How fast to work: Response vigor, motivation and tonic dopamine

 

Yael Niv, Nathaniel Daw and Peter Dayan

 

Reinforcement learning models have long promised to unify computational, psychological and neural accounts of appetitively conditioned behavior. However, the bulk of data on animal conditioning comes from free-operant experiments measuring how hard animals will work for reinforcement. Existing reinforcement learning (RL) models are silent about these tasks, because they lack any notion of vigor. They thus fail to address the simple observation that hungrier animals will work harder for food, as well as stranger facts such as their sometimes greater productivity even when working for irrelevant outcomes such as water. Here, we develop an RL framework for free-operant behavior, suggesting that subjects choose how vigorously to perform selected actions by optimally balancing the costs and benefits of quick responding. Motivational states such as hunger shift these factors, skewing the tradeoff. This accounts normatively for the effects of motivation on productivity, as well as many other classic findings. Finally, we suggest that tonic dopamine may be involved in the computation linking motivational state to optimal responding, thereby explaining the complex vigor-related effects of pharmacological manipulation of dopamine.