
A Framework for Balancing Control Flow and Predication

David I. August Wen-mei W. Hwu Scott A. Mahlke

Center for Reliable and High-Performance Computing Hewlett-Packard Laboratories
University of Illinois Hewlett-Packard

Urbana-Champaign, IL 61801 Palo Alto, CA 94304
Email: faugust, hwug@crhc.uiuc.edu Email: mahlke@hpl.hp.com

Abstract
Predicated execution is a promising architectural feature for

exploiting instruction-level parallelism in the presence of control
flow. Compiling for predicated execution involves converting pro-
gram control flow into conditional, or predicated, instructions.
This process is known as if-conversion. In order to effectively
apply if-conversion, one must address two major issues: what
should be if-converted and when the if-conversion should be
applied. A compiler's use of predication as a representation is
most effective when large amounts of code are if-converted and
if-conversion is performed early in the compilation procedure.
On the other hand, the final code generated for a processor
with predicated execution requires a delicate balance between
control flow and predication to achieve efficient execution. The
appropriate balance is tightly coupled with scheduling decisions
and detailed processor characteristics. This paper presents an
effective compilation framework that allows the compiler to
maximize the benefits of predication as a compiler representation
while delaying the final balancing of control flow and predication
to schedule time.

1 Introduction
The performance of modern processors is becoming highly

dependent on the ability to execute multiple instructions per cy-
cle. In order to realize their performance potential, these proces-
sors demand that increasing levels of instruction-level parallelism
(ILP) be exposed in programs. One of the major challenges to in-
creasing the available ILP is overcoming the limitations imposed
by branch instructions.

ILP is limited by branches for several reasons. First, branches
impose control dependences which often sequentialize the exe-
cution of surrounding instructions. Second, the uncertainty of
branch outcomes forces compiler and hardware schedulers to
make conservative decisions. Branch prediction along with spec-
ulative execution is generally employed to overcome these limi-
tations [1][2]. However, branch misprediction takes away a sig-
nificant portion of the potential performance gain. Third, tradi-
tional techniques only facilitate exploiting ILP along a single tra-
jectory of control. The ability to concurrently execute instructions
from multiple trajectories offers the potential to increase ILP by
large amounts. Finally, branches often interfere with or compli-
cate aggressive compiler transformations, such as optimization
and scheduling.

Predication is a model in which instruction execution condi-
tions are not solely determined by branches. This characteristic
allows predication to form the basis for many techniques which
deal with branches effectively in both the compilation and execu-
tion of codes. It provides benefits in a compiler as a representa-
tion and in ILP processors as an architectural feature.

The predicated representationis a compilerN -address pro-
gram representation in which each instruction is guarded by a
boolean source operand whose value determines whether the in-
struction is executed or nullified. This guarding boolean source
operand is referred to as thepredicate. The values of predi-
cate registers can be manipulated by a predefined set of predicate
defining instructions. The use of predicates to guard instruction
execution can reduce or even completely eliminate the need for
branch control dependences. When all instructions that are con-
trol dependent on a branch are predicated using the same con-
dition as the branch, that branch can legally be removed. The
process of replacing branches with appropriate predicate compu-
tations and guards is known asif-conversion[3][4].

The predicated representation provides an efficient and use-
ful model for compiler optimization and scheduling. Through
the removal of branches, code can be transformed to contain few,
if any, control dependences. Complex control flow transforma-
tions can instead be performed in the predication domain as tra-
ditional straight-line code optimizations. In the same way, the
predicated representation allows scheduling among branches to
be performed in a domain without control dependences. The re-
moval of these control dependences increases scheduling scope
and affords new freedom to the scheduler [5].

Predicated executionis an architectural model which sup-
ports direct execution of the predicated representation [6][7][8].
With respect to a conventional instruction set architecture, the
new features are an additional boolean source operand guard-
ing each instruction and a set of compare instructions used to
compute predicates. Predicated execution benefits directly from
the advantages of compilation using the predicated representa-
tion. In addition, the removal of branches yields performance
benefits in the executed code, the most notable of which is the
removal of branch misprediction penalties. In particular, the re-
moval of frequently mispredicted branches yields large perfor-
mance gains [9][10][11]. Predicated execution also provides an
efficient mechanism for a compiler to overlap the execution of
multiple control paths on the hardware. In this manner, processor



performance may be increased by exploiting ILP across multiple
program paths. Another, more subtle, benefit of predicated ex-
ecution is that it allows height reduction along a single program
path [12].

Supporting predicated execution introduces two compilation
issues: what should be if-converted and when in the compilation
procedure if-conversion should be applied. The first question to
address is what should be if-converted or, more specifically, what
branches should be removed via if-conversion. Traditionally, full
if-conversion has led to positive results for compiling numerical
applications [13]. However, for non-numeric applications, selec-
tive if-conversion is essential to achieve performance gains [14].
If-conversion works by removing branches and combining multi-
ple paths of control into a single path of conditional instructions.
However, when two paths are overlapped, the resultant path can
exhibit increased constraints over those of the original paths. One
important constraint is resources. Paths which are combined to-
gether must share processor resources. The compiler has the re-
sponsibility of managing the available resources when making
if-conversion decisions so that an appropriate stopping point may
be identified. Further if-conversion will only result in an increase
in execution time for all the paths involved. As will be discussed
in the next section, the problem of deciding what to if-convert
is complicated by many factors, only one of which is resource
consumption.

The second question that must be addressed is when to apply
if-conversion in the compilation procedure. At the broadest level,
if-conversion may be applied early in the backend compilation
procedure or delayed to occur in conjunction with scheduling.
Applying if-conversion early enables the full use of the predicate
representation by the compiler to facilitate ILP optimizations and
scheduling. In addition, complex control flow transformations
may be recast in the data dependence domain to make them prac-
tical and profitable. Examples of such transformations include
branch reordering, control height reduction [12], and branch com-
bining [15]. On the other hand, delaying if-conversion to as late
as possible makes answering the first question much more practi-
cal. Since many of the if-conversion decisions are tightly coupled
to the scheduler and its knowledge of the processor characteris-
tics, applying if-conversion at schedule time is the most natural
choice. Also, applying if-conversion during scheduling alleviates
the need to make the entire compiler backend cognizant of a pred-
icated representation.

An effective compiler strategy for predicated execution must
address the “what” and “when” questions of if-conversion. The
purpose of this paper is to present a flexible framework for if-
conversion in ILP compilers. The framework enables the com-
piler to extract the full benefits of the predicate representation by
applying aggressive if-conversion early in the compilation pro-
cedure. A novel mechanism calledpartial reverse if-conversion
then operates at schedule time to facilitate balancing the amount
of control flow and predication present in the generated code,
based on the characteristics of the target processor.

The remainder of this paper is organized as follows. Sec-
tion 2 details the compilation issues and challenges associated
with compiling for predicated execution. Section 3 introduces
our proposed compilation framework that facilitates taking full

advantage of the predicate representation as well as achieving an
efficient balance between branching and predication in the final
code. The essential component in this framework, partial reverse
if-conversion, is described in detail in Section 4. The effective-
ness of this framework in the context of our prototype compiler
for ILP processors is presented in Section 5. Finally, the paper
concludes in Section 6.

2 Compilation Challenges
Effective use of predicated execution provides a difficult chal-

lenge for ILP compilers. Predication offers the potential for large
performance gains when it is efficiently utilized. However, an im-
balance of predication and control flow in the generated code can
lead to dramatic performance losses. The baseline compilation
support for predicated execution assumed in this paper is the hy-
perblock framework. Hyperblocks and the issues associated with
forming quality hyperblocks are first summarized in this section.
The remainder of this section focuses on an approach of forming
hyperblocks early in the compilation procedure using heuristics.
This technique is useful because it exposes the predicate represen-
tation throughout the backend optimization and scheduling pro-
cess. However, this approach has several inherent weaknesses.
Solving these weaknesses is the motivation for the framework
presented in this paper.

2.1 Background
Thehyperblockis a structure created to facilitate optimization

and scheduling for predicated architectures [14]. A hyperblock is
a set of predicated basic blocks in which control may only enter
from the top, but may exit from one or more locations. Hyper-
blocks are formed by applying tail duplication and if-conversion
over a set of carefully selected paths. Inclusion of a path into
a hyperblock is done by considering its profitability. The prof-
itability is determined by four pieces of information: resource
utilization, dependence height, hazard presence, and execution
frequency. One can gain insights into effective hyperblock for-
mation heuristics by understanding how each characteristic can
lead to performance loss.

The most common cause of poor hyperblock formation is ex-
cessive resource consumption. The resources required by over-
lapping the execution of multiple paths are the union of the re-
sources required for each individual path. Consider if-converting
a simple if-then-else statement. The resultant resource consump-
tion for the hyperblock will be the combination of the resources
required to separately execute the “then” and “else” paths. If
each path alone consumes almost all of the processor resources,
the resultant hyperblock would require substantially more re-
sources than the processor has available. As a result, hyperblock
formation results in a significant slowdown for both paths. Of
course, these calculations do not account for the benefits gained
by if-conversion. The important point is that resource over-
subscription has the potential to negate all benefits of hyperblock
formation or even degrade performance.

Poor hyperblocks may also be formed by not carefully con-
sidering the dependence height of if-conversion. A hyperblock
which contains multiple paths will not complete until all of its
constituent paths have completed. Therefore, the overall height
of the hyperblock is the maximum of all the original paths' de-



pendence heights. Consider the if-conversion of a simple if-then-
else statement with the “then” path having a height of two and
the “else” path having a height of four. The height of the resul-
tant hyperblock is the maximum of both paths, four. As a result,
the “then” path is potentially slowed down by two times. The
compiler must weigh this negative against the potential positive
effects of if-conversion to determine whether this hyperblock is
profitable to form.

Another way poor hyperblocks may be formed is through
the inclusion of a path with a hazard. A hazard is any instruc-
tion or set of instructions which hinders efficient optimization or
scheduling of control paths other than its own. Two of the most
common hazards are subroutine calls with unknown side effects
and store instructions which have little or no alias information.
Hazards degrade performance because they force the compiler to
make conservative decisions in order to ensure correctness. For
this reason, inclusion of a control path with a hazard into a hyper-
block generally reduces the compiler's effectiveness for the entire
hyperblock, not just for the path containing the hazard.

Execution frequency is used as a measure of a path's impor-
tance and also provides insight into branch behavior. This infor-
mation is used to weigh the trade-offs made in combining exe-
cution paths. For example, it may be wise to penalize an infre-
quently executing path by combining it with a longer frequently
executing path and removing the branch joining the two.

2.2 Pitfalls of Hyperblock Selection
The original approach used in the IMPACT compiler to sup-

port predicated execution is to form hyperblocks using heuristics
based on the four metrics described in the previous section. Hy-
perblocks are formed early in the backend compilation procedure
to expose the predicate representation throughout all the back-
end compilation phases. Heuristic hyperblock formation has been
shown to perform well for relatively regular machine models. In
these machines, balancing resource consumption, balancing de-
pendence height, and eliminating hazards are done effectively by
the carefully crafted heuristics. However, experience shows that
several serious problems exist that are difficult to solve with this
approach. Three such problems presented here are optimizations
that change code characteristics, unpredictable resource interfer-
ence, and partial path inclusion.

Optimization. The first problem occurs when code may be
transformed after hyperblock formation. In general, forming hy-
perblocks early facilitates optimization techniques that take ad-
vantage of the predicate representation. However, the hyperblock
formation decisions can change dramatically with compiler trans-
formations. This can convert a seemingly bad formation decision
into a good one. Likewise, it can convert a seemingly good for-
mation decision into a bad one.

Figure 1a shows a simple hammock to be considered for if-
conversion.1 The taken path has a dependence height of three cy-
cles and consumes three instruction slots after if-conversion has
removed instruction 5. The fall-through path consists of a depen-

1For all code examples presented in this section, a simple machine
model is used. The schedules are for a three issue processor with unit
latencies. Any resource limitations for the processor that are assumed are
specified with each example. These assumptions do not reflect the ma-
chine model or latencies used in the experimental evaluation (Section 5).

1

2

3

(8)

<p1>

(2,6) r2 = MEM[A]

r1 = r2 + 1

p1, p2 = Cond(1)

(4,11)

(3)

<p2>

r3 = MEM[C]

MEM[D] = r3(9)

(a)

(b)

(7) MEM[B] = r2 <p2> (10) <p2>

r9 = MEM[r1]

r1 = r3 + 2

(1) branch Cond

T F

(2)

(3)

(4)

r1 = MEM[A]

MEM[B] = r1

r1 = MEM[C]

MEM[D] = r1(5)

(6)

(7)

(8)

(9)

(10)

jump

r1 = r2 + 1

r2 = MEM[A]

r1 = r1 + 2

(11) r9 = MEM[r1]

r9 = MEM[r1]

Figure 1: Hyperblock formation of seemingly incompatible paths
with positive results due to code transformations. The T and F
annotations in (a) indicate the taken and fall-through path for the
conditional branch. r2 is not referenced outside the T block.

dence height of six cycles and a resource consumption of six in-
struction slots. A simple estimate indicates that combining these
paths would result in a penalty for the taken path of three cycles
due to the fall-through path's large dependence height. Figure 1b
shows this code segment after hyperblock formation and further
optimizations. The first optimization performed was renaming to
eliminate the false dependences7 ! 8 and8 ! 10. This re-
duced the dependence height of the hyperblock to three cycles.

If a heuristic could foresee that dependence height would no
longer be an issue, it may still choose not to form this hyperblock
due to resource considerations. An estimate of ten instructions
after if-conversion could be made by inspecting Figure 1a. Un-
fortunately, ten instructions needs at least four cycles to complete
on a three issue machine, which would still penalize the taken
path by one cycle, indicating that the combination of these paths
may not be beneficial. After an instruction merging optimization
in which instructions 2 and 6 were combined and 4 and 11 were
combined, the instruction count becomes eight. The final sched-
ule consists of only three cycles.

Figure 1 shows that even in simple cases a heuristic which
forms hyperblocks before some optimizations must anticipate the
effectiveness of those optimizations in order to form profitable
hyperblocks. In this example, some optimizations could poten-
tially be done before hyperblock formation, such as renaming.
However, others, like instruction merging, could not have been.
In addition, some optimizations may have been applied differ-
ently when performed before if-conversion, because the different
code characteristics will result in different trade-offs.

Resource Interference. A second problem with heuristic
hyperblock formation is that false conclusions regarding the re-
source compatibility of the candidate paths may often be reached.
As a result, paths which seem to be compatible for if-conversion
turn out to be incompatible. The problem arises because resource
usage estimation techniques, such as the simple ones used in this
section or even other more complex techniques, generally assume



(1) branch Cond

T F

(2)

(3)

(4)

(5)

(6)

r2 = MEM[B]

r1 = MEM[A] r5 = MEM[D]

r6 = MEM[E]

r3 = r1 + r2

jump

<p2>

r4 = r3 + 4

r7 = r5 - r6

r8 = r7 - 4(10)

(9)

(8)

(7)

(a)

1

2

(1) p1, p2 = Cond

3

4

5

6

(b)

(3) r2 = MEM[B] <p1>

(4) r3 = r1 + r2

(2) r1 = MEM[A]

(7) r5 = MEM[D]

(5) r4 = r3 + 4 r6 = MEM[E](8)

(9) r7 = r5 - r6

(10) r8 = r7 - 4

<p1>

<p1>

<p2>

<p2>

<p2>

Figure 2: Hyperblock formation of seemingly compatible paths
that results in performance loss due to resource incompatibility.

that resource usage is evenly distributed across the block. In prac-
tice, however, few paths exhibit uniform resource utilization. In-
teractions between dependence height and resource consumption
cause violations of the uniform utilization assumption. In gen-
eral, most paths can be subdivided into sections that are either
relatively parallel or relatively sequential. The parallel sections
demand a large number of resources, while the sequential sec-
tions require few resources. When two paths are combined, re-
source interference may occur when the parallel sections of the
paths overlap. For those sections, the demand for resources is
likely to be larger than the available resources, resulting in a per-
formance loss.

To illustrate this problem, consider the example in Figure 2.
The processor assumed for this example is again three issue, but
at most one memory instruction may be issued each cycle. The
original code segment, Figure 2a, consists of two paths with de-
pendence heights of three cycles. The resource consumption of
each path is also identical, four instructions. These paths are con-
cluded to be good candidates for if-conversion. Figure 2b shows
the hyperblock and its resulting schedule. Since there are no obvi-
ous resource shortages, one would expect the resultant schedule
for the hyperblock to be identical in length to the schedules of
each individual path, or four cycles. However, the hyperblock
schedule length turns out to be six cycles. This increase is due to
resource interference between the paths. Each path is parallel at
the start and sequential at the end. In addition, the parallel sec-
tions of both paths have a high demand for the memory resource.
With only one memory resource available, the paths are sequen-
tialized in parallel sections. Note that if the requirements for the
memory resource were uniformly distributed across both paths,
this problem would not exist as the individual schedule lengths
are four cycles and there are a total of four memory instructions.
However, due to the characteristics of these paths, resource inter-
ference results in a performance loss for both paths selected for
the hyperblock.

(1)

(3)

(4)

(5)

(2)

FT

r1 = MEM[A}

branch r1 > r10

r2 = MEM[B]

MEM[R] = r2

jump

r3 = MEM[C]

r4 = MEM[D]

r5 = MEM[E]

r6 = r3 + r4

r7 = r6 + r5

(c)

MEM[F] = r7(11)

(10)

(9)

(8)

(7)

(6)

(a)

1

2

3 <p1> <p2>

(6)(3)(1)

(4)

(7) (8)

(9)MEM[R] = r2

p1, p2 = r1 > r10

r1 = MEM[A]

jump

r5 = MEM[E]

r3 = MEM[C]r2 = MEM[B]

r4 = MEM[D]

r6 = r3 + r4 <p2>

(2’)

(2’’)

(10)

(11)

r7 = r6 + r5

MEM[F] = r7

1

2

(b)

Figure 3: An efficient hyperblock formed through the inclusion
of a partial path.

Partial Paths. The final problem with current heuristic hyper-
block formation is that paths may not be subdivided when they
are considered for inclusion in a hyperblock. In many cases, in-
cluding part of a path may be more beneficial than including or
excluding that entire path. Such an if-conversion is referred to as
partial if-conversion. Partial if-conversion is generally effective
when the resource consumption or dependence height of an entire
candidate path is too large to permit profitable if-conversion, but
there is a performance gain by overlapping a part of the candidate
path with the other paths selected for inclusion in the hyperblock.

To illustrate the effectiveness of partial if-conversion, consider
the example in Figure 3. The three issue processor assumed for
this example does not have any resource limitations other than the
issue width. Figure 3a shows two paths which are not compatible
due to mismatched dependence height. However, by including all
of the taken path and four instructions from the fall-through path,
an efficient hyperblock is created. This hyperblock is shown in
Figure 3b. Notice that branch instruction 2 has been split into
two instructions: the condition computation, labeled20, and a
branch based on that computation, labeled2

00. The schedule did
not benefit from the complete removal of branch instruction 2, as
the branch instruction200 has the same characteristics as the orig-
inal. However, the schedule did benefit from the partial overlap
of both paths. The destination of branch instruction2

00 contains
the code to complete the fall-through path is shown in Figure 3c.

In theory, hyperblock formation heuristics may be extended to
support partial paths. Since each path could be divided at any in-
struction in the path, the heuristics would have to consider many
more possible selection alternatives. However, the feasibility of
extending the selection heuristics to operate at the finer granular-
ity of instructions, rather than whole paths, is questionable due
the complex nature of the problem.



3 Proposed Compilation Framework
Compilation for predicated execution can be challenging as

described in Section 2. To create efficient code, a delicate bal-
ance between control flow and predication must be created. The
desired balance is highly dependent on final code characteristics
and the resource characteristics of the target processor. An effec-
tive compilation framework for predicated execution must pro-
vide a structure for making intelligent tradeoffs between control
flow and predication so the desired balance can be achieved.

Given the difficulties presented in Section 2.2 with forming
hyperblocks early in the backend compilation process, a seem-
ingly natural strategy is to perform if-conversion in conjunction
with instruction scheduling. This can be achieved by integrating
if-conversion within the scheduling process itself. A scheduler
not only accurately models the detailed resource constraints of
the processor but also understands the performance characteris-
tics of the code. Therefore, the scheduler is ideally suited to make
intelligent if-conversion decisions. In addition, all compiler opti-
mizations are usually complete when scheduling is reached, thus
the problem of the code changing after if-conversion does not ex-
ist.

However, a very serious problem associated with performing
if-conversion during scheduling time is the restriction on the com-
piler's use of the predicate representation to perform control flow
transformations and predicate specific optimizations. With the
schedule-time framework, the introduction of the predicate rep-
resentation is delayed until schedule time. As a result, all trans-
formations targeted to the predicate representation must either be
foregone or delayed. If these transformations are delayed, much
more complexity is added to a scheduler which must already con-
sider many issues including control speculation, data speculation,
and register pressure to achieve desirable code performance. Ad-
ditionally, delaying only some optimizations until schedule time
creates a phase ordering which can cause severe difficulties for
the compiler. Generally, most transforms have profound effects
on one another and must be repeatedly applied in turn to achieve
desirable results. For example, a transformation, such as control
height reduction [12], may subsequently expose a critical data
dependence edge that should be broken by expression reformu-
lation. However, until the control dependence height is reduced,
there is no profitability to breaking the data dependence edge, so
the compiler will not apply the transform. This is especially true
since expression reformulation has a cost in terms of added in-
structions. The net result of the schedule-time framework is a
restriction in the use of the predicate representation which limits
the effectiveness of back-end optimizations.

Given that if-conversion at schedule time limits the use of
the predicate representation for optimization and given that if-
conversion at an early stage is limited in its ability to estimate
the final code characteristics, it is logical to look to an alterna-
tive compilation framework. This paper proposes such a frame-
work. This framework overcomes limitations of other schemes
by utilizing two phases of predicated code manipulation to sup-
port predicated execution. Aggressive if-conversion is applied
in an early compilation phase to create the predicate representa-
tion and to allow flexible application of predicate optimizations
throughout the backend compilation procedure. Then at sched-

Classical Optimizations

Classical Optimizations

Predicate Specific Optimizations

ILP Optimizations

Register Allocataion

Postpass Scheduling

and Partial Reverse If-Conversion

Integrated Prepass Scheduling

Aggressive Hyperblock Formation

Figure 4: Phase ordering diagram for the compilation framework.

ule time, the compiler adjusts the final amount of predication to
efficiently match the target architecture. The compilation frame-
work, shown in Figure 4, consists of two phases of predicate ma-
nipulation surrounding classical, predicate specific, and ILP op-
timizations. The first predicate manipulation phase, hyperblock
formation, has been addressed thoroughly in [14]. The second
predicate manipulation phase, adjustment of hyperblocks during
scheduling, is proposed in this work and has been termedpartial
reverse if-conversion.

The first phase of the compilation framework is to aggres-
sively perform hyperblock formation. The hyperblock former
does not need to exactly compute what paths, or parts of paths,
will fit in the available resources and be completely compatible
with each other. Instead, it forms hyperblocks which are larger
than the target architecture can handle. The large hyperblocks
increase the scope for optimization and scheduling, further en-
hancing their benefits. In many cases, the hyperblock former will
include almost all the paths. This is generally an aggressive de-
cision because the resource height or dependence height of the
resulting hyperblock is likely to be much greater than the corre-
sponding heights of any of its component paths. However, the
if-converter relies on later compilation phases to ensure that this
hyperblock is efficient. One criteria that is still enforced in the
first phase of hyperblock formation is avoiding paths with haz-
ards. As was discussed in Section 2, hazards reduce the com-
piler's effectiveness for the entire hyperblock, thus they should
be avoided to facilitate more aggressive optimization.

The second phase of the compilation framework is to ad-
just the amount of predicated code in each hyperblock as the
code is scheduled via partial reverse if-conversion. Partial re-
verse if-conversion is conceptually the application of reverse if-
conversion to a particular predicate in a hyperblock for a chosen
set of instructions [16]. Reverse if-conversion was originally pro-
posed as the inverse process to if-conversion. Branching code
that contains no predicates is generated from a block of predi-
cated code. This allows code to be compiled using a predicate
representation, but executed on a processor without support for



predicated execution.
The scheduler with partial reverse if-conversion operates by

identifying the paths composing a hyperblock. Paths which are
profitable to overlap remain unchanged. Conversely, a path that
interacts poorly with the other paths is removed from the hyper-
block. In particular, the partial reverse if-converter decides to
eject certain paths, or parts of paths, to enhance the schedule. To
do this, the reverse if-converter will insert a branch that is taken
whenever the removed paths would have been executed. This has
the effect of dividing the lower portion of the hyperblock into two
parts, corresponding to the taken and fall-through paths of the in-
serted branch. The decision to reverse if-convert a particular path
consists of three steps. First, the partial reverse if-converter de-
termines the savings in execution time by inserting control flow
and applying the full resources of the machine to two hyperblocks
instead of only one. Second, it computes the loss created by any
penalty associated with the insertion of the branch. Finally, if
the gain of the reverse if-conversion exceeds the cost, it is ap-
plied. Partial reverse if-conversion may be repeatedly applied to
the same hyperblock until the resulting code is desirable.

The strategy used for this compilation framework can be
viewed analogously to the use of virtual registers in many compil-
ers. With virtual registers, program variables are promoted from
memory to reside in an infinite space of virtual registers early in
the compilation procedure. The virtual register domain provides
a more effective internal representation than do memory opera-
tions for compiler transformations. As a result, the compiler is
able to perform more effective optimization and scheduling on
the virtual register code. Then, at schedule time, virtual regis-
ters are assigned to a limited set of physical registers and mem-
ory operations are reintroduced as spill code when the number of
physical registers was over-subscribed. The framework presented
in this paper does for branches what virtual registers do for pro-
gram variables. Branches are removed to provide a more effective
internal representation for compiler transformations. At schedule
time, branches are inserted according to the capabilities of the tar-
get processor. The branches reinserted have different conditions,
targets, and predictability than the branches originally removed.
The result is that the branches in the code are there for the benefit
of performance for a particular processor, rather than as a conse-
quence of code structure decisions made by the programmer.

The key to making this predication and control flow balancing
framework effective is the partial reverse if-converter. The me-
chanics of performing partial reverse if-conversion, as well as a
proposed policy used to guide partial reverse if-conversion, are
presented in the next section.

4 Partial Reverse If-Conversion
The partial reverse if-conversion process consists of three

components: analysis, transformation, and decision. Each of
these steps is discussed in turn.

4.1 Analysis
Before any manipulation or analysis of execution paths can be

performed, these paths must be identified in the predicated code.
Execution paths in predicated code are referred to as predicate
paths. Immediately after hyperblock formation, the structure of
the predicate paths is identical to the control flow graph of the

<p1>p3, p4 = r2 > r11(2)

p1, p2 = r1 > r11(1)

�������
�������
�������

�������
�������
������� �������

�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

������������
������������
������������

������������
������������
������������

<p3>

<p2>

<p2>

<p1>r3 = MEM[D]

r4 = r3 + 1

r4 = MEM[E]

MEM[V] = r4

MEM[L] = r4

(3)

(4)

(5)

p3 = T, p4 = F

(6)

(7)

(a)

(1) p1, p2 = r1 > r11

(2) <p1>

<p1>

(4)

(3)

r4 = r3 + 1

(5) r4 = MEM[E] <p2>

(6)

(7)

MEM[V] = r4 <p2>

<p3>

p3, p4 = NULL (2) p3, p4 = r2 > r11 <p1>

(3) <p1>r3 = MEM[D]

(4) r4 = r3 + 1

(5) <p2>

(6)

(7)

<p2>

<p3>

(3) r3 = MEM[D] <p1>

(4) r4 = r3 + 1

(5) <p2>

(6)

(7) MEM[L] = r4

<p2>

<p3>

p1 = F, p2 = T

p3, p4 = F

p1 = T, p2 = F

(b)

p3 = F, p4 =T

Figure 5: Predicate flow graph with partial dead code elimination
given that r3 and r4 are not live out of this region.

code before hyperblock formation. The structure of the predi-
cate paths can be represented in a form called thepredicate flow
graph (PFG). The predicate flow graph is simply a control flow
graph (CFG) in which predicate execution paths are also repre-
sented. After optimizations, the structure of the PFG can change
dramatically. For reasons of efficiency and complexity, the com-
piler used in this work does not maintain the PFG across opti-
mizations, instead it is generated from the resulting predicated
N -address code.

The synthesis of a PFG from predicatedN -address code is
analogous to creating a CFG fromN -address code. A simple ex-
ample is presented to provide some insight into how this is done.
Figure 5 shows a predicated code segment and its predicate flow
graph. The predicate flow graph shown in Figure 5b is created
in the following manner. The first instruction in Figure 5a is a
predicate definition. At this definition, p1 can assume TRUE or
FALSE. A path is created for each of these possibilities. The com-
plement of p1, p2, shares these paths because it does not indepen-
dently create new conditional outcomes. The predicate defining
instruction 2 also creates another path. In this case, the predicates
p3 and p4 can only be TRUE if p1 is TRUE because their defin-
ing instructions is predicated on p1, so only one more path is cre-
ated. The creation of paths is determined by the interrelations of
predicates, which are provided by mechanisms addressed in other
work [17][18]. For the rest of the instructions, the paths that con-
tain these instructions are determined by the predicate guarding
their execution. For example, instruction 3 is based on predicate
p1 and is therefore only placed in paths where p1 is TRUE. In-
struction 4 is not predicated and therefore exists in all paths. The
type of predicate defines used in all figures in this paper are un-
conditional, meaning they always write a value [8]. Since they
write some value regardless of their predicate, their predicate can
be ignored, and the instruction's destinations must be placed in
all paths.

Paths in a PFG can be merged when a predicate is no longer
used and does not affect any other predicate later in the code.
However, this merging of paths may not be sufficient to solve all



�������������
�������������
�������������

�������������
�������������
�������������

p1, p2 = r1 > r11(1)

(2) p3, p4 = r2 > r11 <p1>

jump <p1>

(5) r4 = MEM[E] <p2> (3) r3 = MEM[D] <p1>

p1 = T, p2 = F

(4) r4 = r3 + 1(6) MEM[V] = r4 <p2>

(7) MEM[L] = r4 <p3>

(b)

(a)

(3) r3 = MEM[D] <p1>

(4) r4 = r3 + 1

(7) MEM[L] = r4 <p3>

(5) r4 = MEM[E] <p2>

(6) MEM[V] = r4 <p2>

(1) p1, p2 = r1 > r11

(2) <p1>p3, p4 = NULL

p1 = F, p2 = T

(2) p3, p4 = r2 > r11 <p1>

Figure 6: Predicate flow graph (a) and a partial reverse if-
conversion of predicate p1 located after instructions 1 and 2 (b).

potential path explosion problems in the PFG. This is because
the number of paths in a PFG is exponentially proportional to
the number of independent predicates whose live ranges overlap.
Fortunately, this does not happen in practice until code schedul-
ing. After code scheduling, a complete PFG will have a large
number of paths and may be costly. A description of how the
partial reverse if-converter overcomes this problem is located in
Section 4.2. A more general solution to the path explosion prob-
lem for other aspects of predicate code analysis is currently being
constructed by the authors.

With a PFG, the compiler has the information necessary to
know which instructions exist in which paths. In Figure 5, if the
path in which p1 and p3 are TRUE is to be extracted, the instruc-
tions which would be placed into this path would be 3, 4 and 7.
The instructions that remain in the other two paths seem to be
3, 4, 5, and 6. However, inspection of the dataflow characteris-
tics of these remaining paths reveals that the results of instruc-
tions 3 and 4 are not used, given that r3 and r4 are not live out
of this region. This fact makes these instructions dead code in
the context of these paths. Performing traditional dead code re-
moval on the PFG, instead of the CFG, determines which parts
of these operations are dead. Since this application of dead code
removal only indicates that these instructions are dead under cer-
tain predicate conditions, this process is termedpredicate partial
dead code removaland is related to other types of partial dead
code removal [19]. The result of partial dead code removal indi-
cates that instructions 3 and 4 would generate correct code and
would not execute unnecessarily if they were predicated on p3.

At this point, all the paths have been identified and unneces-
sary code has been removed by partial dead code removal. The
analysis and possible ejection of these paths now becomes possi-
ble.

4.2 Transformation
Once predicate analysis and partial dead code elimination

have been completed, performing reverse if-conversion at any
point and for any predicate requires a small amount of additional
processing. This processing determines whether each instruction
belongs in the original hyperblock, the new block formed by re-

4 2 34 4
(a)

1 2 43
(b)

1 4 3

Figure 7: Simple code size reduction on multiple partial reverse
if-conversions applied to an unrolled loop. Each square repre-
sents an unroll of the original loop.

verse if-conversion, or both. Figure 6 is used to aid this discus-
sion.

The partial reverse if-converted code can be subdivided into
three code segments. These are: the code before the reverse if-
converting branch, the code ejected from the hyperblock by re-
verse if-conversion, and the code which remains in the hyper-
block below the reverse if-converting branch. Instructions before
the location of the partial reverse if-converting branch are left un-
touched in the hyperblock. Figure 6b shows the partial reverse if-
conversion created for p1 after instructions 1 and 2. This means
that instructions 1 and 2 are left in their originally scheduled lo-
cation and the reverse if-converting branch, predicated on p1, is
scheduled immediately following them. The location of instruc-
tions after the branch is determined by the PFG. To use the PFG
without experiencing a path explosion problem, the PFG's gener-
ated during scheduling are done only with respect to the predicate
which is being reverse if-converted. This keeps the number of
paths under control since a the single predicate PFG can contain
no more than two paths. Figure 6a shows the PFG created for
the predicate to be reverse if-converted, p1. Note that the partial
dead code has already been removed as described in the previ-
ous section. Instructions which exist solely in the p1 is FALSE
path, such as 5 and 6, remain in the original block. Instructions
which exist solely in the p1 is TRUE path, such as 3, 4, and 7,
are moved from the original block to the newly formed region.
An instruction which exists in both paths must be placed in both
regions.

Notice that the hyperblock conditionally jumps to the code re-
moved from the hyperblock but there is no branch from this code
back into the original hyperblock. While this is possible, it was
not implemented in this work. Branching back into the hyper-
block would violate the hyperblock semantics since it would no
longer be a single entry region. Violating hyperblock semantics
may not be problematic since the benefits of the hyperblock have
already been realized by the optimizer and prepass scheduler.
However, the postpass hyperblock scheduler may experience re-
duced scheduling freedom since all re-entries into the hyperblock
effectively divide the original hyperblock into two smaller hyper-
blocks.

The advantage of branching back into the original hyperblock
is a large reduction in code size through elimination of unnec-
essarily duplicated instructions. However, as will be shown in
the experimental section, code size was generally not a problem.
One code size optimization which was performed merges targets
of partial reverse if-conversion branches if the target blocks are



identical. This resulted in a large code size reduction in codes
where loop unrolling was performed. If a loop in an unrolled
hyperblock needed to be reverse if-converted, it is likely that all
iterations needed to be reverse if-converted. This creates many
identical copies of the loop body subsequent to the loop being re-
verse if-converted. Figure 7a shows the original result of repeated
reverse if-conversions on an unrolled loop. Figure 7b shows the
result obtained by combining identical targets. While this simple
method works well in reducing code growth, it does not elim-
inate all unnecessary code growth. To remove all unnecessary
code growth, a method which jumps back into the hyperblock at
an opportune location needs to be created.

4.3 Policy
After creating the predicate flow graph and removing partial

dead code, the identity and characteristics of all paths in a hyper-
block are known. With this information, the compiler can make
decisions on which transformations to perform. The decision pro-
cess for partial reverse if-conversion consists of two parts: decid-
ing which predicates to reverse if-convert and deciding where to
reverse if-convert the selected predicates. To determine the op-
timal reverse if-conversion for a given architecture, the compiler
could exhaustively try every possible reverse if-conversion, com-
pute the optimal cycle count for each possibility, and choose the
one with the best performance. Unfortunately, there are an enor-
mous number of possible reverse if-conversions for any given hy-
perblock. Consider a hyperblock withp predicates andn instruc-
tions. This hyperblock has2p combinations of predicates chosen
for reverse if-conversion. Each of these reverse if-conversions
can then locate its branch in up ton locations in the worst case.
Given that each of these possibilities must be scheduled to mea-
sure its cycle count, this can be prohibitively expensive. Obvi-
ously, a heuristic is needed. While many heuristics may perform
effective reverse if-conversions, only one is studied in this paper.
This heuristic may not be the best solution in all applications,
but for the machine models studied in this work it achieves a de-
sirable balance between final code performance, implementation
complexity, and compile time.

The process of choosing a heuristic to perform partial reverse
if-conversion is affected greatly by the type of scheduler used.
Since partial reverse if-conversion is integrated into the prepass
scheduler, the type of information provided by the scheduler and
the structure of the code at various points in the scheduling pro-
cess must be matched with the decision of what and where to
if-convert. An operation-based scheduler may yield one type of
heuristic while a list scheduler may yield another. The policy de-
termining how to reverse if-convert presented here was designed
to work within the context of an existing list scheduler. The algo-
rithm with this policy integrated into the list scheduler is shown
in Figure 8.

The first decision addressed by the proposed heuristic is where
to place a predicate selected for reverse if-conversion. If a loca-
tion can be shown to be generally more effective than the rest,
then the number of locations to be considered for each reverse
if-conversion can be reduced fromn to 1, an obvious improve-
ment. Such a location exists under the assumption that the re-
verse if-converting branch consumes no resources and the code
is scheduled by a perfect scheduler. It can be shown that there

1 Initialize ready priority queue;
2 ric queue = NULL;
3 cycle = 0;
4 num unsched = Number of operations;
5 schedno ric = Computedynamiccyclesfor hyperblock;

// Each trip through this loop is a new cycle
6 WHILE num unsched != 0 DO

// Handle reverse if-converting branches first
7 FOREACHric op IN ric queue DO
8 IF ScheduleOp(ric op, cycle) THEN
9 Compute location for each unscheduled op;
10 schedric taken = Computedynamiccyclesin ric takenpath;
11 schedric hb = Computedynamiccycles in ric hyperblock;
12 mipredric = Estimateric mispreds *miss penalty;
13 ric cycles = schedric hb + schedric taken;
14 ric cycles = ric cycles+mispredric;
15 IF (schedno ric > ric cycles) THEN
16 schedno ric = schedric hb;
17 Place all ops in their noric schedule location;
18 ELSE
19 UnscheduleOP(ric op);
20 Removeric op from ric queue;

// Then handle regular operations
21 FOREACHregular op IN ready priority queue DO
22 IF ScheduleOp(regular op, cycle) THEN
23 Removeregular op from ready priority queue;
24 num unsched = num unsched� 1;
25 IF Is PredicateDefine(regular op) THEN
26 Add reverse if-converting branch toric queue;
27 cycle = cycle+ 1;

Figure 8: An algorithm incorporating partial reverse if-
conversion into a list scheduler

is no better placement than the first cycle in which the value of
the predicate to be reverse if-converted is available after its pred-
icate defining instruction.2 Since the insertion of the branch has
the same misprediction or taken penalty regardless of its location,
these effects do not favor one location over another. However, the
location of the reverse if-converting branch does determine how
early the paths sharing the same resources are separated and given
the full machine bandwidth. The perfect scheduler will always
do as well or better when the full bandwidth of the machine is di-
vided among fewer instructions. Given this, the earlier the paths
can be separated, the fewer the number of instructions competing
for the same machine resources. Therefore, a best schedule will
occur when the reverse if-converting branch is placed as early as
possible.

Despite this fact, placing the the reverse if-converting branch
as early as possible is a heuristic. This is because the two as-
sumptions made, a perfect scheduler and no cost for the reverse
if-converting branch, are not valid in general. It seems reason-
able, however, that this heuristic would do very well despite these
imperfections. Another consideration is code size, since instruc-
tions existing on multiple paths must be duplicated when these
paths are seperated. The code size can be reduced if the reverse
if-converting branch is delayed. Depending on the characteristics

2There exist machines where the placement of a branch a number of
cycles after the computation of its condition removes all of its mispre-
dictions [20]. In these machines, there are two locations which should be
considered, immediately after the predicate defining instruction and in the
cycle in which the branch mispredictions are eliminated.



of the code, this delay may have no cost or a small cost which
may be less than the gain obtained by the reduction in code size.
Despite these considerations, the placement of the partial reverse
if-converting branch as early as possible is a reasonable choice.

The second decision addressed by the heuristic is what to re-
verse if-convert. Without a heuristic, the number of reverse if-
conversions which would need to be considered with the heuris-
tic described above is2p. The only way to optimally determine
which combination of reverse if-conversions yields the best re-
sults is to try them all. A reverse if-conversion of one predicate
can affect the effectiveness of other reverse if-conversions. This
interaction among predicates is caused by changes in code char-
acteristecs after a reverse if-conversion has removed instructions
from the hyperblock.

In the context of a list scheduler, a logical heuristic is to con-
sider each potential reverse if-conversion in a top-down fashion,
in the order in which the predicate defines are scheduled. This
heuristic is used in the algorithm shown in Figure 8. This has the
desirable effect of making the reverse if-conversion process fit
seemlessly into a list scheduler. It is also desirable because each
reverse if-conversion is considered in the context of the decisions
made earlier in the scheduling process.

In order to make a decision on each reverse if-conversion, a
method to evaluate it must be employed. For each prospective re-
verse if-conversion, three schedules must be considered: the code
schedule without the reverse if-conversion, the code schedule of
the hyperblock with the reverse if-converting branch inserted and
paths excluded, and the code schedule of the paths excluded by
reverse if-conversion. Together they yield a total of3p sched-
ules for a given hyperblock. Each of these three schedules needs
to be compared to determine if a reverse if-conversion is prof-
itable. This comparison can be written as:sched cyclesno ric >

sched cyclesric hb + sched cyclesric taken + (mispredric �

miss penalty) wheresched cyclesno ric is the number of dy-
namic cycles in the schedule without reverse if-conversion ap-
plied,sched cyclesric hb is the number of dynamic cycles in the
schedule of the transformed hyperblock,sched cyclesric taken

is the number of dynamic cycles in the target of the reverse
if-conversion, andmispredric is the number of mispredic-
tions introduced by the reverse if-conversion branch. The
mispredric can be obtained through profiling or static estimates.
miss penalty is the branch misprediction penalty. This compar-
ision is computed by lines 9 through 15 in Figure 8.

While the cost savings due to the heuristic is quite significant,
3p schedules for more complicated machine models can still be
quite costly. To reduce this cost, it is possible to reuse information
gathered during one schedule in a later schedule.

The first source of reuse is derived from the top-down property
of the list scheduler itself. At the point each reverse if-conversion
is considered, all previous instructions have been scheduled in
their final location by lines 8 or 22 in Figure 8. Performing the
scheduling on the reverse if-conversion and the original scenario
only needs to start at this point. The number of schedules is
still 3p, but the number of instructions in each schedule has been
greatly reduced by the removal of instructions already scheduled.

The second source of reuse takes advantage of the fact that,
for the case in which the reverse if-conversion is not done, the

schedule has already been computed. At the time the previous
predicate was considered for reverse if-conversion, the schedule
was computed for each outcome. Since the resulting code sched-
ule in cycles is already known, no computation is necessary for
the current predicate'ssched cyclesno ric. This source of reuse
takes the total schedules computed down to2p + 1 with each
schedule only considering the unscheduled instructions at each
point due to the list scheduling effect. This reuse is implemented
in Figure 8 by lines 5 and 16.

Another way to reduce the total number of instructions sched-
uled is to take advantage of the fact that the code purged from
the block is only different in the “then” and “else” blocks but not
in the control equivalent split or join blocks. Once the scheduler
has completely scheduled the “then” and “else” parts, no further
scheduling is necessary since the remaining schedules are likely
to be very similar. The only differences may be dangling laten-
cies or other small differences in the available resources at the
boundary. To be more accurate, the schedules can continue un-
til they become identical, which is likely to occur at some point,
though is not guaranteed to occur in all cases. An additional use
for the detection of this point is code size reduction. This point is
a logical location to branch from the ejected block back into the
original hyperblock.

With all of the above schedule reuse and reduction techniques,
it can be shown that the number of times an instruction is sched-
uled is usually1 + 2d, whered is that instruction's depth in its
hammock. In the predication domain, this depth is the number of
predicates defined in the chain used to compute that instruction's
guarding predicate.

If the cost of scheduling is still high, estimates may be used in-
stead. There are many types of scheduling estimates which have
been proposed and can be found in the literature. While many
may do well for machines with regular structures, others do not.
It is possible to create a hybrid scheduler/estimator which may
balance good estimates with compile time cost. As mentioned
previously, the schedule height of the two paths in the hammock
must be obtained. Instead of purely scheduling both paths, which
may be costly, or just estimating both paths, which may be inac-
curate, a part schedule and part estimate may obtain more accu-
rate results with lower cost. In the context of a list scheduler, one
solution is the following. The scheduler could schedule an ini-
tial set of operations and estimate the schedule on those remain-
ing. Accurate results will be obtained by the scheduled portion,
in addition, the estimate may be able to benefit from information
obtained from the schedule, as the characteristics of the sched-
uled code may be likely to match the characteristics of the code
to be estimated. In the experiments presented in the next section,
actual schedules are used in the decision to reverse if-convert be-
cause the additional compile time was acceptable.

5 Experimental Results
This section presents an experimental evaluation of the partial

reverse if-conversion framework.

5.1 Methodology
The partial reverse if-conversion techniques described in this

paper have been implemented in the second generation instruc-
tion scheduler of the IMPACT compiler. The compiler utilizes



a machine description file to generate code for a parameterized
superscalar processor. To measure the effectiveness of the partial
reverse if-conversion technique, a machine model similar to many
current processors was chosen. The machine modeled is a 4-issue
superscalar processor with in-order execution that contains two
integer ALU's, two memory ports, one floating point ALU, and
one branch unit. The instruction latencies assumed match those
of the HP PA-7100 microprocessor. The instruction set contains
a set of non-trapping versions of all potentially excepting instruc-
tions, with the exception of branch and store instructions, to sup-
port aggressive speculative execution. The instruction set also
contains support for predication similar to that provided in the
PlayDoh architecture [8].

The execution time for each benchmark is derived from the
static code schedule weighted by dynamic execution frequencies
obtained from profiling. Static branch prediction based on pro-
filing is also utilized. Previous experience with this method of
run time estimation has demonstrated that it accurately estimates
simulations of an equivalent machine with perfect caches.

The benchmarks used in this experiment consist of 14
non-numeric programs: the six SPEC CINT92 benchmarks,
008.espresso, 022.li, 023.eqntott, 026.compress, 072.sc, and
085.cc1; two SPEC CINT95 benchmarks,132.ijpegand134.perl;
and sixUNIX utilities cccp, cmp, eqn, grep, wc, andyacc.

5.2 Results
Figures 9 and 10 compare the performance of the tradi-

tional hyperblock compilation framework and the new compi-
lation framework with partial reverse if-conversion. The hyper-
blocks formed in these graphs represent those currently formed
by the IMPACT compiler's hyperblock formation heuristic for
the target machine. These same hyperblocks were also used
as input to the partial reverse if-converter. The results ob-
tained are therefore conservative since more aggressive hy-
perblocks would create the potential for better results. The
bars represent the speedup achieved by these methods rela-
tive to superblock compilation. This is computed as follows:
superblock cycles=technique cycles. Superblock compila-
tion performance is chosen as the base because it represents the
best possible performance currently obtainable by the IMPACT
compiler without predication [21].

Figure 9 shows the performance of the hyperblock and par-
tial reverse if-conversion compilation frameworks assuming per-
fect branch prediction. Since branch mispredictions are not fac-
tored in, benchmarks exhibiting performance improvement in this
graph show that predication has performed well as a compilation
model. In particular, the compiler has successfully overlapped the
execution of multiple paths of control to increase ILP. Hyperblock
compilation achieves some speedup for half of the benchmarks,
most notably for023.eqntott, cmp, 072.sc, grep, andwc. For these
programs, the hyperblock techniques successfully overcome the
problem superblock techniques were having in fully utilizing pro-
cessor resources. On the other hand, hyperblock compilation re-
sults in a performance loss for half of the benchmarks. This di-
chotomy is a common problem experienced with hyperblocks and
indicates that hyperblocks can do well, but often performance is
victim to poor hyperblock selection.

In all cases, partial reverse if-conversion improved upon or

-40%

-20%

0%

20%

40%

60%

80%

100%

0
0

8
.e

sp
re

ss
o

0
2

2
.li

0
2

3
.e

q
n

to
tt

0
2

6
.c

o
m

p
re

ss

0
7

2
.s

c

0
8

5
.c

c1

1
3

2
.ij

p
e

g

1
3

4
.p

e
rl

cc
cp

cm
p

e
q

n

g
re

p

w
c

ya
cc

Benchmark

S
p

e
e

d
u

p

Hyperblock Framework
Partial RIC Framework

Figure 9: Performance increase over superblock exhibited by the
hyperblock and partial reverse if-conversion frameworks with no
misprediction penalty.

-40%

-20%

0%

20%

40%

60%

80%

100%

0
0

8
.e

sp
re

ss
o

0
2

2
.li

0
2

3
.e

q
n

to
tt

0
2

6
.c

o
m

p
re

ss

0
7

2
.s

c

0
8

5
.c

c1

1
3

2
.ij

p
e

g

1
3

4
.p

e
rl

cc
cp

cm
p

e
q

n

g
re

p

w
c

ya
cc

Benchmark

S
p

e
e

d
u

p

Hyperblock Framework
Partial RIC Framework

Figure 10: Performance increase over superblock exhibited by
the hyperblock and partial reverse if-conversion frameworks with
a four cycle misprediction penalty.

matched the performance of the hyperblock code. For six of the
benchmarks, partial reverse if-conversion was able to change a
loss in performance by hyperblock compilation into a gain. This
is most evident for008.espressowhere a 28% loss was converted
into a 39% gain. For072.sc, 134.perl, andcccp, partial reverse
if-conversion was able to significantly magnify relatively small
gains achieved by hyperblock compilation. These results indi-
cate that the partial reverse if-converter was successful at undo-
ing many of the poor hyperblock formation decisions while cap-
italizing on the effective ones. For the four benchmarks where
hyperblock techniques were highly effective,023.eqntott, cmp,
grep, andwc, partial reverse if-conversion does not have a large
opportunity to increase performance since the hyperblock forma-
tion heuristics worked well in deciding what to if-convert.

It is useful to examine the performance of two of the bench-
marks more closely. The worst performing benchmark is085.cc1,
for which both frameworks result in a performance loss with re-
spect to superblock compilation. Partial reverse if-conversion was
not completely successful in undoing the bad hyperblock forma-
tion decisions. This failure is due to the policy that requires the
list scheduler to decide the location of the reverse if-converting
branch by its placement of the predicate defining instruction. Un-



fortunately, the list scheduler may delay this instruction as it may
not be on the critical path and is often deemed to have a low
scheduling priority. Delaying the reverse if-conversion point can
have a negative effect on code performance. To some extent this
problem occurs in all benchmarks, but is most evident in085.cc1.

One of the best performing benchmarks was072.sc. For this
program, hyperblock compilation increased performance by a fair
margin, but the partial reverse if-conversion increased this gain
substantially. Most of072.sc's performance gain was achieved
by transforming a single functionupdate. This function with
superblock compilation executes in 25.6 million cycles. How-
ever, the schedule is rather sparse due to a large number of data
and control dependences. Hyperblock compilation increases the
available ILP by eliminating a large fraction of the branches and
overlapping the execution of multiple paths of control. This
brings the execution time down to 19.7 million cycles. While
the hyperblock code is much better than the superblock code, it
has excess resource consumption on some paths which penalizes
other paths. The partial reverse if-converter was able to adjust the
amount of if-conversion to match the available resources to effi-
ciently utilize the processor. As a result, the execution time for
the updatefunction is reduced to 16.8 million cycles with partial
reverse if-conversion, a 52% performance improvement over the
superblock code.

Figure 10 shows the performance of the benchmarks in the
same manner as Figure 9 except with a branch misprediction
penalty of four cycles. In general, the relative performance of
hyperblock code is increased the most when mispredicts are con-
sidered because it has the fewest mispredictions. The relative
performance of the partial reverse if-conversion code is also in-
creased because it has fewer mispredictions than the superblock
code. But, partial reverse if-conversion inserts new branches to
accomplish its transformation, so this code contains more mispre-
dictions than the hyperblock code. For several of the benchmarks,
the number of mispredictions was actually larger for hyperblock
and partial reverse if-conversion than that of superblock. When
applying control flow transformations in the predicated repre-
sentation, such as branch combining, the compiler will actually
create branches with much higher mispredict rates than those re-
moved. Additionally, the branches created by partial reverse if-
conversion may be more unbiased than the the combination of
branches in the original superblock they represent.

The static code size exhibited by using the hyperblock and par-
tial reverse if-conversion compilation frameworks with respect to
the superblock techniques is presented in Figure 11. From the fig-
ure, the use of predicated execution by the compiler has varying
effects on the code size. The reason for this behavior is a tradeoff
between increased code size caused by if-conversion with the de-
creased code size due to less tail duplication. With superblocks,
tail duplication is performed extensively to customize individual
execution paths. Whereas with predication, multiple paths are
overlapped via if-conversion, so less tail duplication is required.
The figure also shows that the code produced with the partial re-
verse if-conversion framework is consistently larger than hyper-
block. On average, the partial reverse if-conversion code is 14%
larger than the hyperblock code, with the largest growth occur-
ring for yacc. Common to all the benchmarks which exhibit a

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

0
0

8
.e

sp
re

ss
o

0
2

2
.li

0
2

3
.e

q
n

to
tt

0
2

6
.c

o
m

p
re

ss

0
7

2
.s

c

0
8

5
.c

c1

1
3

2
.ij

p
e

g

1
3

4
.p

e
rl

cc
cp

cm
p

e
q

n

g
re

p

w
c

ya
cc

Benchmark

C
o

d
e

 G
ro

w
th

Hyperblock Framework

Partial RIC Framework

Figure 11: Relative static code size exhibited by the hyperblock
and partial reverse if-conversion frameworks compared with su-
perblock.

Benchmark Reverse If-Conversions Opportunities
008.espresso 204 1552
022.li 50 393
023.eqntott 43 443
026.compress 11 56
072.sc 33 724
085.cc1 479 3827
132.ijpeg 134 1021
134.perl 42 401
cccp 77 1046
cmp 4 49
eqn 33 326
grep 3 103
wc 0 88
yacc 247 1976

Table 1: Application frequency of partial reverse if-conversion.

large code growth was a failure of the simple code size reduction
mechanism presented earlier. Inspection of the resulting code
indicates that many instructions are shared in the lower portion
of the tail-duplications created by the partial reverse if-converter.
For this reason, one can expect these benchmarks to respond well
to a more sophisticated code size reduction scheme.

Finally, the frequency of partial reverse if-conversions that
were performed to generate the performance data is presented
in Table 1. The “Reverse If-Conversions” column specifies the
actual number of reverse if-conversions that occurred across the
entire benchmark. The “Opportunities” column specifies the
number of reverse if-conversions that could potentially have oc-
curred. The number of opportunities is equivalent to the number
of unique predicate definitions in the application, since each pred-
icate define can be reverse if-converted exactly once. All data in
Table 1 are static counts. The table shows that the number of
reverse if-conversions that occur is a relatively small fraction of
the opportunities. This behavior is desirable as the reverse if-
converter should try to minimize the number of branches it in-
serts to achieve the desired removal of instructions from a hy-
perblock. In addition, the reverse if-converter should only be



invoked when a performance problem exists. In cases where
the performance of the original hyperblock cannot be improved,
no reverse if-conversions need to be performed. The table also
shows the expected correlation between large numbers of reverse
if-conversions and larger code size increases of partial reverse if-
conversion over hyperblock (Figure 11).

6 Conclusion
In this paper, we have presented an effective framework for

compiling applications for architectures which support predicated
execution. The framework consists of two major parts. First, ag-
gressive if-conversion is applied early in the compilation process.
This enables the compiler to take full advantage of the predicate
representation to apply aggressive ILP optimizations and control
flow transformations. The second component of the framework is
applying partial reverse if-conversion at schedule time. This de-
lays the final if-conversion decisions until the point during com-
pilation when the relevant information about the code content and
the processor resource utilization are known.

A first generation partial reverse if-converter was imple-
mented and the effectiveness of the framework was measured for
this paper. The framework was able to capitalize on the benefits of
predication without being subject to the sometimes negative side
effects of over-aggressive hyperblock formation. Furthermore,
additional opportunities for performance improvement were ex-
ploited by the framework, such as partial path if-conversion.
These points were demonstrated by the hyperblock performance
losses which were converted into performance gains, and by mod-
erate gains which were further magnified. We expect continuing
development of the partial reverse if-converter and the surround-
ing scheduling infrastructure to further enhance performance. In
addition, the framework provides an important mechanism to
undo the negative effects of overly aggressive transformations at
schedule time. With such a backup mechanism, unique opportu-
nities are introduced for the aggressive use and transformation of
the predicate representation early in the compilation process.

Acknowledgments
The authors would like to thank John Gyllenhaal, Teresa

Johnson, Brian Deitrich, Daniel Connors, John Sias, Kevin
Crozier and all the members of the IMPACT compiler team for
their support, comments, and suggestions. This research has
been supported by the National Science Foundation (NSF) un-
der grant CCR-9629948, Intel Corporation, Advanced Micro De-
vices, Hewlett-Packard, SUN Microsystems, and NCR. Addi-
tional support was provided by an Intel Foundation Fellowship.

References
[1] J. E. Smith, “A study of branch prediction strategies,” inProceed-

ings of the 8th International Symposium on Computer Architecture,
pp. 135–148, May 1981.

[2] T. Y. Yeh and Y. N. Patt, “Two-level adaptive training branch predic-
tion,” in Proceedings of the 24th Annual International Symposium
on Microarchitecture, pp. 51–61, November 1991.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion
of control dependence to data dependence,” inProceedings of the
10th ACM Symposium on Principles of Programming Languages,
pp. 177–189, January 1983.

[4] J. C. Park and M. S. Schlansker, “On predicated execution,” Tech.
Rep. HPL-91-58, Hewlett Packard Laboratories, Palo Alto, CA,
May 1991.

[5] N. J. Warter,Modulo Scheduling with Isomorphic Control Trans-
formations. PhD thesis, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, IL, 1993.

[6] P. Y. Hsu and E. S. Davidson, “Highly concurrent scalar processing,”
in Proceedings of the 13th International Symposium on Computer
Architecture, pp. 386–395, June 1986.

[7] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5
departmental supercomputer,”IEEE Computer, vol. 22, pp. 12–35,
January 1989.

[8] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL PlayDoh archi-
tecture specification: Version 1.0,” Tech. Rep. HPL-93-80, Hewlett-
Packard Laboratories, Palo Alto, CA, February 1994.

[9] D. N. Pnevmatikatos and G. S. Sohi, “Guarded execution and branch
prediction in dynamic ILP processors,” inProceedings of the 21st
International Symposium on Computer Architecture, pp. 120–129,
April 1994.

[10] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M.
Gallagher, and W. W. Hwu, “Characterizing the impact of predi-
cated execution on branch prediction,” inProceedings of the 27th
International Symposium on Microarchitecture, pp. 217–227, De-
cember 1994.

[11] G. S. Tyson, “The effects of predicated execution on branch pre-
diction,” in Proceedings of the 27th International Symposium on
Microarchitecture, pp. 196–206, December 1994.

[12] M. Schlansker, V. Kathail, and S. Anik, “Height reduction of con-
trol recurrences for ILP processors,” inProceedings of the 27th In-
ternational Symposium on Microarchitecture, pp. 40–51, December
1994.

[13] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, “Overlapped loop support in
the Cydra 5,” inProceedings of the Third International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, pp. 26–38, April 1989.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using
the hyperblock,” inProceedings of the 25th International Sympo-
sium on Microarchitecture, pp. 45–54, December 1992.

[15] S. A. Mahlke, R. E. Hank, J. McCormick, D. I. August, and W. W.
Hwu, “A comparison of full and partial predicated execution sup-
port for ILP processors,” inProceedings of the 22th International
Symposium on Computer Architecture, pp. 138–150, June 1995.

[16] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau, “Reverse if-
conversion,” inProceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation, pp. 290–
299, June 1993.

[17] R. Johnson and M. Schlansker, “Analysis techniques for predicated
code,” inProceedings of the 29th International Symposium on Mi-
croarchitecture, pp. 100–113, December 1996.

[18] D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker, “Global
predicate analysis and its application to register allocation,” inPro-
ceedings of the 29th International Symposium on Microarchitecture,
pp. 114–125, December 1996.

[19] J. Knoop, O. Ruthing, and B. Steffen, “Partial dead code elimina-
tion,” in Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementaton, pp. 147–158,
June 1994.

[20] D. I. August, D. A. Connors, J. C. Gyllenhaal, and W. W. Hwu, “Ar-
chitectural support for compiler-synthesized dynamic branch pre-
diction strategies: Rationale and initial results,” inThe 3rd Inter-
national Symposium on High-Performance Computer Architecture,
pp. 84–93, February 1997.

[21] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E.
Haab, J. G. Holm, and D. M. Lavery, “The Superblock: An effective
technique for VLIW and superscalar compilation,”The Journal of
Supercomputing, vol. 7, pp. 229–248, January 1993.


