ORF 523 PROBLEM SET 6 Spring 2025, Princeton University

Instructor: A.A. Ahmadi AIs: Y. Hua, J.J. Macosko

Due on Apr 24, 2025, at 1:30pm ET, on Gradescope

For all problems that involve coding, please include your code.

Problem 1: Accounting for nonlinearity and modeling error in stability analysis It is common in control theory to approximate an unknown dynamical system with a linear model, but also to account for nonlinear effects by adding a bounded unknown nonlinear term. More precisely, the dynamics is modelled as

$$x_{k+1} = Ax_k + q(x_k), \tag{1}$$

where $A \in \mathbb{R}^{n \times n}$ is a fixed and $g : \mathbb{R}^n \to \mathbb{R}^n$ is an unknown continuous function satisfying

$$||g(x)|| \le \gamma ||x|| \ \forall x \in \mathbb{R}^n \tag{2}$$

for some fixed scalar $\gamma > 0$. An important problem in control is to check whether x = 0 is a globally asymptotically stable equilibrium point of the dynamics in (1) for any choice of the function g verifying (2). In order to check this property, one can search for a (homogeneous and coercive) quadratic Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ satisfying

$$V(Ax + g(x)) < V(x) \quad \forall x \neq 0$$
, and for any function g verifying (2).

- 1. Formulate the search for such a Lyapunov function as an SDP feasibility problem.
- 2. A series of chemical reactions

$$C_1 \rightarrow C_2 \rightarrow C_3$$

between three chemical compounds C_1, C_2 , and C_3 can be modeled by a dynamical system of the type in (1), where x_k is a 3×1 vector whose i^{th} component $x_{k,i}$ represents the concentration of chemical compound i at time k. Here, the matrix A is given by

$$\frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

representing that at each time step, half of C_1 converts to C_2 , half of C_2 converts to C_3 , and half of C_3 vanishes. The function $g: \mathbb{R}^3 \to \mathbb{R}^3$ is unknown and represents the hard-to-model nonlinear interactions between the chemical compounds.

What is the largest value of γ (to two digits after the decimal point) such that if

$$||g(x)|| \le \gamma ||x|| \ \forall x \in \mathbb{R}^3,$$

then all chemical concentrations go to zero irrespective of their initial concentrations? Hint: To find lower (resp. upper) bounds on this critical value of γ , leverage part 1 (resp. focus on functions g that are linear).

Problem 2: Getting past exponentially many spurious local minima

A polynomial $p: \mathbb{R}^n \to \mathbb{R}$ is separable if it can be written as $p(x) = \sum_{i=1}^n q_i(x_i)$, where each q_i is a univariate polynomial.

- (a) Show that a separable polynomial is nonnegative if and only if it is a sum of squares. (You can use the fact that a univariate nonnegative polynomial is a sum of squares without proof.)
- (b) Present an explicit family of degree-4 polynomials $p_n: \mathbb{R}^n \to \mathbb{R}$ such that
 - (i) the number of nonglobal local minima of p_n grows exponentially with n,
 - (ii) for all n, we have

$$\begin{bmatrix} \min_{x \in \mathbb{R}^n} p_n(x) \end{bmatrix} = \begin{bmatrix} \max_{\gamma \in \mathbb{R}} & \gamma \\ \text{s.t.} & p_n(x) - \gamma & \text{is a sum of squares} \end{bmatrix}.$$

For context, this means that semidefinite programming can find the exact optimal value of nonconvex problems with exponentially many spurious local minima.

Problem 3: Equivalence of decision and search for some problems in NP

- 1. Suppose you had a blackbox that given a 3SAT instance would tell you whether it is satisfiable or not. How can you make polynomially many calls to this blackbox to find a satisfying assignment to any satisfiable instance of 3SAT?
- 2. Suppose you had a blackbox that given a graph G and an integer k would tell you whether G has a stable set of size larger or equal to k. How can you make polynomially many calls to this blackbox to find a maximum stable set of a given graph?

Problem 4: Complexity of rank-constrained SDPs

Consider a family of decision problems indexed by a positive integer k:

RANK-k-SDP

Input: Symmetric $n \times n$ matrices A_1, \ldots, A_m with entries in \mathbb{Q} , scalars $b_1, \ldots, b_m \in \mathbb{Q}$. Question: Is there a real symmetric matrix X that satisfies the constraints

$$\operatorname{Tr}(A_iX) = b_i, i = 1, \dots, m, X \succeq 0, \operatorname{rank}(X) = k$$
?

Show that RANK-k-SDP is NP-hard for any integer $k \geq 1$.

(Hint: First show NP-hardness for k = 1, then see how you can modify your construction so that it would work for any other k.)

Problem 5: Concave box QP

Show that the following decision problem is NP-complete.

CONCAVE-BOX-QP: Given a symmetric matrix $Q \in \mathbb{Q}^{n \times n}$, with $Q \leq 0$, vectors $c, l, u \in \mathbb{Q}^n$, and a scalar $k \in \mathbb{Q}$, decide whether the optimal value of the following optimization problem is less than or equal to k:

$$\min_{x \in \mathbb{R}^n} \quad x^T Q x + c^T x$$

s.t. $-l_i \le x_i \le u_i \quad i = 1, \dots, n$.