Poisson examples.

An interesting future direction is to look at the optimization
problem where for λ ≥ 0 we seek to maximize

max
PX

(
mmse(PX, PY|X)− λmmse(PX, QY|X)

)
.

For example, taking PY|X = N (Hx, I) and QY|X =
N (H0x, I) might potentially generalize the single crossing
point property, shown in [15] and discussed in great detail
in [16] and [17], to the vector cases.
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