
PHYSICS OF FLUIDS VOLUME 10, NUMBER 11 NOVEMBER 1998
Capillary breakup of a viscous thread surrounded by another viscous fluid
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Previous long-wavelength analyses of capillary breakup of a viscous fluid thread in a perfectly
inviscid environment show that the asymptotic self-similar regime immediately prior to breakup is
given by a balance between surface tension, inertia, and extensional viscous stresses in the thread.
In contrast, it is shown here that if viscosity in the external fluid, however small, is included then
the asymptotic balance is between surface tension and viscous stresses in the two fluids while inertia
is negligible. Scaling estimates for this new balance suggest that both axial and radial scales
decrease linearly with time to breakup, so that the aspect ratio remainsO(1) with time but scales
with viscosity ratio like (m int /mext)

1/2 for m int@mext, wherem int andmext are the internal and external
viscosities. Numerical solutions to the full Stokes equations form int5mext confirm the scalings with
time and give self-similar behavior near pinching. However, the self-similar pinching region is
embedded in a logarithmically large axial advection driven by the increasing range of scales
intermediate between that of the pinching region and that of the macroscopic drop. The interfacial
shape in the intermediate region is conical with angles of about 6° on one side and 78° on the other.
© 1998 American Institute of Physics.@S1070-6631~98!01711-5#
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I. INTRODUCTION

The capillary instability of a liquid thread is well-know
and has many applications. Classical linear theory1 predicts
instability to perturbations with wavelengths greater than
circumference of the thread. Subsequent nonlinear growt
the instability is observed experimentally to lead to disin
gration of the thread into droplets, often with the producti
of many small satellite droplets by secondary instabilities
the fluid filaments left between the primary drops~e.g., Refs.
2–4!. A desire to predict the details of satellite-drop form
tion for industrial processes such as ink-jet printing has m
tivated many studies of the spatial and temporal developm
of capillary instabilities on a jet or thread~e.g. Refs. 5–8! by
use of experimental, numerical, and weakly nonlinear te
niques. A wide-ranging review is given by Eggers.9

Recently, however, the focus of attention has switch
from the initial development of the instability to the behavi
of the flow in the vicinity of the topological singularity whe
the thread breaks in two. This switch is due partly to t
realization that the final stages of pinching affect the sub
quent recoil and satellite-drop formation, and partly to a g
eral interest in the formation, structure, and scaling beha
of singularities in nonlinear systems~e.g., Refs. 10–12!.
Close to the breaking point, the length scales and time sc
of motion are orders of magnitude less than those in the
field, which suggests that it is possible to perform a lo
analysis of the Navier–Stokes equations near the brea
point and seek a self-similar solution for the evolution
wards~and after! the singularity.

Since many applications involve liquid threads break
up in air, it is usually assumed that the external fluid is d
2751070-6631/98/10(11)/2758/7/$15.00
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namically passive. Proceeding under this assumption, s
larity solutions have been found for the three cases in wh
the surface-tension-driven dynamics of the internal fluid
controlled by both viscosity and inertia, by viscosity alon
and by inertia alone~finite, zero, and infinite Reynolds
numbers!.13–16 Among these solutions, it is asymptotical
inconsistent to neglect either inertia or viscosity as
breakup singularity is approached, which is thus predicted
be governed by an inertial-viscous-capillary balance.13

The goal of this paper is to reanalyze capillary break
including the viscous resistance exerted by the external fl
on the motion of the thread. We find that, however small
external viscosity, as the breakup singularity is approac
the external viscous shear stresses associated with axial
tion of the thread become comparable to the internal visc
stresses associated with extension of the thread. The ext
viscous ‘‘brake’’ slows the flow down and modifies the s
lution so that the governing asymptotic balance is now
tween capillary forces and viscous stresses in the two flu
while the inertial forces are negligible. Since all experime
require an external fluid, it follows that the ‘‘Eggers
regime13 is only transitory and will give way to this new
viscously dominated regime sufficiently close to the sing
larity.

The paper is organized as follows. In the next section
use scaling arguments to show why inertia becomes ne
gible when external viscosity is taken into consideratio
Similar arguments are used to predict power-law scalings
the axial, radial, and velocity scales as functions of the ti
remaining to breakup. Sections III and IV describe numeri
calculations of capillary breakup for the case in which t
internal and external fluids are in Stokes flow and are
8 © 1998 American Institute of Physics
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2759Phys. Fluids, Vol. 10, No. 11, November 1998 J. R. Lister and H. A. Stone
equal viscosity. The calculations confirm the simple scalin
of Sec. II and give self-similar evolution, but also show th
the axial velocity in the pinching region increases logari
mically as the time to the singularity decreases. This resu
surprising since the locally driven flow is estimated asO(1),
and this stands in contrast to the previous analyses with
external viscosity in which the velocity can be estimated
local scalings. The explanation for the increase of the a
velocity in terms of flow driven by conical intermediate r
gions on either side of the pinch is described in Sec. V an
summary of our findings is given in Sec. VI. In the Append
we outline a simple one-dimensional long-wavelength mo
of breakup for the case when the external fluid is much l
viscous than the internal. Such localized long-wavelen
models have been valuable in previous studies, but
simple model outlined here seems to lack the proper c
pling between local and nonlocal effects to reproduce
dynamics seen in Secs. III and IV.

II. SCALING ARGUMENTS

Consider the dynamics of an axisymmetric fluid thre
of radiush(z,t), viscositym, densityr, and surface tensiong
in a surrounding fluid of viscositymext and densityrext.
Neglecting the influence of the external fluid (mext50),
Eggers13 argued that the flow in the neighborhood of a
immediately prior to breakup is described by a lon
wavelength approximation to the Navier–Stokes equation
which the axial velocityv(z,t) is uniform across the threa
and the dynamics is given by a balance between the a
gradient of the capillary pressure, the axial acceleration,
the internal viscous resistance to extension of the threa
we combine the dynamic balancesg](h21)/]z;r]v/]t
;m]2v/]z2 with the kinematic estimatev;z/t, wheret is
the time remaining to a breakup atz50, then we obtain the
scalings

z; l mS t

tm
D 1/2

, h; l mS t

tm
D , v;

g

m S t

tm
D 21/2

, ~1!

which are the basis of the similarity solutions found in Re
13 and 15. Herel m5m2/(gr) and tm5m3/(g2r)5m l m /g
are the natural fluid-dependent length scale and time scal
which the similarity solutions are valid. In this regime th
Reynolds number Re5rvz/m is O(1).

We note that for waterl m;1028 m and tm;10210 s,
whereas for syrupl m;10 m andtm;103 s, which suggests
that breakup on laboratory~millimeter! scales will have a
significant inertially dominated or viscously dominated tra
sient. Indeed, if the length scale of the initial conditions isl 0

then the initial dynamical response can be characterized
the magnitude of a Reynolds number Re05rgl0 /m25l0 /lm
~the inverse of the Ohnesorge number!. A viscous-capillary
balanceg](h21)/]z;m]2v/]z2 (Re0!1), together withv
;z/t, gives

z; l 0S t

t0
D b

, h; l 0S t

t0
D , v;

g

m S t

t0
D b21

, ~2!

where the choice ofl 0 as length scale is arbitrary,t0

5m l 0 /g, and the exponentb is determined as a nonlinea
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eigenvalue of the resulting similarity equations.14,15 Since
Re;Re0(t/t0)

2b21 and the maximum value ofb is 0.175, the
neglect of inertia is invalid ast→0. An inertial-capillary
balanceg](h21)/]z;r]v/]t (Re0@1) with v;z/t also ap-
pears at first sight to leave an exponentb to be determined
from the similarity equations.17 However, numerical solu-
tions of breakup in potential flow16 show that the Laplacian
operator imposesh;z, which gives similarity solutions with
the scalings

h;z;S gt2

r D 1/3

, v;S g

rt D 1/3

. ~3!

Sinceh;z, the far-field shape is predicted to be conical,
agreement with numerical solutions.16 Since Re
;(rg2t)1/3/m, the neglect of viscosity is invalid ast→0.

Considerations thus far suggest that~1! is the final scal-
ing prior to breakup. However, axial motion of the breaki
thread drives a flow in the surrounding fluid, the vorticity
which can diffuse a distance of order (mextt/rext)

1/2 from the
thread, which, ash;t from ~1!, corresponds to many threa
radii as t→0. Hence the external fluid responds as a v
cously dominated flow outside an axially sliding cylind
and exerts a shear stress of ordermext]v/]r on the thread or,
equivalently, makes a contribution of ordermext]

2v/]r 2 to
the axial momentum balance. Usingr;h and ~1!, this con-
tribution is found to be proportional tot25/2 as t→0,
whereas the capillary, inertial, and internal viscous terms
proportional tot23/2. It follows that, unlessmext[0, the ne-
glect of the external fluid eventually becomes invalid and
flow makes a transition to a new dynamical balance~assum-
ing, of course, that molecular dimensions are not reac
first!.

When the external viscous drag is reintroduced, the s
ings for the new balance can most simply be obtained fr
g](h21)/]z;m]2v/]z2;mext]

2v/]r 2, together with v
;z/t, which gives

z;
gt

m1/2m
, h;

gt

m
, v;

g

m1/2m
, ~4!

wherem5mext/m. Sincez;h ast→0, a similarity solution
for breakup based on these scalings would be expecte
have the properties that the quasisteady regions on either
of localized rapid pinching would be asymptotically conica
h;m1/2z, and that characteristic velocities in the pinchin
region, such as the maximum velocity, would be constan

A number of further points should be noted. First, sin
we have been assuming implicitly in our scalings that
axial length scale and velocity scale close to breakup
either comparable to or much greater than the radial sca
~4! is only appropriate ifm is comparable to or much greate
than mext; the breakup of an inviscid bubble in a viscou
environment may require separate analysis. Second, sinz
and h have the same time dependence, use of a lo
wavelength~slender-body! approximation in the Appendix
relies onm!1 or mext!m rather than on asymptotic behav
ior in time. Third, the Reynolds number based on~4!, Re
;t/(tmm1/2), is proportional tot confirming that the inertial
terms are asymptotically small.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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It is possible for capillary breakup to pass through
number of these different dynamical regimes as the scale
the pinching region and velocity evolve. The transition fro
~1! to ~4! occurs whenz;m1/2l m , h;mlm , andt;mtm ; for
some common pairs of fluids, such as water pinching in
this transition is on molecular scales and beyond the ap
cability of continuum mechanics. Depending on the relat
sizes of the initial Reynolds number Re05rgl0 /m2 and the
viscosity ratiom, it is also possible for a flow to make
transition directly from~2! to ~4! without passing through the
intermediate scaling~1!. The possible transitions are summ
rized in Fig. 1. The transition scales between regimes ca
determined by the crossovers between Eqs.~1! and ~4! and
used to interpret the dynamical regime corresponding to
ticular experimental observations.

III. STOKES FLOW SIMULATIONS

The scalings of the previous section show that
asymptotic dynamical balance for capillary breakup is v
cously dominated both inside and outside the pinch
thread. Motivated by this, we present calculations for
capillary-driven breakup of a fluid drop in which both th
drop and its environment are in Stokes flow. Similar calc
lations are underway by Loewenberg and co-workers.18

Let the drop surfaceS(t) have outward normaln and
curvaturek so that the flow is driven by a capillary jump i
stressgkn acrossS. We make all velocities dimensionles
with respect to the scaleg/m and choose an arbitrary lengt
scale~e.g., the initial radius of the drop! to scale all lengths.
The dimensionless internal viscosity is then 1 and the ex
nal viscositym. The velocity for pointsxPS(t) has the exact
boundary-integral representation19

1

2
~11m!u~xs!1~m21!E

yPS~ t !
n–K–u dSy

52E
yPS~ t !

kn–J dSy , ~5!

where

J~r !5
1

8p F I

r
1

rr

r 3G , K ~r !52
3

4p

rrr

r 5 , r5x2y,

~6!

anddSy is the scalar element of area onS(t) at y.
For simplicity, we restrict our attention to axisymmetr

configurations so that the azimuthal integral can be p

FIG. 1. The scalings and temporal transitions between the various dyn
cal regimes for capillary breakup;m5mext /m. The transition from the
inertial-viscous thread to the two-fluid Stokes flow occurs whenz
;m1/2m2/(gr), h;mm2/(gr), andt;mm3/(g2r).
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formed analytically, and to equal viscosities (m51) so that
u is obtained directly as an integral of the curvature rat
than as the solution of an integral equation. Equation~5! can
then readily be solved using a boundary-element method,
details of which are very similar to those described in R
20. The evolution of an initial ‘‘dog-bone’’ shape is followe
by calculating the interfacial velocity from a discretized ve
sion of ~5!, moving marker points distributed along the in
terface with the local normal component of velocity, a
then repeating the procedure. Marker points were added
redistributed along the interface in such a way as to main
a smoothly varying spacing proportional to the local curv
ture in order to resolve the details of flow near the high
curved pinching region. In the calculations reported here,
initial shapes were represented by about 200 points and
final shapes, in which the minimum radius had decrease
roughly 10210, were represented by about 4000 points, m
of them concentrated near the pinching region. Each t
step was chosen to be about 0.5% of the current minim
radius divided by the radial velocity at the minimum, so th
each decade of reduction in the minimum radius requi
about 500 time steps. Test calculations with double the d
sity of marker points and with half the time step yielded t
same results as those given below.

IV. RESULTS

The initial and final shapes from three simulations a
shown in Fig. 2 and a number of aspects of the evolution
one simulation in Fig. 3. In each simulation, regions initia
with a single minimum radius develop two pinching minim
which suggests a strong propensity for satellite-drop form
tion in Stokes flow, as in other dynamical regimes. Pinch
always occurs asymmetrically, which is like calculatio
with internal inertia but no external drag13,15,16 and unlike
calculations without either internal inertia or external drag14

To a very good approximation, the shape on either side
the pinching region is conical@Fig. 3~B!# and the minimum
radiushmin decreases linearly with time@Fig. 3~C!#, which is
in agreement with the scaling predictionsh;z;t given ear-
lier. The axial strain is concentrated in the pinching regi

i-

FIG. 2. Initial ~dashed! and final~solid! shapes from three simulations~a!–
~c!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2761Phys. Fluids, Vol. 10, No. 11, November 1998 J. R. Lister and H. A. Stone
@Fig. 3~D!# and, whereas the predictionv;1 suggests the
velocity scale should be constant, the maximum axial vel
ity increases steadily.

In order to get a better understanding of the behavio
the point of breakup is approached, we define rescaled v
ables

H5h/hmin and z5~z2zhmin!/hmin , ~7!

wherezhmin is the axial location of the minimum radiushmin .
Rescaling all lengths withhmin in this way allows a better
test of self-similarity than rescaling witht since the latter
requires estimation of the origin oft. Figure 4 shows profiles
of various rescaled variables for shapes spanning the six
cades 1023.hmin.1029 from the three simulations. There
very good collapse of the profiles ofH(z) @Fig. 4~A!#, the
axial curvatureH9(z)/@11H82#3/2 @Fig. 4~B!#, and the axial
strain ratev8(z) @Fig. 4~C!#, where primes denote]/]z.

FIG. 3. Evolution with time of simulation~a!. ~A! The early global evolu-
tion of the shape;~B! enlargement showing the local double-cone structu
~C! the minimum radius versus time remaining to breakup;~D! the local
axial velocity.

FIG. 4. Local shapes and velocity fields rescaled withhmin according toH
5h/hmin and z5(z2zhmin /hmin over the approximate range 1023.hmin

.1029. Graphs~A! and ~B! show three profiles from each of the thre
simulations; graphs~C! and~D! show five profiles from simulation~c!. The
collapse of the data is very good, suggesting self-similarity, except fov.
~A! H(z); ~B! H9/@11H82#3/2; ~C! v8; and ~D! v.
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These results suggest that the evolution is indeed s
similar. The axial velocityv @Fig. 4~D!#, however, increases
steadily ashmin decreases.

A plot of a characteristic axial velocity~Fig. 5!, such as
the valuevhmin at the minimum radiushmin(z50) or the value
of the maximumvmax nearz51.4, shows that the increas
in velocity is very well described by the log-linear form
v520.0243 lnhmin1const, where the constant depends
which point of the profile is chosen and which simulation
considered. We argue below that the logarithmically incre
ing component of the flow is induced by that part of t
interface in 1!uzu!hmin

21 ~or hmin!uz2zhminu!1! and show
that the coefficient 0.0243 can be predicted from a doub
cone approximation for the shapes on either side of
pinching region. For the moment, we note that deformat
of the interface can only be produced by strain and not b
uniform velocity. Thus the primary effect of the logarithm
cally increasing velocity component in the pinching region
simply to advect it without deformation, while the local d
formation is achieved by the self-similar strain field@Fig.
4~C!#.

Further tests of self-similarity in the pinching regio
were made by considering the variation~Fig. 6! with hmin(t)
of variables such asdhmin /dt, the maximum value ofH8 on
the shallow side~which occurs nearz528!, and the axial
curvature at the minimumH9(0). All were found to be as-
ymptotically constant ashmin(t)→0, thus confirming self-
similarity. The convergence in these tests was found to
significantly improved by subtracting the maximum axial v
locity from the velocity at every grid-point, updating the in
terface with the normal component of the residual, and th
translating every grid-point by a distance corresponding
the subtracted maximum velocity. The effect of this proc
dure is to use a suitably translating reference frame in wh
numerical errors associated with the large axial advection
eliminated in the pinching region and shifted to the dista
parts of the drop.

Finally, we observe that the asymptotic shape of the d
in 1!uzu!hmin

21 is conical as predicted by the scaling theor
and that the asymptotic slopes are found numerically to
0.103 and 4.8, corresponding to angles 5.9° and 78.2°.

;

FIG. 5. A plot of vhmin andvmax againsthmin shows a linear increase with
ln hmin for each simulation shown in Fig. 2~simulation a: solid; b: long-
dashed; c: short-dashed!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2762 Phys. Fluids, Vol. 10, No. 11, November 1998 J. R. Lister and H. A. Stone
interesting to contrast these angles with the cone an
formed by capillary pinching of an inviscid drop, which we
found numerically to be 18.1° and 112.8°.16

V. DISCUSSION OF AXIAL VELOCITY

The numerical results presented above show that
near-pinching solution for Stokes flow is self-similar wi
scalings h;z;t. A significant difference from the self
similar behavior found in other dynamical regimes is th
there is a large locally uniform axial velocity, increasing li
early with lnhmin , superposed on and dominating the loc
strain field in the pinching region. We have seen that t
does not prevent self-similarity in an appropriately rapid
translating reference frame. It remains, however, to interp
the large axial velocity.

The assumption of a local similarity solution is based
the separation between the length scale of the pinching
gion l t5gt/m ~note hmin;lt! and the macroscopic lengt
scale l 0 as t→0. The flow can be divided into the curve
neck of the pinching regionz5O( l t), an intermediate region
l t!uzu! l 0 in which the interface is asymptotically conica
and the macroscopic far fieldz5O( l 0). ~For simplicity, we
choose axes withzhmin50 here.! The velocity field in the
pinching region is an integral of the interfacial curvatu
over contributions from all three regions as expressed in~5!,
and it is instructive to consider the role of the three con
butions.

The contribution from curvature in the far field is a v
locity with an O( l 0) scale of variation, which looks like a
uniform and constant velocity of translation on the sh
length scale and time scale of the pinching region and t
plays no role in the pinching dynamics. This additive co
stant probably accounts for the small, consistent differe
between the axial velocities in different simulations whi
have a different macroscopic shape~Fig. 5!. The contribution
to the velocity from the curvature in the pinching regio

FIG. 6. Convergence towards self-similarity ashmin→0 is revealed by:
dhmin /dt, the maximumH8 on the shallow side, and the axial curvature
the minimumH9(0).
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itself, where capillary stresses areO(g/ l t) on a length scale
l t , is O(g/m) with a length scale of variationO( l t). A
purely local solution would have pinching dynamics go
erned solely by interfacial motion in this region. Howeve
the contribution from the conical intermediate region
driven by a capillary stress proportional tog/z. Thus either
direct estimation or calculation of separable solutions
Stokes flow in a cone shows that the shear rate is pro
tional to g/(mz) and hence that this contribution to the v
locity is O@(g/m)ln(l0 /lt)#.

A simple calculation confirms that the contribution
the intermediate region is responsible for the linear incre
~Fig. 5! of the axial velocity in the pinching region with
ln hmin . A perfect cone of half anglea has normal
n5(2cosa, sina), curvaturek51/(r tana), and surface
elementdS52pr sina dr, where r is the radial distance
from the apex. If the cone has extent 0,r ,R then~5! with
m51 gives an axial velocity

v~0,z!5
g

4m
sin a cosaE

0

R ~r 223 cosarz12z2!dr

~r 222 cosarz1z2!3/2 .

~8!

As z/R→0, this integral~which can be done analytically i
desired! is dominated by anO@ ln(R/z)# contribution fromz
!r !R. The dominant contribution from a perfect doub
cone with slopestL5tanaL and tR5tanaR is found to be

v~z,0!;
g

4m S tR

tR
211

2
tL

tL
211D lnS R

uzu D1const asz/R→0.

~9!

Thus the conical regions pull in opposite directions with t
side with the angle closest to 45°~tana51! wining the tug-
of-war. Taking tL50.103 andtR54.8 from the numerical
solutions, we findv;0.024 ln(R/uzu)1const, which is in good
agreement with the observedv;20.0243 ln(hmin)1const if
we make the obvious identificationR5 l 0 and z5hmin}lt .
The effects of the flow induced by the intermediate reg
are confined to simple advection of the pinching regi
since, as with the flow driven by the far field, the length sc
of the strain driven by the intermediate region is mu
greater thanl t .

VI. CONCLUSIONS

The most important conclusion is that including the e
fects of viscosity in the outer fluid modifies the asympto
structure of capillary breakup near the singularity: exter
shear stresses become comparable to the internal extens
stresses and the capillary driving, and inertia becomes ne
gible. The aspect ratio of the pinching region is roughly co
stant with time, rather than asymptotically small, and hen
this regime is best described by the Stokes equations in
fluids and the full expression for the curvature, rather than
a long-wavelength approximation. In the limitm@mext the
aspect ratio is predicted by scaling arguments to
O(mext/m)1/2, but still constant.

It should be noted that, while two-fluid Stokes flow
the theoretical asymptotic regime close to the singular
some pairs of common experimental fluids, such as wa
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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pinching in air, will reach molecular scales before this
gime. The transitions from other dynamical regimes are su
marized in Fig. 1 and the transition scales readily derived
comparison of~1!–~4!.

Numerical solutions of the Stokes equations withm
5mext show that: the minimum radius and the axial scale
the pinching region are asymptotically proportional to t
time remaining to breakup; the shape on either side of
pinching region is asymptotically conical with one side ste
~'78°! and the other shallow~'6°!; the shape and strain rat
in the pinching region are self-similar when scaled by
time-dependent minimum radius. These results are in ag
ment with simple scaling theory. The similarity solution
embedded in a logarithmically large flow induced by t
conical regions intermediate between the scale of the m
mum radius and the macroscopic scale of the drop.

We believe similar results to the above will hold in th
case of unequal viscosities, though we have not yet stu
this owing to the cost of solving~5! with mÞ1. We investi-
gated a simple long-wavelength model for the limitm
@mext in which the external fluid is represented by a loc
linear drag term~Appendix!, but concluded that the approx
mations made did not capture the essential dynamics.
probably best to deal with the case of unequal viscosities
directly solving the integral equation for the similari
shapes in the pinching region, after taking due account of
logarithmically infinite contribution to the velocity from th
far field.
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APPENDIX: A SIMPLE SLENDER-BODY ANALYSIS

The scaling in~4! shows that in the limitmext!m(m
!1) the axial length scale must be much greater than
radial length scale if the internal and external visco
stresses are to be comparable. This observation suggest
a long-wavelength approximation might be appropriate
m→0, which would have the advantage not only of simp
fying the problem to a one-dimensional model but also
tablishing a connection to one-dimensional studies of pin
ing in the absence of external viscosity~e.g., Refs. 13–15!.

In the long-wavelength limit, the internal velocityv is
nearly uniform across the thread’s cross section and the
ternal viscous stress is dominated by axial extension;
external viscous stresses are analogous to those that
when a cylinder is dragged along its length in a viscous fl
~cf. the ‘‘sliding-rod’’ regime of Ref. 23!. These ideas sug
gest a simple one-dimensional model

~h2! t1~h2v !z50, ~A1!

3m

h2 ~h2vz!z2bmext

v
h2 5gS 1

h
2hzzD

z

, ~A2!

where the external drag term reflects a local velocity diff
encev between the thread and ambient stationary fluid o
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a radial length scaleh andb is a dimensionless coefficien
In the context of slender-body theory21,22 this drag term can
be derived rigorously by asymptotic expansion of~5! as m
→0 ~e.g., Ref. 23! andb identified as 2/uln eu, wheree is the
ratio of the radial and axial dimensions of a translating fin
slender body. In the present context, we might hope t
settinge equal to the expected ratio of radial and axial sca
would lead to a useful heuristic model.

Equations~A1! and~A2! can be made dimensionless b
rescaling axial distances by an arbitrary length scalel, radial
distances bye l , and axial velocities byg/em, where
e2u ln eu5m!1. Equation~A1! is unaltered, while~A2! be-
comes

3~h2vz!z52v1h2S 1

h
2e2hzzD

z

. ~A3!

Though thehzz term is asymptotically smaller ine than the
other terms, it is sometimes retained to stabilize the slen
thread against secondary Rayleigh instabilities with wa
lengths much less than the primary pinching length scale4,15

The slender-body partial differential equations~A1! and
~A3! are very similar to others which give local similarit
solutions by substitution of the obvious scalings and solut
of the resultant ordinary differential equations~ODEs!.13–15

Following the standard protocol, we would substitu
h(z,t)5tH(h), v(z,t)5V(h), and h5z/t into ~A1! and
~A3! to obtain

H8

H
5

22V8

2h12V
, V52H813~H2V8!8, ~A4!

where thehzz term is assumed here to be asymptotica
negligible. Analysis of these ODEs follows very closely th
in Ref. 15, but no solutions satisfying both the ‘‘forward
boundary condition ath51` or the ‘‘backward’’ boundary
condition ath52` were found. The lack of a simple simi
larity solution is in agreement with a lack of self-similarit
observed in numerical simulations of the full time-depend
problem ~A1! and ~A3!. These simulations do show asym
metric pinching, roughly linear scaling of dimensions witht,
and roughly conical regions on either side of the pinch,
would be expected from naive scaling. However, they dif
from our simulations of the Stokes equations in that the a
scale does not collapse withhmin ~cf. Fig. 4! and the increase
in the axial velocity is not linear with lnhmin ~cf. Fig. 5!; the
slopes of the near-cones also depend strongly on the valu
e.

We believe the reason for these differences is that
local linear drag term does not properly capture the nonlo
influence of the intermediate region, which we have sho
generates the large axial velocity in the pinching region.
the Stokes equations the intermediate region communic
with the pinching region by driving flows in both the amb
ent and pinching fluids~and hence advection!, whereas in
~A3! communication is by tension~and hence deformation!
in the thread and the ambient fluid is assumed implicitly
be at rest; exact double-cone solutions to~A3! have an alge-
braic rather than logarithmic dependence ofv on z. We note
that this difference cannot simply be rectified by making t
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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drag term proportional tov2v` with a constantv` . It is
possible that a nonlocal term, such as a one-dimensional
bert integral, might rectify the problem.
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