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Abstract

In this paper we deal with the polynomial evaluation based on new processer architectures for
multimedia applications. We introduce some algorithms to take advantage of the new attributes on
multimedia processors, such as VLIW and SIMD architectures. Algorithms to support the polyno-
mial evaluation based only in addition/shift operations and other different algorithms with MAC
instructions are analyzed and tailored to subword parallelism units of the new processors. Both po-
tential instruction-level and machine-level parallelism are fully ezploited through concurrent use of
all functional units.

1: Introduction

Polynomial evaluation is the basis on the computation of a wide variety of mathematical func-
tions. Digital Signal Processing uses this kind of functions in an intensive way. The inherent
parallelism of the audio and video applications encourages processor architecture modifications to
satisfy the increasing demand of multimedia applications. As a consequence, new techniques as
subword parallelism have been introduced on general purpose processors in the last few years. They
are based on the Single Instruction Multiple Data architecture (SIMD), and produces an extension
of the processor basic set of instructions commonly called Multimedia Extensions. The current trend
of the processor design is to promote multimedia capabilities by adding new multimedia instructions
(i.e, extension to floating point arithmetic), increasing the complexity of the elementary multimedia
operations (i.e, to make flexible the data movement), etc... The SIMD processor architecture has
also reached to most of the Digital Signal Processors (DSP) like the TMS320C64 family of Texas
Instrument[9].

On the other hand, architectures like Very Long Instruction Word (VLIW) or Explicit Parallel
Instruction Computing (EPIC) have emerged to exploit the instruction—level parallelism. The last
generation of Texas Instrument digital signal processors (the TMS320C6xxx family) [8] and the
Intel Ttanium Processor [3] (which includes multimedia extension) are some good examples of a
high performance processors based on VLIW and EPIC architecture respectively. The combination
of SIMD and VLIW architectures is found in the TMS320C64x family of Texas Instruments. To
obtain an optimal performance from these architectures is necessary to use a qualified compiler able
to extract parallel instructions from the source code.

QOur paper presents a way to take advantage of these modern architectures to perform the eval-
uation of polynomials. Most of the current processors have both one or more Multiply-and-Add
(MAC) units supporting DSP algorithms, and one or more units with addition/shift/logical ca-
pabilities. These units can work in parallel if the source code has enough parallelism and the
compiler is able to extract it. The main goal of this paper is to achieve that most of the units were
simultaneously working with the polynomial evaluations.
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project TIC2000-1658.



The paper has been structured as follows: Section 2 includes some notes about state-of-the-art
of the current processors with multimedia capability; Section 3 describes our algorithms to perform
polynomial evaluation based on subword parallelism units; and finally, we evaluate our approaches
and present the conclusions of this work.

2: Multimedia processors

In this section we give some notes about the current multimedia processors. We study the
evolution and remark some relevant issues for both the algorithms and architectures proposed in
the next section.

The first general-purpose microprocessor to include specific support for graphics was the Intel
i860(4] in 1989. It provides six instructions along with their pipelined versions. After that, Motorola
introduces on the 88110[14] (1991) a set of nine graphics instructions handling various data types
tailored to graphics and imaging. It works with 4, 8, 16 and 32 fixed point values. The Hewlett-
Packard’s PA-T100LC[7] (1993) introduced five instructions that operated on two 16-bit components
in parallel. The extension MAX-2 (Multimedia Acceleration eXtension) is implemented on HP
PA-RISC 2.0[11]. The Visual Instruction Set (VIS) is the multimedia extension described by Sun
Microsystems in 1994 and implemented in the UltraSparc I in 1995[12]. In 1996 Intel introduced the
MMX technology (Matrix Math eXtension)[17] on the Pentium processors. The MVI (Motion Video
Instructions) is the multimedia extension of the DEC Alpha processors[1]. For the Motorola Power
PC, the new instruction set is called AltiVec[15]. 3DNow![10] is the extension of the AMD to support
multimedia applications, and it is compatible with MMX. The basic idea behind the multimedia
extension is performing parallel computation of subwords by following a SIMD architecture.

The evolution of the multimedia extension of the processor leads to increase the number of
new multimedia instructions (including support for floating-point arithmetic) and to make a more
flexible data movement within the functional units that support subword parallelism (from this
point on, let us call subword parallelism units to this kind of functional units). An example of that
is the evolution of the MMX extension of Intel to SSE (Streaming SIMD Extension), and then
to SSE2 [5]. These last two extensions include 70 and 144 new instructions respectively. Most
of them are introduced to support floating point arithmetic. Other instructions like PSHUFW
allow movements among subwords. AltiVec has a very powerful instruction to perform subword
permutations: VPERM. Another trend that we can observe in bibliography is the increasing of the
length of registers supporting the SIMD operations: from 32 bits in the first generation processors
(i.e. extension MAX-1 of HP) to 128 bits for the last generations (i.e, AltiVec of Motorola and SSE
of Intel). Some authors call vector to these large registers, and we follow this convention in the rest
of the paper.

On the other hand, both EPIC and VLIW architectures have emerged to exploit the program
instruction-level of parallelism. For example, the TMS320C6000 processor family of Texas Instru-
ments are based on VLIW architecture with eight functional units, including two multipliers and
six arithmetic logic units [8]. The CPU can execute up to eight instructions per cycle and all the
instructions can operate conditionally. The newest member of this family, the 'C64x [9], supports
16-bits subword parallelism in all the functional units, and 8-bits subword parallelism in six units,
including both multipliers. In the Intel architecture IA-64, instructions come in groups of three,
called bundles [2]. Each 128 bits bundle contains three 40-bit fixed-format instructions and an 8-bit
template. This scheme, plus the existence of many registers, allows the compiler to both isolate
blocks of instructions, and to inform to the CPU which of them can be executed in parallel 1. The
predication technique allows the instructions to operate conditionally. Furthermore, Intel adds the
aforementioned SSE2 extension to their last generation processor (Itanium).



3: Polynomial evaluation on SIMD & VLIW architectures

In this section we describe different algorithms to perform the complete evaluation of a polynomial
based on MAC units or addition/shift units. The first algorithm allows to implement the polynomial
evaluation using only addition/shift units and the second ome is only based on MAC units. In both
cases, the units must support subword parallelism (SIMD architecture).

3.1: Polynomial evaluation based on addition/shift units

In [13] a specific architecture to support polynomial evaluation based on shift and add operations
is presented. The authors propose a parallel algorithm for fixed—point signed—digit arithmetic based
on the Taylor’s series expansion of the polynomial function. In this section we adapt the algorithm
to the architecture of fixed—point subword parallelism units and non-redundant arithmetic. Let
« be the point where the polynomial is evaluated (—1 < & < 1). Assume that o; is binary digit
(o: = 0,1) of z at the weight 277, that is:

z=(-1)"+ io’iT’" (1)

=1
(finite precision of m fractional bits is considered). Assume that F is a degree-n polynomial:
F(z) = ap + a1x + apz® + ... + anz” (2)

and let us denote F,Ei) the value of the i** derivative of F' at point x, where z; = (=1)% +
Ele o,27". From Taylor's expansion of the derivatives of F' we deduce:
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To reduce the number of variable shifters involved in the previous expression we define PM
Fl
2"“‘—"— as referred to [13]. Therefore:

N
Pl = E"* 2 J_}E,TPJEH} (4)

Notice that Pm) = F(U) and the polynomial to be evaluated (F(z)) corresponds to the value
of FYY). Expression (4) defines several recurrences that allow to obtain P,E ) from the values of
Pm} 1-"(IJ P("} P(l) from the values of P ”,Pf}, ...,P,E“], etc. Furthermore, the computation
of Pﬂ_’l, ,Ei}l ... can be performed in parallel. We transform these expressions in such a way that
they are carried out following a SIMD programming model.

The current vector length used in subword parallelism units is up to 128 bits. Without any

loss of generality we describe the processing of a degree-4 polynomial based on 128-bit units. The
recurrence based on expression (4) for this system is
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All these equations can be performed in parallel. Moreover, they are simultaneously carried out
based on functional units with subword parallelism capability. At first, for m-bit precision, m
iterations are required. Let us study the o1 = 0 and o441 = 1 values separately:



® 0341 = 0. In this case, the equations (5) become:

P(ﬂll =4 PS’]
P,é_]l = %p{U
P = 1PY (6)
P?gi = 1P3]
R,
Py = wh

The only operations involved in these equations are shifts. It is possible to perform these
operations in one cycle if we use a subword parallelism unit which is able to manage a different
shifting amount on each subword.
If two or more consecutive digits "0 are found in the value of z, it is possible to save iterations
by only performing one parallel shift instruction. The number of consecutive digit "0” must
be taken into account to select the suitable shift on each subword for a unique parallel shift
instruction (i.e. for two consecutive digit "0” (ok41 = opy2 = 0) the equations (6) become
Pyﬁ’z 5 P.t(u)-P!fijz = }Ptman-)z = %Pk(nlpi(:-,z = 11_5P£3}-P£11= = %PP} which is performed
by only one instruction).

® 0541 = 1. Now equations (5) involve shift, addition and multiplication operations. To avoid
the multiplication by 3 of some terms of the second and third equations we decompose this
factor in a sum of two terms which only involve shifts. Hence, we can rewrite these equations

as follows:
Pé;’: = PO + 1AM 4+ 3PP 4 %P,g" + &PY
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Now, only addition and shift operations are required. Notice that the maximum number of
additions per equation is not increased from equations (5) to (7), which means that worst case
time is not modified.

To carry out equations (5) on a 128-bit subword parallelism unit we consider subword of 16 bits.
Therefore, 8 subwords are contained on each vector. Figure 1 shows the data flow and the operations
required. At the beginning of each iteration vector A supports the values of Pim, P,E”, P,EQJ,PP’,PP’
distributed as shown. The first operation to be performed is a variable shift of every subword (step
1). If a sequence of consecutive digit "0” is found before the digit ox = 1, the number of bits to be
shifted must be increased by 1 for every 0 of the sequence. In this way, the step 1 of figure 1 also
includes the successive computations of equations (6) corresponding to each preceding digit "0”.

Steps 2 to 4 on figure 1 require some parallel additions and permutations of the data contained
on each subword. The different datapaths have been selected in such a way that the different terms
of equations (7) are calculated and kept inside the same 128-bit vector A. Therefore, after three
additions we have computed equations (7) and one iteration will be completed.

Since the computation of consecutive digit "0 are included in the first step of the computation
of the next digit "1”, the total number of iterations coincides with the number of digit "1” of z.
Consequently, if we consider the same number of ”1’s” and "0's” on z, then the mean number of
iterations is reduced by a half.

The operation involved on each step of the proposed algorithm can not be carried out in a single
parallel instruction on current processors, in spite of keeping the SIMD programming schedule. The
operation implied in the step 1 requires that the number of bits to be shifted in every subword
was different. The addition and data movement of steps 2 to 4 require several parallel instructions
since data movement plus addition is not directly supported. Nevertheless, the data movement
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Figure 1. Data flow for degree—4 polynomial

flexibility of some of the current multimedia extension like AltiVec (i.e. VPERM instruction) makes
feasible that the next generation of multimedia extension of the general and digital signal processors
can support the aforementioned operations in an unique parallel instruction (one step, one parallel
instruction).

If we want to make a complete parallel control over the algorithm, an additional unit must be
able to perform the detection of the next ”1” of z jointly with the execution of the algorithm. In
this way, the number of bits to be shifted on the next iteration is calculated and it is ready to be
used at the beginning of the following iteration. This can be easily accomplished by both the VLIW
or EPIC architectures, which allow the execution of several instructions in parallel. On the other



hand, the predication of instructions of the current processors generation help to reduce, or even to
eliminate, the overhead involved in the iterative nature of the proposed algorithm.

3.2: Polynomial evaluation based on MAC units

A second well-known approach to evaluate polynomials is the Estrin’s algorithm[16]. It allows to
compute a polynomial based on parallel multiplications and accumulations. This approach has been
used to make hardwired polynomial evaluation, as referred to [6]. In this subsection we analyze the
application of this algorithm to processors containing subword parallelism MAC units.

Without any loss of generality we describe the Estrin’s algorithm to compute a degree-7 polyno-
mial (F(z) = ag + a1z + ...+ ayz") and present two implementation alternatives based on a 128 bits
subword parallelism MAC unit. Figure 2 shows the three steps of the Estrin’s algorithm for this
case. As we can observe, for the first step four parallel MAC operations plus an extra multiplication
are needed to compute z?. On the step-2, only two MAC operations and an extra multiplication
are involved. And finally, only a single MAC operation is required for the last step of the algorithm.
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Figure 2. Estrin’s algorithm for degree—7 polynomial

Now we describe two alternatives for implementing this algorithm: the first one allows us to
keep full precision in the intermediate results, and the second one permits the evaluation of higher
degrees polynomials.

3.2.1: The full precision alternative

The first alternative can be used when a full precision of the result is desired. In this case, the
size of the result after each MAC operation is doubled and it must be kept for the next step. For
128&-bits vectors, this can be carried out if the initial data are 16 bits precision (that is, variable =
and coefficients ¢;) and it is embedded into a 32 bits subword. This is emphasized in Figure 3 by
shading the right half of the subword. Also, this figure shows the data flow for this alternative. We
use three 128-bits vectors to carry out every step of the Estrin’s algorithm. The first step of figure
2 is implemented with one parallel-MAC instruction (four 32 bits subwords). After this operation,
the four 32 bits results are moved and expanded onto two new 128 bits vectors, as shown in figure
3. The second step of the algorithm works on 64 bits subword and the last step works over the full
vector length. On the other hand, the computation of X () = £ can be performed in a separate
unit and copied to a 128 bit vector before the starting of the second step. A similar solution is
required for the X7 calculation.

To carry out the full precision alternative several instructions are required. The parallel-MAC
instruction of AltiVec extension support three operand as input, just like required by the proposed
design. The movement and expansion of the intermediate results (i.e. from 32 bits to 64 bits) can



Figure 3. Data flow for degree—7 polynomial (full precision).

be easily accomplished by instructions like VPERM of AltiVec extension or UNPACK of MMX
extension. On the other hand, to obtain X} and X/} several options are possible depending on
the complete processor architecture. The best option is to compute these values in a scalar unit in
parallel with the subword parallelism unit, in such a way that the required values were ready before
the next step. For a degree—7 polynomial this implies that scalar units will support operands with
a 32-bits precision, and produce 64-bits results. In an Explicit Parallelism or VLIW architecture
this can be performed in parallel under user control. In a superscalar processor, it is likely but not
certain. In the worst case, the computation of X and XD can be performed sequentially, but
it supposes an important overhead.

3.2.2: High polynomial degree

The second alternative allows the use of a higher polynomial degree, but the full precision of
intermediate results are not maintained. Figure 4 show the data flow for the first step of the
Estrin’s algorithm. The coefficients ag, a1, ...,a7 and variable z are distributed on three vectors as
shown in figure 4. After the first parallel- MAC instruction, the four results are properly moved to



vectors A and B, while vector C is loaded with two copies of X (I}, Notice that the two most left
subwords of vector A and B are empty since they are not needed for the next iteration. Now, we
are ready to perform the second step, where the data flow is the same than the first step (the result
of the subword not involved in this step is ignored). After the third step, the final result is located
at the most-right subword of vector D. Notice that the precision of the initial data can be up to 32
bits, but after the intermediate multiplication only 32 bits of the result are produced. It is usually
enough for most of the digital signal processing applications. In other cases, some guard bits must
be considered. To carry out this alternative an iterative program can be designed. Each iteration
requires a parallel-MAC instruction and a scalar multiplication, similarly to the first alternative.
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Figure 4. Data flow for degree-7 polynomial (iterative)

For the general case, we can choose the appropriate alternative depending on both the polynomial
degree, the required precision and the architectural attributes of the executing processor. If the
number of steps is large, the second alternative seems to be more convenient. However, if full
precision is required and the number of steps is short, the first solution may be a good choice.

Let us return to the general case. Assume that F' is a degree-n polynomial. The number of
steps required to compute the Estrin’s algorithm is given by [log; n] + 1. The total computation
time for the algorithm depends on this parameter and also on the latency of the parallel MAC
operation. The first two columns of Table 1 show the relationship between the polynomial degree
and the number of steps of the algorithm. We show the results from degree-2 to 64 polynomials.
The number of subwords required for the first step of the algorithm fixes the vector length of the
system for the required precision for the data (subword length). This number is given by [ 3] + 1.
Table 1 also shows the number of subwords needed for the first step and the vector length to keep
subword precision of 16 and 32 bits. The parameters of the degree-7 polynomial used in the example
of figure 4 has been remarked.

Num. subwords | Vector length
Polynomial degree | Num. steps (first step) subword
16 bits | 32 bits

23 2 2 32 64

4-7 3 3-4 64 128

815 4 5-8 128 256

16-31 5 9-16 256 512
32-64 6 17-32 512 1024

Table 1. Relationship between polynomial degree and precision

Other solution is given by the implementation of the Horner’s scheme [16]. For example, for



degree—T polynomial we compute F'(z) = (((((a7x+as)z +as5)x +a4)z + az)z +az)a; +zo. This can
be accomplished by using a subword parallelism MAC unit where each subword supports a different
polynomial evaluation. The handicap is the large latency of the resulting system. This is due to
the fact that the MAC operation involves several cycles and is not possible to take advantage of the
potential pipeline architecture,

4: Evaluation and conclusions

In this paper we have presented two different alternatives for polynomial evaluation based on the
multimedia extensions of current processors. The solution based on subword parallelism MAC units
is faster than the one based on shift and addition for most of the cases. Nevertheless, if the number of
digit "1” of variable  is low, the shift and addition based alternative may be better. In applications
where polynomial evaluation is intensively used, both alternatives work in parallel, and the efficiency
of the system is notoriously increased. If the polynomial degree is high, the MAC alternative seems
more appropriate. Another possibility for this case is to combine both techniques in a pipeline way.
To do this, we reduce the initial polynomial degree to 4 by using the Estrin’s algorithm and the
proposed MAC based solution, and then we evaluate the resulting degree-4 polynomial by using our
addition/shift solution.

The development of the current processors leads to exploit the instruction-level and data-level
(subword) parallelism. For example, the TMS320C64x processors family has a subword parallelism
in his eight functional units. It also includes two MAC units, two variable shift-supported units and
two arithmetic operations-supported units which makes feasible the application of both techniques
simultaneously. The maximum efficiency is achieved when all the units are working in parallel.
Nevertheless, the flexibility of other multimedia extensions like AltiVec is not achieved by this DSP.
The next generation of processors (general purpose and DSP) may combine the parallel capability
of the VLIW processor and the flexibility of some of the current multimedia extension. In this case,
the algorithms proposed in this paper are simultaneously applied to maximize the efficiency of the
system when intensive polynomial evaluation is required.
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