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Abstract

Current work in Simultaneous Multithreading pro-
vides little benefit to programs that aren’t partitioned
into threads. We propose Simultaneous Subordinate Mi-
crothreading (SSMT) to correct this by spawning subordi-
nate threads that perform optimizations on behalf of the sin-
gle primary thread. These threads, written in microcode,
are issued and executed concurrently with the primary
thread. They directly manipulate the microarchitecture to
improve the primary thread’s branch prediction accuracy,
cache hit rate, and prefetch effectiveness. All contribute
to the performance of the primary thread. This paper in-
troduces SSMT and discusses its potential to increase per-
formance. We illustrate its usefulness with an SSMT ma-
chine that executes subordinate microthreads to improve the
branch prediction of the primary thread. We show simula-
tion results for the SPECint95 benchmarks.

1. Introduction

Many current generation microprocessors provide sub-
stantial resources in order to exploit Instruction-Level Par-
allelism (ILP). However, instruction throughput (IPC) in
these machines falls well short of ideal. Cache misses, par-
tial issue cycles, branch mispredictions, and insufficient ILP
in the program are among the factors preventing full uti-
lization of the available bandwidth. New mechanisms have
been proposed to take advantage of this, thereby increasing
machine performance. These mechanisms include multi-
threading and multiple-path execution.

Multithreading improvesoverall performance by simul-
taneously processing multiple threads. However, multi-
threading does nothing to improve the performance of each
individual thread. When the workload does not provide
multiple concurrent threads, this becomes a significant limi-
tation. Multiple-path mechanisms improve performance by

simultaneously processing instructions from both paths of
conditional branches. However, only a fraction of the work
is guaranteed to be useful, since there is only one correct
path.

Simultaneous Subordinate Microthreading (SSMT) op-
erates under the same principle as multithreading and
multiple-path mechanisms: supply additional useful work
to the machine to exploit unused processing bandwidth. A
key concept that differentiates SSMT is that the additional
work is done to enhance the performance of microarchitec-
tural structures, solely for the benefit of the primary thread.
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Figure 1. Performance potential of SPECint95
benchmarks.

By improving items critical to performance, such as
branch prediction accuracy and cache behavior, we can
achieve a boost in performance. Figure 1 compares the
performance of a machine with real branch prediction and
real caches to that of a theoretical machine with perfect
branch prediction and perfect caches (see Section 5.1 for
experimental setup). There remains a significant amount
of untapped performance potential to be had by improving
branch prediction and cache behavior. Therefore, it makes
sense to supply the processor with additional work aimed
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toward this end. This approach is the basis of Simultaneous
Subordinate Microthreading.

This paper describes the SSMT mechanism and dis-
cusses and how it can be used to enhance the performance of
single-threaded applications. Section 2 describes previous
work. Section 3 describes SSMT and how it can be used.
Section 4 provides a detailed example of SSMT targeted at
improving branch prediction. Section 5 provides simula-
tion results for our branch prediction mechanism. Section 6
provides conclusions.

2. Previous Work

Several studies have examined the notion of increasing
machine performance by supplying additional concurrent
work to the execution core. Two approaches are multi-
threading and multiple-path execution.

2.1. Multithreading Mechanisms

A multithreaded machine [15, 13, 7, 17] has the ability to
process instructions from several different threads without
performing context switches. The processor maintains a list
of active threads and dynamically decides which thread’s
instructions to issue into the machine.

The co-existence of multiple active threads allows a mul-
tithreading processor to improve performance by taking
advantage of Thread-Level Parallelism (TLP). Instructions
from different threads are independent of one another and
thus can be executed in parallel, leading to greater func-
tional unit utilization and greater tolerance of execution la-
tencies. Instruction cache misses also can be better toler-
ated. If one thread suffers a miss, the processor can still
fetch instructions from the other threads. The handling of
branches similarly benefits from the existence of multiple
active threads. Either each thread waits for its branches
to be resolved before proceeding, or if branch prediction
is used, only the mispredicted thread need be flushed and
redirected.

Multithreading has been shown to improve the overall
performance of the processor. However, it is important to
note that the performance of each individual thread is not
improved by multithreading. Furthermore, it is likely that
the performance of each thread will be degraded, since re-
sources must be shared among all active threads. In short,
multithreading may make sense when running a multipro-
grammed or multithreaded workload, but provides no ben-
efit when considering one single-threaded application. Re-
sources required to maintain several active contexts create
additional complications. A modified fetch mechanism is
necessary, including multiple fetch points, multiple predic-
tion structures, and possibly the ability to issue from more

than one thread per cycle.1Each thread requires its own reg-
ister renaming table. The number of physical registers may
also need to be increased to maintain the same renaming
capability. Available cache memory must be tagged and
shared by the active threads.

2.2. Multiple-Path Mechanisms

Mechanisms for multiple-path execution have been pro-
posed [19, 4, 20]. These implementations can vary widely,
but the fundamental approach is the same. Branch mispre-
dictions are a major performance limitation. Rather than
predicting all of the conditional branches in a program, a
multiple-path machine issues instructions from both taken
and not-taken paths. Later, when the branch is resolved, the
incorrect path is flushed from the machine.

Multiple-path machines appear attractive because mis-
predictions are removed by executing both paths of a
branch. The two paths of a branch are independent, so they
execute in parallel, if there are sufficient resources.

One problem with multiple-path mechanisms is that
some of the work done by the machine is guaranteed to
be thrown away after the branch is resolved. Instructions
on incorrect paths cause greater contention for resources.
Most notably, wrong-path memory references (instruction
and data) place increased demand on the caches and the
memory system that can lead to additional latency for the
correct path. Deeply speculating down multiple paths exac-
erbates this problem. Thus, the performance improvement
of multiple-path mechanisms is contingent upon the bene-
fit of fewer mispredictions outweighing the penalties due to
fetching and executing wrong-path instructions.

3. SSMT

3.1. Overview

This section describes the SSMT mechanism and the
various changes needed to implement it in a modern
dynamically-scheduled processor. As discussed above, the
goal of SSMT is to use additional threads to improve the
performance of a single primary thread. These additional
threads are supplied in the form of microcode, and we refer
to them asmicrothreads.

Figure 2 illustrates an SSMT machine. Microthread
routines are code sequences written in an internal instruc-
tion format of the processor. They can be stored on-chip

1Multithreading originally fetched and executed instructions in-order
from multiple threads [15]. Simultaneous multithreading first meant fetch-
ing instructions from more than one active thread in a single cycle and
executing them out-of-order using the same core [18]. A subsequent im-
provement restricted fetch to one thread per cycle, but still allowed concur-
rent execution of instructions from multiple threads [17]. This taxonomy
was first noted in [14].
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Figure 2. High-level block diagram of an SSMT
machine.

in a microcode RAM (themicroRAM). When certain pro-
cessor events occur, a microthread isspawned, and corre-
sponding microthread instructions are injected into the de-
code/rename stage. These instructions are renamed sepa-
rately from those from the primary thread by using separate
Register Alias Tables (RATs). The issue logic can then se-
lect some combination of primary-thread and microthread
instructions to issue to the machine’s reservation stations.
These instructions can be executed simultaneously by the
machine’s out-of-order execution core.

An SSMT machine provides two distinct methods for
spawning microthreads. The first, theSPAWN instruction,
is part of the Instruction Set Architecture (ISA). The en-
coding of this instruction specifies a microthread routine,
which is injected as a result ofSPAWN instruction decode
(more detail in Section 3.2.1). The second method, anevent
spawn, is triggered by an instance of one of a pre-defined
set of events that may occur during execution of the pri-
mary thread. Each type of event spawns a different mi-
crothread, much the same way interrupts invoke different
handlers. Examples include branch mispredictions, cache
misses, and timer expirations.

3.1.1. Advantages of SSMT. Microthread optimizations
have several advantages over purely hardware-based mech-
anisms. First, sophisticated algorithms can be written in
microcode without concern for hardware complexity. Mi-
crocode instructions are executed using the existing data-
path. Second, microthread optimizations are very flexible.
Routines can be tuned to specific applications and processor
implementations, or even disabled altogether when unnec-
essary.

An alternative to microthread optimization is to provide
similar routines as separate conventional threads of execu-
tion. However, a microthreaded approach has several ad-
vantages. Since optimization routines are small and serve
a specific purpose, it makes sense to manage them sepa-
rately from the primary thread using the microRAM. This
prevents the fetch of microthread instructions from ever im-
pacting the fetch of primary thread instructions. Further-
more, microthreads are not stored in the instruction cache,
and thus never suffer cache misses. This means that mi-
crothread instructions are available for issue even when pri-
mary thread instructions aren’t due to a cache miss. In addi-
tion to these benefits, microthreads are written in an internal
instruction set. This allows specialized instructions to be
used without amending the ISA. This likely requires some
microthreads to be rewritten for each new processor imple-
mentation. However, in order to achieve the highest perfor-
mance, microthreads should always be hand-optimized to
each implementation.

This framework makes it possible to create powerful mi-
crothread routines to perform various optimizations on be-
half of the primary thread. Note that it is certainly possible
to include several different microthread enhancements for a
single application. More details on microthread optimiza-
tions, as well as some examples, are given in Section 3.3.

3.2. Support for SSMT

Several modifications are necessary to implement Simul-
taneous Subordinate Microthreading in a traditional super-
scalar out-of-order machine.

3.2.1. ISA Support. Implementation of SSMT requires
additions to the ISA. New instructions to load and unload
the microRAM structure are necessary. For example, mi-
crothreads could be loaded with specialized store instruc-
tions that write to addresses within microRAM. Alterna-
tively, a single instruction could be added to copy a portion
of main memory to the microRAM.

The SPAWN instruction was briefly mentioned in Sec-
tion 3.1. This instruction is used to explicitly spawn mi-
crothreads from the primary thread. The encoding of
SPAWN is as follows:

opcode microthread number parameter
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The sizes of these fields depend on the ISA. We have as-
sumed a 6-bitopcode, a 6-bitmicrothread number, and a 20-
bit parameterfield. Themicrothread numbercorresponds
to a specific microthread routine stored in the microRAM.
When aSPAWN instruction is decoded, the microRAM is
accessed with the microthread number, and the correspond-
ing routine injected into the machine. Theparameterfield
contains a literal value that is passed to the microthread rou-
tine via a Microcode Special Purpose Register (MSPR).

In order for a microthread to operate independently of
the primary thread, it needs to maintain separate architec-
tural state, most notably a separate set of registers. We call
the state unique to each microthread invocation amicrocon-
text. A new microcontext is created when a microthread is
spawned. It consists of a set of Microthread General Pur-
pose Registers (MGPRs) and a set of Microthread Special
Purpose Registers (MSPRs). The MGPRs are simply gen-
eral purpose registers used by an individual microthread.
Our implementation assumes MGPRs cannot be used to
communicate values between different microthread invoca-
tions. The MSPRs are read-only registers that contain in-
formation about the state of the primary thread that existed
when the microthread was spawned. These values can be
used by microthreads to guide optimizations.

3.2.2. Compiler and OS Support. SSMT requires sup-
port from the compiler. We expect that the microthread rou-
tines will be written and optimized by hand to achieve max-
imum performance. However, an SSMT compiler is impor-
tant for analyzing the behavior of the primary thread and
choosing microthread optimizations to include. For exam-
ple, a compiler might use a profiling run of a benchmark to
speculate if low branch prediction accuracy is a major limi-
tation. If so, the compiler could choose to include an appro-
priate microthread optimization. In addition to microthread
selection, other aspects of the microthread mechanism re-
quire support from the compiler and/or operating system.
These include microRAM management, microthread mem-
ory allocation, and microthread data initialization.

In order to be used, microthread routines need to be
loaded into the microRAM before execution of the program.
Our implementation assumes that microthread routines are
linked into the executable image of the program. To load
them into the microRAM, the compiler simply inserts in-
structions into the program’s startup code. Since we expect
practical microthread routines to be small (well under 100
instructions each), this would not significantly increase the
size of the program executable.

Part of the power of microthreads comes from their abil-
ity to use processor main memory through the load/store
datapath. In our mechanism, we use the compiler to map
memory space in the global data segment for this purpose.
The global pointer offsets associated with load/store in-

structions in the microthread routines need to be adjusted
for each application. Thus, the additional memory needed
by microthreads appears as part of the primary thread,
though no primary thread instructions ever access it. Note
that it is also possible for microthreads to use dedicated on-
chip “scratch-pad” memory or memory space completely
managed by the operating system.

Some microthreads use data structures that require ini-
tialization. We assume that the program startup code is re-
sponsible for this, in addition to loading the microRAM.

Our current implementation assumes much of the sup-
port for SSMT is provided by the compiler. However,
some operating system support is still necessary. As men-
tioned above, microthread routine numbers are encoded in
the SPAWN instructions, and program specific memory off-
sets are encoded in the microthread load/store instructions.
As such, the contents of the microRAM must be considered
as part of the context of the primary thread. To support this,
the operating system could simply flush and reload the mi-
croRAM during context switches. Alternately, a more ag-
gressive implementation might include microRAM entries
tagged with context identifiers or multiple microRAM con-
text “windows”.

It is important to note that this section describes sup-
port for microthread routines that is somewhat tied to the
program being optimized. It is also easy to imagine more
general microthread routines that are not tied to any partic-
ular program, and do not necessitate this kind of support. It
makes more sense to divorce such generalized routines from
the program’s context and to support them entirely within
the operating system.

3.2.3. Hardware Support. A major advantage of Simul-
taneous Subordinate Microthreading is that it builds upon
hardware that is already present in the processor. This sec-
tion describes the additional hardware needed to support the
general SSMT mechanism.

A key component of our SSMT mechanism is the micro-
RAM. The number of microthread routines that the micro-
RAM can contain is governed by the size of themicrothread
numberfield of theSPAWNinstruction. The microRAM can
be accessed by microthread number (to support theSPAWN

instruction) or by microthread instruction number (to sup-
port branches within the microthread routines). Many pro-
cessors already incorporate micro-engines with similar ca-
pabilities in their designs. It may be possible to leverage
these existing micro-engines to implement the functionality
of the microRAM.

Since microthread instructions are stored on-chip, no
modification of the primaryfetchmechanism is necessary
to support microthread injection. However, the issue mech-
anism (decode/rename) must support issue from both the
primary thread and microthreads. As suggested in Section
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3.1.1, an aggressive implementation would likely issue from
both simultaneously.

As noted in Section 3.2.1, a microcontext is created each
time a microthread is spawned. The hardware must sup-
port at least one active microcontext in order to execute a
microthread concurrently with the primary thread. Adding
hardware to support multiple active microcontexts allows
additional microthread routines to be executed concurrently.
If a spawn is encountered when no hardware microcontexts
are available, it can be queued until one is available, or ig-
nored altogether.

Each microcontext includes additional register sets, as
described in Section 3.2.1. MGPRs require expansion of the
register renaming logic. In order to maintain the same re-
naming capability, the number of physical registers should
be increased proportionally to the number of MGPRs and
supported hardware microcontexts. We assume 8 MGPRs
per microcontext in our implementation. MSPRs can be di-
rectly sourced by microthread instructions, since they are
never written within a microthread. The number of MSPRs
needed is determined by the information that a processor
implementation makes available to the microthreads.

3.3. Using SSMT to Enhance Performance

SSMT is a general mechanism that can be applied in
many ways to increase performance. This section concen-
trates on three areas that have potential for improvement
with SSMT: branch prediction, prefetching, and cache man-
agement.

3.3.1. Branch Prediction. Studies have examined use of
the compiler to “synthesize” dynamic branch prediction
[11, 1]. By analyzing program semantics, the compiler
can insert instructions in the program to communicate with
the processor’s branch prediction hardware. In many cases,
this can lead to very accurate prediction for certain types of
branches. For example, general branch prediction schemes
are often unable to capture enough history to accurately pre-
dict FOR-style loop exits, even though these are conceptu-
ally easy to predict at run-time. In these cases, the com-
piler could synthesize a prediction by inserting instructions
to communicate the iteration count to the branch prediction
hardware.

An SSMT machine provides an excellent opportunity to
enhance compiler-synthesized branch prediction by using
microthreads to do all the work. Synthesis routines would
be stored on-chip and invoked with aSPAWN instruction.
This limits the code bloat from the synthesized predictions
to a single instruction. Furthermore, an SSMT microthread
could communicate with the branch prediction hardware
without external ISA modifications. It is easy to imagine
a microthread routine that would implement the loop pre-

dictor described in the previous paragraph.

Though SSMT provides some useful enhancements to
existing compiler-synthesized branch prediction, the power
and flexibility of microthreads provides opportunity to go
well beyond what is reasonably compiler-synthesized. For
example, a complete branch predictor can easily be imple-
mented by a microthread routine. Such a microthread pre-
dictor could be used as an alternative to the processor’s
hardware branch predictor for some branches. This is the
basis of the detailed SSMT example provided in Section 4.

It is important to reiterate that SSMT microthread en-
hancements are not mutually exclusive. One could eas-
ily envision combining multiple branch prediction enhance-
ments. As mentioned above, any combination of mi-
crothread routines can be selected to maximize performance
of the primary thread.

3.3.2. Prefetching. Prefetching is an important mecha-
nism for improving memory system performance. Many
software-based and hardware-based mechanisms have been
proposed [9, 2, 3, 10]. An SSMT machine provides oppor-
tunity for creating extremely sophisticated prefetches.

Most existing ISAs that support prefetching provide an
instruction, such as Alpha’sFETCH, to load a single cache
line into the first-level cache. In an SSMT machine, the
compiler can insert a singleSPAWN instruction into the pro-
gram that invokes an entire prefetchingroutine. Such a
routine could prefetch several disjoint cache lines at once,
prefetch an entire array using a microthread loop, or even
prefetch pointer-linked structures by performing a traversal
within the microthread. Routines could also be constructed
to conditionallyprefetch based on information gathered at
run-time. As with all microthread optimizations, prefetch-
ing routines can be processed concurrently with instructions
from the primary thread.

An SSMT machine could also implement many exist-
ing hardware prefetching algorithms by using event spawns.
For example, shadow-directory prefetching [3] operates by
tracking cache miss patterns and using this information to
later prefetch chains of cache lines. Using a microthread
spawned by cache miss events, a more sophisticated ver-
sion of this general algorithm could be implementedwithout
any additional hardware. Further prefetching enhancement
can be gained by using the SSMT mechanism to provide
feedback to the prefetching algorithm. Microthreads can
be spawned on events such as detecting a useful prefetch,
useless prefetch, or late prefetch. These feedback mi-
crothreads could alter the prefetching algorithm to prioritize
useful prefetches, filter out useless prefetches, and perhaps
reschedule late prefetches. This idea is similar in approach
to that of informing memory operations [8], but has all of
the advantages associated with using microthreads.
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3.3.3. Cache Management. Caches use replacements
policies to decide if a line should be replaced, and if so,
which line should be replaced. Most caches always replace
a line on a miss, although that need not be the case. Set as-
sociative caches typically approximate some form of Least
Recently Used replacement to decide which line in a set to
replace. In any case, reasonable replacement policies are
limited to simple state machines that are easily embedded
in cache structures. Using microthreads, it is possible to
implement a more intelligent replacement algorithm with-
out adding hardware complexity. For example, consider a
microthread that is spawned on every cache miss. This mi-
crothread could maintain cache miss information about ev-
ery cache line touched by the primary thread, and thus pro-
vide feedback to guide the replacement policy of the cache.
For example, frequently-used lines that are constantly dis-
placed could be locked into the cache to prevent further
misses. Thrashing situations could be identified and possi-
bly remedied by re-mapping conflicting lines. Alternatively,
a microthread could manage the contents of a victim cache
to achieve a similar goal.

Used in concert with microthreads that manage prefetch-
ing strategies, cache management can be expanded to in-
clude microthread management of all levels of the cache hi-
erarchy. In the future, we expect a cache to consist of three
parts: a tag store, a data store, and a microthread cache man-
agement routine.

4. An SSMT Example: Branch Prediction

It is well-known that accurate branch prediction is re-
quired to achieve high performance in a wide-issue, deeply-
pipelined processor. Most current generation processors de-
vote a significant portion of hardware to implement sophis-
ticated branch prediction algorithms. However, even for
the most advanced prediction schemes, such as the multi-
hybrid [5] and the variable length path-based predictor [16],
a significant fraction of performance is lost due to branch
mispredictions, as was shown in Figure 1. In this sec-
tion, we present a branch prediction mechanism that is en-
hanced through the use of a microthread-based branch pre-
dictor. This example demonstrates the potential usefulness
of SSMT. It is not an attempt to build the ultimate branch
predictor.

Predictors implemented with microthreads can be larger
and more complex than predictors implemented in hard-
ware. However, hardware predictors generate predictions
faster than microthread predictors and are very accurate for
some branches. Hence, we use a complex microthread-
based predictor only for those branches that are likely to be
poorly predicted by the hardware predictor. Conceptually,
this is the same idea that makes a hybrid predictor [12] more
accurate than any of its component predictors. In our case,

the “hybrid” we are building includes two components: the
hardware predictor of the processor, and the microthread-
based predictor supplied via the SSMT mechanism.

We use profiling to identify conditional branches suited
to microthread prediction. For each branch, our profiling
algorithm estimates the performance to be gained or lost by
predicting it with the microthread predictor. The heuristic
we use is described in Section 5. Branches that show esti-
mated gains are predicted with the microthread predictor.

Once the branches that will be predicted via microthread
are identified, the compiler inserts aSPAWN instruction af-
ter each to invoke the microthread branch predictor. At
run-time, theSPAWN instruction invokes the microthread
to generate the prediction that will be used thenext time
the branch is fetched. The prediction for the current in-
stance of the branch was generated by thelast invocation
of the microthread. The microthread stores its prediction
into a prediction cache, along with the branch’s fetch ad-
dress. Both the prediction cache and the hardware predictor
are accessed at fetch time. Fetches that hit in the predic-
tion cache use the stored prediction and then invalidate it.
Otherwise, the hardware prediction is used.

Prediction Bit
Stored

Prediction Bit

Prediction Cache Hit?

microthread
instruction

Write from

Prediction Hardware
Cond. Branch

Prediction Bit

Fetch Tag
Fetch Tag

Cache
Prediction

Hardware
Predictor

Hardware

Instruction Cache /
Trace Cache

Branch Target Buffer

Next PC

Not Taken
Address

Taken
Address

PC

Figure 3. Hardware needed to support the
microthread branch prediction mechanism
(modifications shown in the shaded area).

The hardware necessary to support this branch prediction
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mechanism is shown in Figure 3. Hardware added to sup-
port the prediction cache mechanism is shown in the shaded
region. It should be noted that the prediction cache is a gen-
eral mechanism to influence the processor’s branch predic-
tion behavior. If several different microthread branch pre-
dictors are implemented, they all use the same prediction
cache. In other words, the prediction cache is not tailored
to any specific microthread routine.

Using this mechanism, we achieve higher prediction
accuracy than if the processor’s hardware predictor were
used alone. However, since every execution of a spawn
instruction creates additional work for the machine, we
must be careful which branches spawn microthreads. If
the time saved by removing mispredictions is greater than
the time spent executing the additional microthread instruc-
tions, then our mechanism will be successful. Our results
are presented in the next section.

5. Experiments

This section presents additional implementation details
and experimental results for the SSMT prediction example
described in the previous section.

5.1. Experimental Setup

We modeled machines that can fetch, execute, and re-
tire up to 16 instructions per cycle. The window size was
512 instructions. The instruction and data caches were 64
KBytes (KB), direct mapped, with a 64 byte line size, and
a 10 cycle miss penalty. We modeled two different condi-
tional branch predictors. The first predictor was a 16 KB
gshare [12] predictor. The second predictor was a hybrid
consisting of an 8 KB variable-length path (VLP) predictor
[16] and an 8 KB SAg predictor [21]. The minimum branch
misprediction penalty was 7 cycles.

A processor with a poor fetch mechanism will underuti-
lize its execution resources. In such an environment, mi-
crothread instructions would rarely compete with primary
thread instructions for execution resources. To prevent bi-
asing of our results due to this, we modeled a somewhat
idealized fetch mechanism for the primary thread. Our ma-
chine is capable of handling any number of branches per
cycle, possibly sourcing multiple lines from the instruction
cache in a single fetch.

We ran our experiments using the 8 SPECint95 bench-
marks. All benchmarks were compiled for the Alpha ISA
using the Digital compiler with optimizations –O2 and
–Olimit 3000. All benchmarks were run to completion.

5.2. The Microthread Predictor

Our baseline hardware predictor is a 16 KB gshare pre-
dictor. It accurately predicts branches that exhibit strong
global correlation [6]. A weakness of this predictor is its
inability to predict branches that only exhibit self (or per-
address) correlation. To compensate for this weakness, our
SSMT microthread routine implements a PAg [21] predic-
tor. In addition to providing more accurate predictions for
some branches, PAg is a simple predictor well-suited to mi-
crothread implementation.

A PAg predictor goes through two steps to generate a
prediction. The first step is a lookup into the Branch His-
tory Table (BHT). The BHT contains one branch history for
each static branch that can be predicted by the microthread
routine. In our implementation, the index into the BHT is
given by theSPAWN instruction’sparameterfield. In the
second step, the history from the BHT entry is used to in-
dex the Pattern History Table (PHT), which is a table of
saturating counters. The high bit of the PHT counter is used
to make the prediction for the branch.

Our PAg scheme uses 24-bit local histories and 3-bit
PHT counters stored one per byte. Thus, the PHT requires
16MB of storage. An equivalent PHT is unthinkable to
implement in hardware, yet can be done simply by a mi-
crothread routine using main memory. Note that our pre-
dictor, unlike a hardware PAg predictor, never suffers from
loss of local history due to misses in a BHT storage struc-
ture.

The PAg microthread routine takes 15 instructions to
generate a prediction and to update the BHT and PHT. We
do not present the routine itself due to lack of space. It is
available athttp://www.eecs.umich.edu/HPS .

Figure 4 shows the performance of conventional ma-
chines using both branch predictors (gshare and VLP/SAg
hybrid). It also shows thepotentialmachine performance
when using the microthread PAg predictor in conjunc-
tion with each hardware predictor. A machine with per-
fect branch prediction is shown for reference. This graph
shows only potential performance using the microthread
PAg predictor—the true performance depends on the impact
of injecting the PAg microcode and is discussed in Section
5.4.

5.3. The Compiler Selection Heuristic

The compiler identifies the branches to be predicted
with the microthread routine. We created a very simple,
profile-based heuristic to make the selection. For each static
branch, the compiler compares the prediction accuracy of
the hardware predictor to the accuracy of the microthread
PAg predictor. If the accuracy of the PAg is worse, that
branch will always use the hardware predictor. Otherwise,
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Figure 4. Potentialmachine performance with
and without microthread predictions.

the compiler estimates the number of cycles saved using
the PAg predictor by multiplying the number of mispredicts
eliminated by the average resolution time of the branch. The
compiler then estimates the number of cycles lost to execut-
ing microcode by multiplying the dynamic execution count
of the branch by the number of cycles needed to issue one
invocation of the microthread routine. If the compiler com-
putes a net savings in cycles, a spawn instruction is inserted
for that branch, and it will use the microthread prediction.
If the compiler computes a net loss, the branch will be pre-
dicted using the hardware predictor.

5.4. Performance Analysis

Figure 5 shows performance of machines that do and do
not use the microthread PAg predictor. For this experiment,
the microthread routine is injected to generate the PAg pre-
dictions. Five of the eight benchmarks (gcc, go, m88ksim,
perl, and vortex) show approximately no change in perfor-
mance. This follows what we would expect from Figure 4.
These benchmarks saw little potential gain from including
PAg predictions, and thus we see little actual gain, or even
slight loss, when the microcode is injected to generate them.
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Figure 5. Actual machine performance with
and without microthread predictions.
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Figure 6. Machine performance with mi-
crothread overhead, but without microthread
predictions.

Compress, ijpeg, and li all showed significant potential
gains in Figure 4. However, only compress saw a significant
actual gain in Figure 5. For ijpeg and li, the overhead of the
microthread predictor nullifies the benefit of the increased
prediction accuracy. We examine causes for this below.

Figure 6 shows performance of machines that do and do
not use the microthread PAg predictor. For this experiment,
the microthread routine is injected, but the hardware predic-
tions are always used. Therefore, none of the machines ben-
efit from the microthread PAg predictor. Any performance
loss is due solely to microthread overhead. Compress, ijpeg,
and li all show significant loss from executing microthread
instructions. This can be attributed to three factors:
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Figure 7. Normalized instruction counts with
and without microthread predictions.

� The microthread routine steals some issue and exe-
cution bandwidth from the primary thread. Figure 7
shows the dynamic instruction counts for each bench-
mark normalized to the counts of the machines not us-
ing the microthread predictor. It is interesting to note
that compress shows a large increase in dynamic in-
structions (35% for the gshare version), but also shows
the greatest performance improvement in lieu of these
additional instructions. Go shows an even larger in-
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crease in dynamic instructions, but almost breaks even
on performance. The same is true to a lesser extent for
the other benchmarks. This suggests that, in general,
there is capacity to execute the additional microthread
instructions and that the majority of the performance
loss in Figure 6 can be traced to another source.

� The microthread routine introduces additional memory
instructions, which compete for memory bandwidth
and cache space. The PAg microthread routine con-
tains 4 memory instructions (2 loads and 2 stores).
In addition, it has a memory footprint in excess of
16 megabytes. Both of these factors, competition for
bandwidth and cache space, reduce performance of the
primary thread. To gauge this impact, we ran the same
experiment as in Figure 6, but with perfect data caches.
With a real data cache and the gshare predictor, the gap
in average performance between configurations using
and not using the microthread predictor was .20 IPC.
With a perfect data cache, this gap shrinks to .17 IPC,
a change of only .03 IPC. The largest change for a sin-
gle benchmark was only .1 IPC. The small changes in
relative performance between experiments using real
and perfect data caches suggests that contention in the
memory system is not responsible for the loss in per-
formance shown in Figure 6.
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Figure 8. Percentage of useless microthread
predictions.

� When the prediction cache is accessed, the cache may
not contain the prediction for the associated branch—
even if the compiler specified that the branch should
be predicted with the microthread PAg predictor. This
occurs when the PAg microthread routine doesn’t have
enough time to compute the prediction and write it into
the prediction cache before the prediction is needed;
that is, before the branch is encountered again. When
there is a miss in the prediction cache, the hardware
prediction is used by default.

In some cases, a microthread prediction is still useful
even if it isn’t written into the prediction cache on time.
Our implementation assumes that a microthread pre-
diction is always more accurate than a hardware pre-
diction. If a microthread prediction for a branch is not
known at fetch, but is computed before the branch re-
solves, the microthread prediction is compared to the
hardware prediction that was used. If the predictions
are different, the microthread prediction overturns the
hardware prediction, and fetch is redirected according
to the microthread prediction.

In other cases, the microthread prediction is not com-
puted before the branch resolves, so the prediction is
completely useless. Figure 8 shows the percentage
of useless predictions. The impact this has on per-
formance depends on how well the hardware predicts
these branches. For compress, the percentage of use-
less predictions is low, so the overall prediction accu-
racy is not greatly affected. For li and ijpeg, whose
potentialperformance gains were large (see Figure 4),
this impact is certainly harmful, and probably accounts
for the lack of anyactualgains.

Our PAg microthread predictor could be improved in
several ways. Our experimental data suggests that the
profile-based heuristic was overly optimistic in selecting
branches for microthread prediction. In many cases, the
cost of performing a microthread prediction for a branch
outweighed its benefit. A better heuristic would better iden-
tify these cases, and prevent those branches from being se-
lected for microthread prediction. Furthermore, useless mi-
crothread predictions limited the performance gains in two
of the benchmarks (li and ijpeg). A better heuristic would
disable microthread predictions for branches that execute
in rapid succession, as these predictions probably can’t be
generated in time for them to be useful. The branch pre-
diction hardware might also monitor whichSPAWN instruc-
tions generate useless predictions. The hardware could then
disable the injection of the microcode routines for those
SPAWN instructions deemed not useful.

6. Conclusions

Current multithreading paradigms do not improve the
performance of single-threaded applications. To remedy
this, we proposed a new multithreading mechanism, Simul-
taneous Subordinate Microthreading (SSMT), which uses a
machine’s otherwise unused execution resources to boost
the performance of a single primary thread. To accom-
plish this, SSMT dynamically injects microcode optimiza-
tion threads that manipulate the microarchitecture to en-
hance performance-critical mechanisms. We described the
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implementation of the general SSMT mechanism, and sev-
eral possible SSMT applications. To demonstrate its useful-
ness, we provided a simple example of how it can be used
to increase branch prediction accuracy. Though the exam-
ple was limited in scope, it demonstrated the usefulness of
SSMT by showing that significant performance gains are
possible using the mechanism.
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