
1

How a processor can permute
n bits in O(1) cycles

Ruby Lee,
Zhijie Shi, Xiao Yang

Princeton Architecture Lab for Multimedia and Security(PALMS)
Department of Electrical Engineering

Princeton University

IEEE Hot Chips 14, August 2002

Motivation

• Secure information processing increases in
importance in interconnected world

• Word-oriented microprocessors today can handle
cryptography algorithms well, except for:
– Bit-level permutations
– Multi-word arithmetic

• The larger architectural question:
– Can a word-oriented processor handle

complex bit-level operations within the word
efficiently?

2

Today - microprocessor or ASIC

• Logic Operations
– MASK-Gen/AND/SHIFT/OR → 4n instructions
– EXTRACT/DEPOSIT → 2n instructions

• Table lookup
– small set of fixed permutations only
– 8x2KB tables, about 32 instructions for 64 bits permutation

• Subword permutation instructions for multimedia
– Works on 8-bit or larger subwords

• ASIC
– permutation very fast in hardware, BUT
– small set of fixed permutations only

Goal: add new Permutation
Functional Unit to Processor

Source to be permuted

Register

File Permutation
FUConfiguration

bits

Intermediate result

n

ALU Shifter

n

n

Achieve any one of n! permutations in log(n) instructions

3

Initial Problem Definition

• Efficient bit permutation instructions for arbitrary
permutations of n bits
– Focus on n = 32 or 64 (word sizes)
– Standard instruction format and datapaths

• 2 reads, 1 write per instruction
• No extra state (to save and restore)
• Single cycle, simple hardware

– in log(n) instructions - optimal
• Number of different n-bit permutation = n!

• nlog(n) bits needed to specify an arbitrary permutation

)0()log()!log(>≈ nnnn

Outline

• Permute n bits: from O(n) to O(log(n))
instructions
– ISA definitions
– Chip/Circuit Implementations
– Performance, Cycletime, Versatility

• Permute n bits: from O(log(n)) to O(1) cycles
• Conclusion

4

Alternative permutation methods

• to reduce O(n) to O(log n) instructions for
achieving any one of n! permutations

• Partitioning
– GRP

• Building “virtual” interconnection networks
– CROSS (log(n) types of stages)
– OMFLIP (2 types of stages)

• Select source bit by its numeric index
– PPERM
– SWPERM and SIEVE

8-bit GRP operation

a b c d e f g h

1 0 0 1 1 0 1 0

b c f h a d e g

Data Rs

Control Rc

Result Rd

0 7

GRP Rs, Rc, Rd

5

GRP64 Implementation

output

64 data bits and 64 control bits

64 data bits and 64 inverted
control bits in reverse order

1:

3:2 bit → 4 bits

2:1 bit → 2 bits

5:16 bit → 32 bits

6:32 bit → 64 bits

64 OR gates

Chip with Permutation Unit (GRP)

6

8-bit CROSS instruction
 building a virtual Benes Network

• perform any 2 butterfly
stages in one instruction

• Performs any n-bit
permutation with 2log(n)
stages

• log(n) different types of
stages

• Scalable for subword
permutation

• Shortest latency

Butterfly
network

Inverse
butterfly
network

input

output

8-bit OMFLIP
 building a virtual Omega-Flip Network

• perform 2 omega or flip
stages in one instruction

• Performs any n-bit
permutation with 2log(n)
stages

• Only 2 different types of
stages

• Scalable for subword
permutation

• Smallest area for a
permutation unit

Omega
network

Flip
network

input

output

7

• To implement any 2 combinations of
Omega or Flip stages, it is enough
to implement a circuit with only 4
stages, 2 omega stages, 2 flip
stages

• This allows 00, FF, OF and FO
combinations

• Other circuit organizations also
possible, e.g., O-F-O-F, F-O-F-O and
F-O-O-F

An OMFLIP Implementation

bypassing connections

64 bits

64 permuted bits

flip
stage

omega
stage

flip
stage

omega
stage

Chip with Permutation Unit
(OMFLIP)

8

Comparison

log(n/k)log(n/k)Θ(n)Θ(n/k)

Subword
permutation,
n/k elements,

each k-bit

log(n)log(n)Θ(n)Θ(n)
Bit permutation,

n elements,
each 1-bit

OMFLIP
or

CROSS
GRPTable

lookup
Current

ISA

Maximum Number of Instructions
Required for Any Permutation

Speedup of DES

1 1

2
.2

4

1
.1

7

2
.1

4

1
.1

2

0

0.5

1

1.5

2

2.5

cache 1 cache 2

Table Look-Up
GRP
OMFLIP or CROSS

Cache 1: one-level cache, 16KB (50 cycles miss penalty).

Cache 2: two-level cache, L1: 16KB (10 cycles miss penalty),
 L2: 256KB (50 cycles)

For key generation,
speedup is 11x-16X !

9

Speedup for sorting 64 elements
using GRP instruction

Subword size 4 bits 8 bits 16 bits

vs. Bubble sort 408.3 128.9 43.7

vs. Selection sort 272.7 86.1 29.2

vs. Quick sort 94.4 29.8 10.1

Demonstrates versatility of GRP instructions
for sorting as well as permutations.

How to execute log(n) instructions
in O(1) cycles?

Instruction sequence to
permute 64 bits:

OMFLIP,oo R1,R2,R10
OMFLIP,oo R10,R3,R10
OMFLIP,oo R10,R4,R10
OMFLIP,ff R10,R5,R10
OMFLIP,ff R10,R6,R10
OMFLIP,ff R10,R7,R10
...

• RISC ISA constraint of
instructions with only 2
operands

• n-bit permutation needs
1+log(n) operands

• Supplying these operands
results in register data
dependencies

• But 7 operands could be
supplied in 4 RISC
instructions rather than
6?

10

Leverage microarchitecture features
in 2-way superscalar processors

Original instruction
sequence to permute 64
bits:

OMFLIP,oo R1,R2,R10
OMFLIP,oo R10,R3,R10
OMFLIP,oo R10,R4,R10
OMFLIP,ff R10,R5,R10
OMFLIP,ff R10,R6,R10
OMFLIP,ff R10,R7,R10

• Enable “Data-rich”
functional units utilizing
existing parallel register
ports and data buses

• Replace 6 instructions with
4 (ISA or microarchitecture)

OMFLIP,oo R1,R2,R10
OMcont R4,R3,R10
OMFLIP,ff R10,R5,R10
OMcont R7,R6,R10

7-port register file

2-way Superscalar with a
(4,2) Data-rich Functional Unit

from memory

ALU1

(4,2)- FU

ALU2

11

Two (4,1) functional units, each log(n) stages
(Butterfly is faster than Omega-flip)

64 permuted bits

Butterfly stages

Inverse
butterfly

stages

n=64
bits

64 permuted bits

n=64
bits

6 types of
stages

Butterfly
network (BFLY)

Inverse butterfly
network (IBFLY)

2log(n)=12 stages

Performing any permutation of n bits
with 2 cycles latency, 1 cycle thruput

• Consider n=64 bits
• Implement 2 permutation functional units, each with

log(n) stages
– e.g., 6-stage Butterfly network,

 6-stage InverseButterfly network
• Use Data-rich (4,1) functional unit leveraging datapaths

of 2-way superscalar microarchitecture
– Replace former log(n)=6 instructions by 4 instructions

via ISA or microarchitecture
• Execute these 4 instructions, two at a time

– 2 cycles latency but 1 cycle thruput
• Can achieve any one of n! permutations at the rate of

one per cycle
– different permutation possible every cycle

12

Conclusions

• Very fast, easily implementable, general-purpose
permutation instructions for any processor
– Radical speedup: from O(n) to O(log n) instructions
– Latest result: down to O(1) cycles !!
– Can achieve any one of n! permutations at the rate of

one per cycle
• Important applications: accelerates both secure

and multimedia information processing
– single-bit and multi-bit subword permutations
– big speedup in current algorithms, e.g., DES
– opens field for faster, “more secure” new algorithms
– versatile, multi-purpose primitives, e.g., for sorting

• Validates basic word-orientation of processors
even for complex bit operations within a word

