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Capillary breakup of a viscous thread surrounded by another viscous fluid
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Previous long-wavelength analyses of capillary breakup of a viscous fluid thread in a perfectly
inviscid environment show that the asymptotic self-similar regime immediately prior to breakup is
given by a balance between surface tension, inertia, and extensional viscous stresses in the thread.
In contrast, it is shown here that if viscosity in the external fluid, however small, is included then
the asymptotic balance is between surface tension and viscous stresses in the two fluids while inertia
is negligible. Scaling estimates for this new balance suggest that both axial and radial scales
decrease linearly with time to breakup, so that the aspect ratio rei@dhswith time but scales

with viscosity ratio like (win/tex) 22 FOr fin>text, Wherew, anduey are the internal and external
viscosities. Numerical solutions to the full Stokes equationgufg= ., confirm the scalings with

time and give self-similar behavior near pinching. However, the self-similar pinching region is
embedded in a logarithmically large axial advection driven by the increasing range of scales
intermediate between that of the pinching region and that of the macroscopic drop. The interfacial
shape in the intermediate region is conical with angles of about 6° on one side and 78° on the other.
© 1998 American Institute of Physids$1070-663198)01711-3

I. INTRODUCTION namically passive. Proceeding under this assumption, simi-
larity solutions have been found for the three cases in which
The capillary instability of a liquid thread is well-known the surface-tension-driven dynamics of the internal fluid is
and has many applications. Classical linear thépredicts  controlled by both viscosity and inertia, by viscosity alone,
instability to perturbations with wavelengths greater than theand by inertia alone(finite, zero, and infinite Reynolds
circumference of the thread. Subsequent nonlinear growth afumber$.23-1® Among these solutions, it is asymptotically
the instability is observed experimentally to lead to disinte-inconsistent to neglect either inertia or viscosity as the
gration of the thread into droplets, often with the productionbreakup singularity is approached, which is thus predicted to
of many small satellite droplets by secondary instabilities orbe governed by an inertial-viscous-capillary balafite.
the fluid filaments left between the primary drgesg., Refs. The goal of this paper is to reanalyze capillary breakup
2—4). A desire to predict the details of satellite-drop forma- including the viscous resistance exerted by the external fluid
tion for industrial processes such as ink-jet printing has moen the motion of the thread. We find that, however small the
tivated many studies of the spatial and temporal developmergxternal viscosity, as the breakup singularity is approached
of capillary instabilities on a jet or thredd.g. Refs. 5-Bby  the external viscous shear stresses associated with axial mo-
use of experimental, numerical, and weakly nonlinear techtion of the thread become comparable to the internal viscous
niques. A wide-ranging review is given by Eggérs. stresses associated with extension of the thread. The external
Recently, however, the focus of attention has switchediiscous “brake” slows the flow down and modifies the so-
from the initial development of the instability to the behavior lution so that the governing asymptotic balance is now be-
of the flow in the vicinity of the topological singularity when tween capillary forces and viscous stresses in the two fluids,
the thread breaks in two. This switch is due partly to thewhile the inertial forces are negligible. Since all experiments
realization that the final stages of pinching affect the subserequire an external fluid, it follows that the “Eggers”
quent recoil and satellite-drop formation, and partly to a genregimé? is only transitory and will give way to this new
eral interest in the formation, structure, and scaling behavioviscously dominated regime sufficiently close to the singu-
of singularities in nonlinear systemg.g., Refs. 10-12 larity.
Close to the breaking point, the length scales and time scales The paper is organized as follows. In the next section we
of motion are orders of magnitude less than those in the fanse scaling arguments to show why inertia becomes negli-
field, which suggests that it is possible to perform a localgible when external viscosity is taken into consideration.
analysis of the Navier—Stokes equations near the breakingimilar arguments are used to predict power-law scalings for
point and seek a self-similar solution for the evolution to-the axial, radial, and velocity scales as functions of the time
wards(and aftey the singularity. remaining to breakup. Sections Ill and IV describe numerical
Since many applications involve liquid threads breakingcalculations of capillary breakup for the case in which the
up in air, it is usually assumed that the external fluid is dy-internal and external fluids are in Stokes flow and are of
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equal viscosity. The calculations confirm the simple scaling®igenvalue of the resulting similarity equatiofi€® Since
of Sec. Il and give self-similar evolution, but also show thatRe~Rey(7/t5)?#~* and the maximum value ¢8 is 0.175, the
the axial velocity in the pinching region increases logarith-neglect of inertia is invalid as—0. An inertial-capillary
mically as the time to the singularity decreases. This result ibalanceyd(h ™)/ 9z~ pov/dt (Re>1) with v ~z/ 7 also ap-
surprising since the locally driven flow is estimatedd), pears at first sight to leave an exponghto be determined
and this stands in contrast to the previous analyses withodtom the similarity equation$’ However, numerical solu-
external viscosity in which the velocity can be estimated bytions of breakup in potential flot® show that the Laplacian
local scalings. The explanation for the increase of the axiabperator imposek~z, which gives similarity solutions with
velocity in terms of flow driven by conical intermediate re- the scalings
gions on either side of the pinch is described in Sec. V and a 2\ 13 13
summary of our findings is given in Sec. VI. In the Appendix h~z~(7—7) , v~(l) _ 3)
we outline a simple one-dimensional long-wavelength model pT
of breakup for the case when the external fluid is much less.. ) . . . .
viscous tr?an the internal. Such localized Iong—wavelengtt%mcehwz’ the _far-ﬁeld sha_pe IS predlgted to t.)e conical, in
greement with numerical solutio®s. Since Re

models have been valuable in previous studies, but th("fzl 73 - SRR .
. . ~ /1, the neglect of viscosity is invalid as—0.
simple model outlined here seems to lack the proper cou- (py*7) S . )

Imp Uil prop u Considerations thus far suggest it is the final scal-

pling between local and nonlocal effects to reproduce the . . . .
dynamics seen in Secs. Il and IV. ing prior to breakup. However, axial motion of the breaking

thread drives a flow in the surrounding fluid, the vorticity of
which can diffuse a distance of ordem {7/ pex) *'> from the
Il. SCALING ARGUMENTS thread, which, a~ 7 from (1), corresponds to many thread

Consider the dynamics of an axisymmetric fluid threadradii as 7—0. Hence the external fluid responds as a vis-
of radiush(z,t), viscosity, densityp, and surface tensiop cously dominated flow outside an axially sliding cylinder
in a surrounding fluid Of ViSCOSitysey, and densitypey. and.exerts a shear stress of_orﬁigmv/&r on thezthreazd o,
Neglecting the influence of the external fluigkd,=0), eqqulently, makes a contrlbutloin of ordgt,d u/_ar to
Eggers® argued that the flow in the neighborhood of andthe axial momentum balance. Using-h a”d_(s}gv this con-
immediately prior to breakup is described by a long-{tribution is found to be proportional ta>* as 7—0,
wavelength approximation to the Navier—Stokes equations if/hereas the caelglgry, inertial, and internal viscous terms are
which the axial velocity (z,t) is uniform across the thread Proportional tor™ =< It follows that, unlesgue=0, the ne-
and the dynamics is given by a balance between the axidllect of the external fluid eventually becomes invalid and the
gradient of the capillary pressure, the axial acceleration, anflow makes a transition to a new dynamical balataesum-
the internal viscous resistance to extension of the thread. 19, Of course, that molecular dimensions are not reached
we combine the dynamic balanceg(h™)/az~pavlat  firs).

~ 1d2v1872 with the kinematic estimate~z/7, wherer is When the external viscous drag is reintroduced, the scal-
the time remaining to a breakup z& 0, then we obtain the ings for the new balance can most simply be obtained from
scalings ya(h™ Y9z~ uovl 92°~ peyd®vldr?, together with v
; ; ~2z/ 7, which gives
il 3T
z~l,| — ~l,| = v~—|—
w ' mt ) ' ¥T ¥T Y
Ly Ly poty z~——, h~—, v~—p—, 4

which are the basis of the similarity solutions found in Refs. mw K mw

13 and 15. Herd ,=u®/(yp) andt,=u’/(y’p)=ul,/y  wherem= ueq/p. Sincez~h asr—0, a similarity solution
are the natural fluid-dependent length scale and time scale gor breakup based on these scalings would be expected to
which the similarity solutions are valid. In this regime the have the properties that the quasisteady regions on either side
Reynolds number Repvz/u is O(1). of localized rapid pinching would be asymptotically conical,
We note that for watet,~10"® m andt,~10"'°s,  h~mY%, and that characteristic velocities in the pinching
whereas for syrup,~10 m andt,~10% s, which suggests region, such as the maximum velocity, would be constant.
that breakup on laboratorgmillimeter) scales will have a A number of further points should be noted. First, since
significant inertially dominated or viscously dominated tran-we have been assuming implicitly in our scalings that the
sient. Indeed, if the length scale of the initial condition&yis axial length scale and velocity scale close to breakup are
then the initial dynamical response can be characterized byither comparable to or much greater than the radial scales,
the magnitude of a Reynolds number Revo/u’=lo/l,  (4) is only appropriate ifu is comparable to or much greater
(the inverse of the Ohnesorge numbek viscous-capillary  than u.,; the breakup of an inviscid bubble in a viscous
balanceyd(h™")/dz~ uo*vl 92> (Rey=<1), together withv  environment may require separate analysis. Second, gince

~2/7, gives and h have the same time dependence, use of a long-
\ B r y [ 7\F 1 Wa_velength(slender-bod)/ approximation in the A_ppendlx
z~lg ol h~1q ol v\ (2 relies onm<<1 or e << p rather than on asymptotic behav-
0 0 M\ lo

ior in time. Third, the Reynolds number based @, Re
where the choice ofl; as length scale is arbitrart, ~ﬂ(tMml’2), is proportional tor confirming that the inertial
=ulo/y, and the exponens is determined as a nonlinear terms are asymptotically small.
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FIG. 1. The scalings and temporal transitions between the various dynami-
cal regimes for capillary breakupn= pe,/n. The transition from the
inertial-viscous thread to the two-fluid Stokes flow occurs when
~mY2u?l(yp), h~mu?/(yp), and7~mu?/(y?p).

It is possible for capillary breakup to pass through aFIG. 2. Initial (dashed and final(solid) shapes from three simulatiofa)—

number of these different dynamical regimes as the scales é?)

the pinching region and velocity evolve. The transition from

(1) to (4) occurs where~m*4 ,, h~ml,,, andr~mt,,; for

some common pairs of fluids, such as water pinching in airformed analytically, and to equal viscositiesi€ 1) so that

this transition is on molecular scales and beyond the appliu is obtained directly as an integral of the curvature rather
cability of continuum mechanics. Depending on the relativethan as the solution of an integral equation. Equat®rcan
sizes of the initial Reynolds number Repyly/u? and the  then readily be solved using a boundary-element method, the
viscosity ratiom, it is also possible for a flow to make a details of which are very similar to those described in Ref.
transition directly from(2) to (4) without passing through the 20. The evolution of an initial “dog-bone” shape is followed
intermediate scalingl). The possible transitions are summa- by calculating the interfacial velocity from a discretized ver-
rized in Fig. 1. The transition scales between regimes can bsion of (5), moving marker points distributed along the in-
determined by the crossovers between Efjsand(4) and  terface with the local normal component of velocity, and
used to interpret the dynamical regime corresponding to patthen repeating the procedure. Marker points were added and

ticular experimental observations. redistributed along the interface in such a way as to maintain
a smoothly varying spacing proportional to the local curva-
Ill. STOKES FLOW SIMULATIONS ture in order to resolve the details of flow near the highly

The scalings of the previous section show that thepqr_ved pinching region. In the calculations reportgd here, the
asymptotic dynamical balance for capillary breakup is vis-mItIaI shapes_were_ represen_te_d by abogt 200 points and the
cously dominated both inside and outside the pinchinimal shapes, in which the minimum radius had decreased to
thread. Motivated by this, we present calculations for the oughly 10~ were represented by ab.out 400.0 points, mo st
capillary-driven breakup of a fluid drop in which both the of them concentrated near the pinching region. Eac.h. time
drop and its environment are in Stokes flow. Similar calcyStep was .chosen to be gbout 0'.5% of the current minimum
lations are underway by Loewenberg and co-work&rs. radius divided by the radlal yelomty at Fhe minimum, $o that

Let the drop surfac&(t) have outward normah and each decaQe of reduction in the minimum radius required
curvaturex so that the flow is driven by a capillary jump in a_bout 500 time steps. Test _calculat|ons_ with doub_le the den-
stressyxn acrossS We make all velocities dimensionless sity of marker points and with half the time step yielded the

with respect to the scalg/u and choose an arbitrary length same results as those given below.
scale(e.g., the initial radius of the drgpio scale all lengths.

The dimensionless internal viscosity is then 1 and the exter-

nal viscositym. The velocity for pointx e S(t) has the exact |v. RESULTS

boundary-integral representatfSn
The initial and final shapes from three simulations are

1 - .

= (1+m)u(xg) +(m— 1)j n-K-u ds, showr_1 in Flg. 2_ anql a number of aspects of the_ evol_uppn of

2 yeS(t) one simulation in Fig. 3. In each simulation, regions initially
with a single minimum radius develop two pinching minima,

= _J xn-J ds,, (5)  which suggests a strong propensity for satellite-drop forma-
yes() tion in Stokes flow, as in other dynamical regimes. Pinching
where always occurs asymmetrically, which is like calculations
1w 3 with internal inertia but no external draty>*®and unlike
JN=o— |-+, KI)=———%, r=x-y, calculations without either internal inertia or external dag.
8m|[r r 4m 1 To a very good approximation, the shape on either side of
©®  the pinching region is conicdFig. 3(B)] and the minimum
anddsS; is the scalar element of area &(t) aty. radiush,,,;, decreases linearly with tim&ig. 3(C)], which is

For simplicity, we restrict our attention to axisymmetric in agreement with the scaling predictioms-z~ r given ear-
configurations so that the azimuthal integral can be perlier. The axial strain is concentrated in the pinching region

Downloaded 20 Jun 2003 to 140.247.59.174. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 10, No. 11, November 1998

0.015

0.010

0.6

J. R. Lister and H. A. Stone

2761

05F >

0.005 , 0.4 4
0.000 L 0.3 i
2.450 2475 2.500 2.525 )
1 T T T 0.3
C 0.2 .
107+ 1
hmm . 0.2
107 - 1Y 0.1 E
1076 | 0.1
5| ] 0.0 0.0 ! L I I t L L L
10 107 10°% 107 10¢ 10° 10* 10® 107 107 1

015 . _
10 2450 2475 2500 2.525 i

FIG. 5. A plot of vy,in @ndv ax @gainsth,,;, shows a linear increase with
FIG. 3. Evolution with time of simulatiorta). (A) The early global evolu- | hmin for each simulation shown in Fig. Gimulation a: solid; b: long-
tion of the shape(B) enlargement showing the local double-cone structure; gashed; c: short-dashed
(C) the minimum radius versus time remaining to break(p) the local
axial velocity.

These results suggest that the evolution is indeed self-
similar. The axial velocitw [Fig. 4D)], however, increases
[Fig. 3(D)] and, whereas the predictian~1 suggests the steadily ash,,, decreases.
velocity scale should be constant, the maximum axial veloc- A plot of a characteristic axial velocit§Fig. 5), such as
ity increases steadily. the valuev i at the minimum radiuf,i,({=0) or the value
In order to get a better understanding of the behavior agf the maximumo ., near {=1.4, shows that the increase
the point of breakup is approached, we define rescaled varin velocity is very well described by the log-linear form

ables v=-0.0243 Ih,,,+const, where the constant depends on
which point of the profile is chosen and which simulation is
H=h/hpin and {=(z2— Zpmin)/ i, () considered. We argue below that the logarithmically increas-

ing component of the flow is induced by that part of the
interface in i<|¢|<h .} (or hyin<|z—Zuminl<1) and show
e X oy d that the coefficient 0.0243 can be predicted from a double-
test of self-similarity than rescaling with since the latter qne approximation for the shapes on either side of the
requires estimation of the origin af Figure 4 shows profiles pinching region. For the moment, we note that deformation
of various rescaled variables for shape.s spanning the si>$ A&t the interface can only be produced by strain and not by a
cades 10°>hy,>10"° from the three simulations. There is niform velocity. Thus the primary effect of the logarithmi-
very good collapse of the pzro;‘/l;es 6f(¢) [Fig. 4A)], the a1y increasing velocity component in the pinching region is
axial curvatureH”({)/[1+H'“]"* [Fig. 4B)], and the axial  gimply to advect it without deformation, while the local de-
strain ratev’(¢) [Fig. 4C)], where primes denot®/dl.  formation is achieved by the self-similar strain fidlig.
4(C)].

Further tests of self-similarity in the pinching region
were made by considering the variati@fig. 6) with hp,;,(t)
of variables such adh,;,/dt, the maximum value oH’ on
the shallow sidgwhich occurs neat=—8), and the axial
curvature at the minimurk”(0). All were found to be as-
ymptotically constant a$,,(t)—0, thus confirming self-
similarity. The convergence in these tests was found to be
significantly improved by subtracting the maximum axial ve-
locity from the velocity at every grid-point, updating the in-
terface with the normal component of the residual, and then
translating every grid-point by a distance corresponding to
the subtracted maximum velocity. The effect of this proce-
dure is to use a suitably translating reference frame in which
numerical errors associated with the large axial advection are
eliminated in the pinching region and shifted to the distant
parts of the drop.

Finally, we observe that the asymptotic shape of the drop
in 1<|¢|<h is conical as predicted by the scaling theory,
and that the asymptotic slopes are found numerically to be
0.103 and 4.8, corresponding to angles 5.9° and 78.2°. It is

wherez,n is the axial location of the minimum radils,;, .
Rescaling all lengths witln,,;, in this way allows a better

—0.06 I . 0.1 1 L
-10 -5 0 C 5 10 -10 -5 0 C 5 10

FIG. 4. Local shapes and velocity fields rescaled witf}, according toH
=h/hyin and {=(z— Zymin/Nmin OVer the approximate range 19>h,
>10"°. Graphs(A) and (B) show three profiles from each of the three
simulations; graph§C) and (D) show five profiles from simulatiofc). The
collapse of the data is very good, suggesting self-similarity, except .for
(A)H(D); (B) H"/[1+H"?]¥ (C) v'; and (D) v.
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-0.0335 ; . . : itself, where capillary stresses &% y/l ;) on a length scale
%min I, is O(y/u) with a length scale of variatio®(l,). A
~0.0340 |- ] purely local solution would have pinching dynamics gov-
erned solely by interfacial motion in this region. However,
_0.0345 . . . ‘ . the contribution from the conical intermediate region is
0.108 : : : ‘ , driven by a capillary stress proportional $dz. Thus either
direct estimation or calculation of separable solutions for
0.107 | 4 . .
H Stokes flow in a cone shows that the shear rate is propor-
0.106 ' § tional to y/(xz) and hence that this contribution to the ve-
locity is O[ (/) In(lg/1)].
0.105 . . . . .
0,099 . A simple calculation confirms that the contribution of
0.098 ' | the intermediate region is responsible for the linear increase
0007 _ (Fig. 5 of the axial velocity in the pinching region with
H'(0)
0.096 - . Inh,,. A perfect cone of half anglee has normal
0.095 - n=(—cosa, Sina), curvaturex=1/(r tana), and surface
0094 e o7 g o 02 o elementdS=2xr sinadr, wherer is the radial distance

P from the apex. If the cone has extenk@<R then(5) with

C . m=1 gives an axial velocity
FIG. 6. Convergence towards self-similarity hg;,—0 is revealed by:
dhy,i/dt, the maximumH’ on the shallow side, and the axial curvature at fR (r2_ 3cosarz+ 222)dl’

ot Yo
the minimumH"(0). v(0,2)= m Sin o COS 2)3/2 .
“ 0

(r’—2cosarz+z
8

interesting to contrast these angles with the cone angleAs z/R— 0, this integral(which can be done analytically if

formed by capillary pinching of an inviscid drop, which were desired is dominated by ar®[In(R/z)] contribution fromz

found numerically to be 18.1° and 112%°. <r<R. The dominant contribution from a perfect double
cone with slopes; =tan¢ andtg=tanag is found to be
V. DISCUSSION OF AXIAL VELOCITY Y tr t R
v(z0O)~— | In| =7 | + const asz/R—0.
The numerical results presented above show that the du (tg+l t{+1) 717

near-pinching solution for Stokes flow is self-similar with ©)
scalingsh~z~ 7. A significant difference from the self- Thus the conical regions pull in opposite directions with the
similar behavior found in other dynamical regimes is thatside with the angle closest to 4&ana=1) wining the tug-
there is a large locally uniform axial velocity, increasing lin- of-war. Takingt, =0.103 andtg=4.8 from the numerical
early with Inhy;,, superposed on and dominating the localsolutions, we find) ~0.024 InR/|z])+const, which is in good
strain field in the pinching region. We have seen that thisagreement with the observed~ —0.0243 Infy,,) +const if
does not prevent self-similarity in an appropriately rapidlywe make the obvious identificatioR=1, and z=h;,*I,.
translating reference frame. It remains, however, to interpreThe effects of the flow induced by the intermediate region
the large axial velocity. are confined to simple advection of the pinching region
The assumption of a local similarity solution is based onsince, as with the flow driven by the far field, the length scale
the separation between the length scale of the pinching resf the strain driven by the intermediate region is much
gion | ,.=vy7/u (note hy,,~l,) and the macroscopic length greater thar .
scalely as 0. The flow can be divided into the curved
neck of the pinching regiorn=O(l ), an intermediate region
| .<|z|<l, in which the interface is asymptotically conical,
and the macroscopic far field=O(l). (For simplicity, we The most important conclusion is that including the ef-
choose axes witlz,,,;»=0 here) The velocity field in the fects of viscosity in the outer fluid modifies the asymptotic
pinching region is an integral of the interfacial curvaturestructure of capillary breakup near the singularity: external
over contributions from all three regions as expresse@)in  shear stresses become comparable to the internal extensional
and it is instructive to consider the role of the three contri-stresses and the capillary driving, and inertia becomes negli-
butions. gible. The aspect ratio of the pinching region is roughly con-
The contribution from curvature in the far field is a ve- stant with time, rather than asymptotically small, and hence
locity with an O(l,) scale of variation, which looks like a this regime is best described by the Stokes equations in both
uniform and constant velocity of translation on the shortfluids and the full expression for the curvature, rather than by
length scale and time scale of the pinching region and thua long-wavelength approximation. In the limit> u,; the
plays no role in the pinching dynamics. This additive con-aspect ratio is predicted by scaling arguments to be
stant probably accounts for the small, consistent differenc®(uey/x)? but still constant.
between the axial velocities in different simulations which It should be noted that, while two-fluid Stokes flow is
have a different macroscopic shapdg. 5. The contribution the theoretical asymptotic regime close to the singularity,
to the velocity from the curvature in the pinching region some pairs of common experimental fluids, such as water

VI. CONCLUSIONS
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pinching in air, will reach molecular scales before this re-a radial length scalé and 8 is a dimensionless coefficient.
gime. The transitions from other dynamical regimes are sumin the context of slender-body thedhf?this drag term can
marized in Fig. 1 and the transition scales readily derived bye derived rigorously by asymptotic expansion(5f asm
comparison of1)—(4). —0 (e.g., Ref. 23and g identified as 2In €, wheree is the
Numerical solutions of the Stokes equations wjh ratio of the radial and axial dimensions of a translating finite
= uext Show that: the minimum radius and the axial scale ofslender body. In the present context, we might hope that
the pinching region are asymptotically proportional to thesettinge equal to the expected ratio of radial and axial scales
time remaining to breakup; the shape on either side of thevould lead to a useful heuristic model.
pinching region is asymptotically conical with one side steep  Equations(Al) and(A2) can be made dimensionless by
(=78° and the other shallo\~6°); the shape and strain rate rescaling axial distances by an arbitrary length statadial
in the pinching region are self-similar when scaled by thedistances byel, and axial velocities byy/eu, where
time-dependent minimum radius. These results are in agree?|In =m<1. Equation(Al) is unaltered, while(A2) be-
ment with simple scaling theory. The similarity solution is comes
embedded in a logarithmically large flow induced by the
conical re_zg|ons intermediate bet_ween the scale of the mini- 3(h2vz)z= 20+ h2
mum radius and the macroscopic scale of the drop.
We believe similar results to the above will hold in the

case of unequal viscosities, though we have not yet studie§?0ugh theh,, term is asymptotically smaller ie than the
this owing to the cost of solvings) with m# 1. We investi- other terms, it is sometimes retained to stabilize the slender

gated a simple long-wavelength model for the limit ;[hrea;i agair;}s: seccr)]ndarﬁ/ Ra_yleigh i_nstha}bilitlies V\r/]ithébgave—
> ey iN Which the external fluid is represented by a local engths much less than the primary pinching length scdie.

linear drag term(Appendix, but concluded that the approxi- The slender.-bc_)dy partial dlffergntlal gquaﬂc(nﬁsl? a}nd.
mations made did not capture the essential dynamics. It i¢*3) are very similar to others which give local similarity
probably best to deal with the case of unequal viscosities bj°utions by substitution of the obvious scalings andlg_ollsutlon
directly solving the integral equation for the similarity of the _resultant ordinary differential equatiof@DES. .
shapes in the pinching region, after taking due account of thE°!lowing the standard protocol, we would substitute
logarithmically infinite contribution to the velocity from the "z =7H(7), v(z)=V(7), and n=2/7 into (A1) and

1 2
H—E hzz . (A3)
z

far field. (A3) to obtain
H,——Z_V, V=2H'+3(H2V")’ A4
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APPENDIX: A SIMPLE SLENDER-BODY ANALYSIS condition aty=—oc were found. The lack of a simple simi-
The scaling in(4) shows that in the limitu<u(m  larity solution is in agreement with a lack of self-similarity
<1) the axial length scale must be much greater than thebserved in numerical simulations of the full time-dependent
radial length scale if the internal and external viscousproblem(Al) and(A3). These simulations do show asym-
stresses are to be comparable. This observation suggests thagtric pinching, roughly linear scaling of dimensions with
a long-wavelength approximation might be appropriate a€ind roughly conical regions on either side of the pinch, as
m— 0, which would have the advantage not only of simpli- would be expected from naive scaling. However, they differ
fying the problem to a one-dimensional model but also esfrom our simulations of the Stokes equations in that the axial
tablishing a connection to one-dimensional studies of pinchscale does not collapse wilh,;, (cf. Fig. 4 and the increase
ing in the absence of external viscosi.g., Refs. 13—-15 in the axial velocity is not linear with Ihy,, (cf. Fig. 5); the
In the long-wavelength limit, the internal velocityis  slopes of the near-cones also depend strongly on the value of
nearly uniform across the thread’s cross section and the ire.
ternal viscous stress is dominated by axial extension; the We believe the reason for these differences is that the
external viscous stresses are analogous to those that ariegal linear drag term does not properly capture the nonlocal
when a cylinder is dragged along its length in a viscous fluidnfluence of the intermediate region, which we have shown
(cf. the “sliding-rod” regime of Ref. 23 These ideas sug- generates the large axial velocity in the pinching region. In
gest a simple one-dimensional model the Stokes equations the intermediate region communicates
with the pinching region by driving flows in both the ambi-
(h%)i+(h?),=0, (A1) ent and pinching fluidgand hence advectipnwhereas in
3u v 1 (A3) communication is by tensiofand hence deformation
7z (2= Breaiz= 7(5— hzz) , (A2)  in the thread and the ambient fluid is assumed implicitly to
z be at rest; exact double-cone solutiongA8) have an alge-
where the external drag term reflects a local velocity differ-braic rather than logarithmic dependenceyaén z. We note
encev between the thread and ambient stationary fluid ovethat this difference cannot simply be rectified by making the
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