Fast Subword Permutation Instructions Using Omega and Flip Network Stages

Xiao Yang and Ruby B. Lee
Department of Electrical Engineering
Princeton University
{xiaoyang, rblee} @ee.princeton.edu

Abstract

This paper proposes a new way of efficiently doing arbi-
trary n-bit permutations in programmable processors mod-
eled on the theory of omega and flip networks. The new om-
f£1ip instruction we introduce can perform any permuta-
tion of n subwords in logn instructions, with the subwords
ranging from half-words down to single bits. Each om-
f1ip instruction can be done in a single cycle, with very
efficient hardware implementation. The omf1ip instruc-
tion enhances a programmable processor’s capability for
handling multimedia and security applications which use
subword permutations extensively.

1 Introduction

Multimedia applications often deal with relatively low
precision data and have high levels of data parallelism. Mul-
timedia instructions using subword arithmetic are adopted
into many modern microprocessor architectures to ac-
celerate multimedia processing. Examples are MAX][2]
and MAX-2[3] extensions to HP PA-RISC architecture,
MMX][7], SSE[8] and SSE 2[9] extensions to Intel IA-32
architecture, IA-64[1], 3DNow![6] for AMD x86, VIS[13]
for Sun SPARC and AltiVec[10] for PowerPC. The essence
of these multimedia instructions is to pack several pieces
of low precision data, called subwords, into a single ma-
chine word so that they can be processed in parallel using
one instruction. These subword parallel instructions greatly
improve the performance of many multimedia applications.
However, they also raise some problems. An important one,
the subword rearrangement problem, arises when the sub-
words in a word are not in the desired order. Although this
situation does not exist in traditional architectures, it natu-
rally occurs with the use of subword parallelism. We need
to be able to rearrange subwords in an efficient and easy
manner when necessary.

0-7695-0801-4/00 $10.00 © 2000 IEEE

15

1.1 Past Work

Existing software methods. When instruction set ar-
chitecture support for subword rearrangement is not avail-
able, table lookup methods and solutions based on con-
ventional logical and shift, or extract and deposit, instruc-
tions are used to solve the subword rearrangement prob-
lem. These methods are quite slow for achieving arbitrary
n-bit permutations. More recently, several subword rear-
rangement instructions were proposed and implemented in
different architectures. Examples are the mix and per-
mute instructions in MAX-2[3], mix and mux instructions
in IA-64[1], and the vpexrm instruction in AltiVec[10]. All
of these instructions can do certain types of subword rear-
rangements quite efficiently for subword sizes of 8 bits or
larger. However, the concept of subword encompasses data
ranging from full words to halfwords to single bits. Permu-
tations of small subword sizes down to a bit are particularly
important for accelerating cryptography, which is becom-
ing increasingly important for secure communications and
processing. None of these currently implemented subword
rearrangement instructions provides a general solution for
efficiently doing arbitrary permutations for all possible sub-
word sizes.

cross instruction. In a previous paper[14], we pro-
posed a new subword permutation instruction, the cross
instruction. The cross instruction is able to do all pos-
sible permutations for all subword sizes efficiently. The
idea is based on the fact that an n-input Benes network,
which is formed by connecting two n-input butterfly net-
works back-to-back, can produce any permutation of its n
inputs with edge-disjoint paths(see Figure 1(a)). Further-
more, Benes networks can be broken into separate butterfly
network stages.

The cross instruction has the normal 3-operand format

cross,ml,m2 xrd,rs,rc

rs and rd specifies the registers containing the bits to be
permuted and the permuted bits, respectively. rc is the reg-
ister holding the configuration bits. One cross instruction

executes the operations of two butterfly stages. These two
stages are specified by m1 and m2, where 2™ represents the
distance between paired inputs.

To use the cross instruction, we first obtain a valid con-
figuration on the Benes network for the desired permutation
using an algorithm presented earlier[14]. Then we break
the configured network into pairs of stages. For each pair of
stages, we assign a cross instruction. By chaining these
cross instructions in sequence, we virtually construct a
Benes network that is configured for the desired permuta-
tion. An example of a cross instruction sequence is given
in Figure 1(c). Since there are 2logn stages in an n-input
Benes network, we need at most logn cross instructions
to perform any n-bit permutation.

Because a cross instruction may use any two stages in
a Benes network in any order, we need to have a full Benes
network in hardware to implement cross instructions. Al-
ternatively, we can have two stages in hardware, but each
stage needs to contain all the necessary connections for an
n-input butterfly network. Neither of these two implemen-
tations is efficient in terms of hardware implementation.

prerm and grp instructions. Shi and Lee proposed
two permutation instructions, pperm and grp[12]. They
can do arbitrary n-bit permutations in O(logn) instruc-
tions. However, their circuit implementations are also not
the most efficient. Lee also proposed subword permutation
instructions for two-dimensional multimedia processing[4],
but these have not been shown to be effective for arbitrary
bit-level permutations.

1.2 Objective of This Paper

Our objective is to explore alternative possibilities for
solving the general subword permutation problem, for all
subword sizes down to a single bit. We are trying to find an
efficient approach that can achieve at least the same level of
performance as the cross instruction, but can yield more
efficient circuit implementations.

We chose the butterfly network as the basis for our
cross instructions because it has certain desirable prop-
erties. It can be broken into stages that are simple to spec-
ify, and an n-input Benes network is able to do all permu-
tations of its n inputs. However, one disadvantage of the
butterfly network is that all its stages are distinct. From a
circuit point of view, it is beneficial to use networks that
have uniform stages, which can result in a smaller hardware
implementation.

2 Omega and Flip Networks

The omega network has uniform stages, i.e., each stage
is identical. This is also true for the flip network, which is
a mirror image of the omega network[5]. Omega networks

Inputs
Outputs

stage 0 stage | stage 2 stage 3 stage 4 stage 5
mi=2 mi=1 mi=0 mi=0 mi=1 mi=2

cross,2,1 rl,rl,r2 omflip, 0 rl,rl,r2
;r2=10001010b ;r2=10¢01010b
cross,0,0 ri,rl,r3 omflip,10 r1,rl,r3
;r3=10110000b ;r3=10110000b
cross,1,2 ril,rl,rd omflip,11 rl,rl,rd
;rd4=01000000b ;r4=01000000b
() (d

Figure 1. (a) Benes network configured for
the permutation (abcde fgh) — (fabcedhg). (b)
Omega-flip network configured for the same
permutation. (¢) cross instruction sequence
for (a). (d) omflip instruction sequence for

(b).

16

are isomorphic to butterfly networks and flip networks are
isomorphic to inverse butterfly networks, as shown in Fig-
ure 2 for 8-input networks.

As aresult of the isomorphism, the properties of omega
and flip networks are similar to those of butterfly networks.
The total number of stages in an n-input omega network or
flip network is log n and the number of nodes in each stage
is n. A node is where the path selection for an input takes
place. In each stage of an omega network or flip network,
for every input, there is another input that shares the same
two outputs with it. We call these pairs of inputs conflict
inputs and their corresponding outputs conflict outputs.

An omega-flip network is formed by connecting an n-
input omega network and an n-input flip network. It can be
used to perform any permutation of its n inputs with edge
disjoint paths[5]. It is functionally equivalent to an n-input
Benes network.

3 Architectural Implementation Based on
Omega-flip Network

3.1 Basic Operations

The basic operations for our proposed permutation in-
struction correspond to the single stage operations in an
omega network or flip network. We call them the omega
operation and the flip operation, respectively. Each of these
two basic operations has two source operands: the bits to be
permuted and the configuration specification. Bits from the
source register are moved to the result register based on the
configuration bits. If the configuration bit for a pair of con-
flict inputs is 0, the bits from these two inputs go through
non-crossing paths to the outputs. Otherwise, the bits go
through crossing paths to the outputs.

3.2 omflip Instruction

For each of the basic operations introduced above, we
only need n/2 bits to specify the configuration for n input
bits. Therefore, for permuting the contents in an n-bit regis-
ter, we are able to pack the configuration bits for two basic
operations into one configuration register and thus pack two
basic operations into one single instruction. The instruction
format for our permutation instruction is
omflip,c «rd,rs,rc

rs is the source register containing the subwords to be
permuted, rd is the destination register where the permuted
subwords are placed, and rc is the configuration register
that holds the configuration bits for the two basic opera-
tions. c is a sub-opcode that indicates which two basic op-
erations are used in this instruction. It contains two bits. For

17

<000,0>

<000,1> <000,2> <0003>

<000,0>

<,1> <000,2> <000,3>

row 000

omega network butterfly network

(a)

<0000 <O00,1> <000,2> <00 3> <(H0,0> <000,1>

<000,2>

< 3>

<100,> <010,1>

flip network inverse butterfly network

(b)

Figure 2. Correspondence between nodes in
(a) an omega network and a butterfly network.
(b) a flip network and an inverse butterfly net-
work.

each bit, 0 indicates that an omega operation is used and 1
indicates that a flip operation is used. There are four com-
binations of c: omega-omega, omega-flip, flip-omega and
flip-flip. The first basic operation is determined by the right
" bit of c. It takes the source register rs and moves the bits
in it based on the least significant half of the configuration
register rc to an intermediate result. The second basic op-
eration is determined by the left bit of c. It moves the bits
in the intermediate result according to the most significant
half of rc to the destination register rd.

An example instruction sequence is shown in Fig-
ure 1(d). For instance, the first omf1lip instruction, om-
f1ip, 00 rl,rl, r2 performs two omega operations.

The first omega operation uses the configuration bits from -

the least significant half of r2, 1010b. The configuration
bitis O for nodes containing a and e, 1 for nodes containing
b and £, etc. Therefore, in the first omega operation, a and
e go through non-crossing paths, b and £ go through cross-
ing paths, and so on. The intermediate result after the first
omega operation is (ae fbcghd). For the second omega op-
eration, the configuration bits, 1000b, come from the most
significant half of 2. Only the configuration bit for nodes
holding b and 4 is 1. Therefore, only b and d go along
crossing paths and all others go along non-crossing paths.
The result after the first om£f 1 ip instruction is (aceg f hdb),
which corresponds to the result after the leftmost two stages
of the omega-flip network shown in Figure 1(b).

3.3 Using omflip Instruction

In order to use omf1ip instructions to do arbitrary per-
mutations, we first need to obtain the configuration of an
omega-flip network for the desired permutation. Since there
is a one-to-one correspondence between nodes in an n-input
omega-flip network and an n-input Benes network, we can
first obtain a valid configuration on a Benes network for the
desired permutation, then translate the Benes network con-
figuration to an omega-flip network configuration. For each
node in an omega-flip network, we find its corresponding
node in the Benes network and use this node’s configura-
tion for the corresponding node in the omega-flip network.

An example is given in Figure 1. We first configure
the Benes network for the permutation (abedefgh) —
(fabcedhg) and obtain the configuration bits for each node.
These configuration bits are shown in Figure 1(c) as the
contents of the configuration registers r2, r3 and r4 for
the cross instructions. The right half of the configuration
register is for the even stage and the left half for the odd
stage. The configuration bits are read from right to left as
we go through nodes from top to bottom. For instance, the
fifth and seventh nodes in the second stage of the Benes net-
work are configured using one bit. This bit is the second bit
from the left in x2, which is 0. This bit is also used to con-

18

figure the second and the sixth nodes in the second stage
of the omega-flip network in Figure 1(b), which correspond
to the fifth and seventh nodes in the Benes network. This
bit is the third bit from the left in r2 of the first omf1lip
instruction.

After the omega-flip network is configured, we break it
into pairs of stages. For each pair of stages, we assign an
omflip instruction. This sequence of omf1lip instruc-
tions achieve the desired permutation.

Using this method, we can do all possible permuta-
tions(without repetition) of the n bits in an n-bit register
using logn omf1ip instructions.

3.4 Permuting Multi-bit Subwords

When a Benes network is configured for r-bit subword
permutations using our configuration algorithm, the mid-
dle 2logr stages are configured as pass-throughs(see Fig-
ure 3(a)). Similarly, for r-bit subword permutation, the mid-
dle 2log r stages of the omega-flip network also copy the
input bits to their output without any change of order(see
Figure 3(b)). Hence, we can eliminate them from the con-
figured omega-flip network(see Figure 3(c)) and assign in-
structions to the remaining stages without affecting the re-
sult. Therefore, when permuting r-bit subwords in an n-
bit word, the maximum number of instructions needed be-
comes logn — logr = log(n/r) = logn’, where n' is the
number of subwords in a word.

4 Circuit Implementation

At the circuit level, to implement the four variants of
omflip instructions, we only need to have two omega
stages and two flip stages, rather than 2 log n stages for the
entire omega-flip network. When executing an omf1ip in-
struction, the control logic selects the proper two stages for
the two basic operations based on the sub-opcode c. It then
configures these two selected stages according to the least
significant half and most significant half of the configura-
tion register rc. The stages that are not used are configured
as pass-throughs. Notice that neither an omega stage nor a
flip stage has pass-through connections except for the two
nodes at the ends. We have to put bypassing connections
on top of the two omega stages and the two flip stages so
that all of the stages can be configured as pass-throughs. A
conceptual diagram of the circuit implementation is shown
in Figure 4 where the additional bypassing connections are
shown using thick lines. A circuit diagram is shown in Fig-
ure 5.

For comparison, we show the circuit implementation for
the cross instructions in Figure 6. We also show a circuit
implementation for a crossbar network with the same num-
ber of inputs in Figure 7. We calculate their track counts

Figure 3. (a) 8-input Benes network con-
figured for 2-bit subword permutation
(alagblbgclchldg) — (6102b1b2d1d2a102). (b)
8-bit omega-flip network configured for the
same permutation. (c) Eliminating the two
middle stages of the omega-flip network.

19

Inputs

N XN N KK

VAV Va9 AV VAV VAV W
SO0 .000.0.9.8

<

IXNIINSINGA
e

omega stage flip stage flip stage omega stage

Inputs
Outputs

Figure 4. Conceptual diagram for the omflip
circuit implementation.

Figure 5. Schematic diagram for the circuitim-
plementation of om£1ip instructions showing
(a) an individual node. (b) an 8-bit implemen-
tation.

o 0 o o olg——
o a. w W out0
' 1 ' ' H
o o
- all® wllf|° 1 outl
' ' ') tHH
0 0 o 0
in n in Lo ou2
! : ' ' T
o o o
% in wff ° i [L outd ¥
= K
3 v ! ' ! 1
% §
- 0 o L 0
in in n in — oud
' ! ' ' '
[o
in in o ° all o 1 ouws
| 1 1 1 L
o 0 o 0
n in n in o outé.
') ' ! !
o s o o
w i o i T ou?
' ' !

(b)

Figure 6. Schematic diagram for the circuit im-
plementation of cross instructions showing
(a) an individual node. (b) an 8-bit implemen-
tation.

and transistor counts to give a rough idea of their sizes. The
numbers are summarized in Table 1.

The numbers in Table 1 are computed as follows:

For the om£f1ip implementation, we have

H Tracks = 3n
VIracks = 4x(1+ g) + O(n)
= 442n+0(n)=4+6n
Transistors = 4nx 12 =48n

The 3n horizontal tracks come from the 3 output lines in
each node. The number of vertical tracks is composed of
three parts: 4 pass signals for the 4 stages, n/2 config-
uration lines per stage for the 4 stages, and the number
of data tracks needed between adjacent stages, which is
O(n)(about 4n). The 48n transistors come from 12 tran-
sistors in each cell for 4n cells.
For the cross(Benes) implementation, we have

H Tracks = 2n
V Tracks = 2logn x g +2x (2n—2)
= nlogn+4n—4
Transistors = 2nlogn x 6 = 12nlogn

The 2n horizontal tracks come from the 2 output lines in
each node. The calculation of the vertical track number is

20

Inputs
I—J*\q

N
GRENNSAGA

0
PRREE

ouh outt ou2 ut oue oues

Sho

ou?

Ouputs

Figure 7. Schematic diagram for a circuit im-
plementation of an 8-input crossbar network.

similar to the calculation for omf1ip implementation mi-
nus the pass signals. The 12nlogn transistors are from 6
transistors in each cell for 2n logn cells.

For the crossbar implementation we show in Figure 7,

HTracks = n
VIracks = nx(l1+logn)=n+nlogn
. & logn .
Transistors = nx(n+ z (;) (2logn + 2i))
i=0

O(n’*logn) > 3n%logn

The horizontal tracks consist of the n input data lines. The
vertical tracks consist of the n output data lines and the
logn configuration lines for each output data line. The
number of transistors are for the AND gate and pass tran-
sistor at each cross point. An alternative implementation of
crossbar is to provide a negated signal for each control sig-
nal so that no inverters before AND gates are needed. Then
the vertical track count becomes n + 2n logn and the tran-
sistor count becomes n?(1 + 2logn). This implementation
may yield a larger size due to more vertical tracks used.
From these equations, we see that when n is large, the
omflip implementation should yield the smallest size. As
we see in table 1, the omf1ip circuit implementation yields
the smallest transistor count and reasonable track counts
for permutations of 64 bits. Therefore, it should yield the

[H tracks| V tracks [Transistor

24 50
Omega-flip |24(data)| 30(data) 384
(omflip) 20(control)
16 52
(a) Benes 16(data)| 28(data) 288
(cross) 24(control)
8 32
Crossbar | 8(data) | 8(data) 640
24(control)
192 ~400
Omega-flip [192(data)~250(data){ 3072
(omflip) 132(control)
128 636
(b) Benes 128(datay 252(data) 4608
(cross) 384 (control
64 448
Crossbar |64(data)| 64(data) | >73728
384 (control

Table 1. Comparison of estimated horizon-
tal and vertical track counts and transistor
counts for circuit implementations of omflip
instructions, cross instructions and a cross-
bar network for (a) 8-bit permutations and (b)
64-bit permutations.

most area-efficient implementation. Notice that we have
not counted the control logic circuits for generating the con-
figuration signals, which are more complex for the cross
implementation and the crossbar than for omf1lip.

5 Performance

5.1 Arbitrary Permutations of a 64-bit Word

Table 2 shows the number of instructions needed for per-
mutations of a 64-bit word with different subword sizes
for different methods: using omflip instructions, using
cross instructions, and the best method with existing in-
struction set architectures (ISAs).

The solution based on omf1ip instructions has similar
performance to that based on cross instructions. The av-
erage performance, especially for large subword sizes, can
be improved by instruction sequence optimizations. For ex-
ample, we have not yet exploited the use of flip-omega op-
erations provided by the om£f1ip instruction.

Subword Num of Max* Max®
size subwords in | numof | num of | existing
in bits register omflip | cross ISAs
1 64 6 6 30°
2 32 5 5 30°
4 16 4 4 30°
8 8 3 3 1¢4
16 4 2 2 1¢
32 2 1 1 1€

21

“The maximum number here is log n.

PInstruction counts using table lookup methods, actual cycle counts
will be larger due to cache misses.

“Using subword permutation instructions.

40nly vperm in AltiVec is able to do this in one instruction.

Table 2. Comparing instruction counts for do-
ing arbitrary permutations of subwords.

5.2 Permutations in DES

We measure the performance gain of our omflip in-
structions for a permutation in a real cryptography program,
the Data Encryption Standard, DES[11].

The initial permutation in DES is a fixed 64-bit permu-
tation done for each 64-bit data block at the beginning of
encryption or decryption. We do this permutation in three
different ways: table lookup, logical operations and om-
flip instructions. When using the table lookup method,
the permutation can be achieved by referencing eight 256-
entry tables:

res I P _tbI1[(src&0z00000000000000f f)]

[
1P _tbi2[(src&0z000000000000 f £00) >> 8]
I P _tbl3[(s7¢&0z0000000000 f £0000) >> 16]
1 P_tbl4[(src&0z00000000 f £000000) >> 24]
I P_thl5[(src&0z000000 £ £00000000) >> 32]
I P_tbl6[(src&0z0000 f £0000000000) >> 40]
IP_tbl7[(src&0z00 f £000000000000) >> 48]

|
|
|
l
|
|
| IP_tbl8[(src&0z f £00000000000000) >> 56]
which is mapped to 30 instructions on a 64-bit machine. Us-
ing logical operations, the permutation can be done using 15
XOR’s, 10 SHIFT’s and 5 AND’s on a 32-bit architecture,
as in the libdes implementation[15]. This implementation
can be mapped to 34 instructions on a 64-bit machine. With
our omf1ip instructions, we only need 6 om£f1ip instruc-
tions to do this permutation for a 5x speedup over the ex-
isting table lookup or logical operations approaches.

The entire DES program consists of two parts, encryp-
tion or decryption, and key scheduling. We compare the

[] Encryption/decryption] Key scheduling]

Table lookup 1 1
omflip 1.33 16.55

Table 3. Speedup of omf 1ip over table lookup
for DES.

performance of the implementation using omflip per-
mutation instructions with that using the traditional table
lookup method by simulation. Table 3 shows the speedup
we achieve using omflip for a 2-way superscalar archi-
tecture with 1 load-store unit and a cache system similar
to Pentium III processors. The huge speedup for the key
scheduling is due to the many different permutations used
and the cache misses generated by the table lookup method.

6 Conclusion

The omflip instructions for doing arbitrary subword
permutations achieve good performance for permuting sub-
words of different sizes. The maximum number of omf1lip
instructions needed for permuting n subwords is logn. It
is 2logn if we take into account the load instructions for
the configuration registers. The performance of omf1lip
instructions is comparable to the best method with exist-
ing architectural support when dealing with large subwords.
When permuting small subwords, our method significantly
outperforms the best existing method, because there is cur-
rently no architectural support for arbitrary permutations of
small subwords and we have to fall back to the slow ta-
ble lookup or logical operations approaches. In this aspect,
our method is particularly advantageous because permuting
subwords of one bit each is very important for fast cryp-
tography. The circuit implementation for the omf1ip in-
struction is also efficient. We are able to reduce the num-
ber of stages required from 2logn for the cross instruc-
tion to only 4 stages for the omf1ip instruction. We also
reduce the number of transistors needed from O(nlogn)
for cross instructions and O(n? log n) for crossbar imple-
mentations down to O(n) for omf1ip instructions, which
is great savings when n is large.

References
[1] IA-64 Application Developer’s Architecture
Guide. Technical report, Intel Corp., May 1999.

http://developer.intel.com/design/ia64.

[2] R. B. Lee. Accelerating Multimedia with Enhanced
Microprocessors. IEEE Micro, 15(2):22-32, April
1995.

22

[3] R. B. Lee. Subword Parallelism with MAX-2. IEEE
Micro, 16(4):51-59, August 1996.

[4] R.B. Lee. Subword Permutation Instructions for Two-
Dimensional Multimedia Processing in MicroSIMD
Architectures. In Proceedings of the IEEE Interna-
tional Conference on Application -Specific Systems,
Architectures, and Processors, pages 3—14, July 2000.

F. T. Leighton. Introduction to Parallel Algo-
rithms and Architectures: Arrays, Trees, Hypercubes.
Morgan-Kaufmann Publishers, Inc., San Mateo, Cal-
fornia, 1992.

S. Oberman, F. Weber, N. Juffa, and G. Favor. AMD
3Dnow! Technology and the K6-2 Microprocessor.
August 1998. Advanced Micro Devices, Inc., Cali-
fornia Microprocessor Division.

[71 A. Peleg and U. Weiser. MMX Technology Extension
to the Intel Architecture. IEEE Micro, 16(4):42-50,

August 1996.

Man-
1999.

[8] Intel Architecture Software Developer’s
ual. Technical report, Intel Corp.,

http://developer.intel.com/design/PentiumIIL

[9] Willamette Processor Software Developer’s
Guide. Technical report, Intel Corp., 2000.
http://developer.intel.com/design/processor/future.

“AltiVec Extension to PowerPC” Instruction Set Ar-
chitecture Specification. Technical report, Motorola,
Inc., May 1998. http://www.motorola.com/AltiVec.

[11] B. Schneier. Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C. John Wiley & Sons,

Inc., New York, New York, second edition, 1996.

Z. Shi and R. B. Lee. Bit Permutation Instructions for
Accelerating Software Cryptography. In Proceedings
of the IEEE International Conference on Application-
Specific Systems, Architectures, and Processors, pages
138-148, July 2000.

(12]

[13] M. Tremblay, J. M. O’Connor, V. Narayanan, and
L. He. VIS Speeds New Media Processing. IEEE

Micro, 16(4):10-20, August 1996.

{14] X. Yang, M. Vachharajani, and R. B. Lee. Fast Sub-
word Permutation Instructions Based on Butterfly net-
works. In Proceedings of SPIE, Media Processor

2000, pages 80-86, January 2000.

[15] E. Young. libdes DES implementation, January 1997.

ftp://ftp.psy.uq.oz.au/pub/Crypto/DES/.

