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igital information processing used 
to involve only numbers and text. 
Graphical user interfaces (GUS)- 

with pull-down menus. icons. and win- 
dows-extended this to txo-dimensional 
graphics. Now we are seeing a transition to 
media-rich digital information This includes 
images, video, audio, 2D and 31~ graphics, 
animation. text, and numbers-collectively 
called multimedia information. Media pro- 
cessing-a shorter term for digital multime- 
dia information processing-is the decoding, 
encoding, interpretation, enhancement. and 
rendering of digital multimedia information 

IMultimedia information has existed for a 
long time. but in the past it in\.olved analog 
processing. When we digitally represent 
images, I;ideo, audio, graphics. and anima- 
tion, we reduce them to binary bits. which 
can be processed by digital processors. 

Real-time digital \,ideo and audio. how- 
ever, place certain minimum performance 
constraints on information de\-ices and conl- 
puters For example. displaying MPEG-1 
standard compressed \?deo requires a 
device to decode and r-ender 30 video 
frames per second, each frame comprising 
on the order of 1Oi pixels. The processing 
complexity is on the order of 1Oj operations 
per pixel per second, requiring on the order 
of 10’ MOPS (million operations per sec- 
ond). .blI’Ix~-2 11x5 rrnrrl~~ 0lAL CCIIltdlIl four 
times as many pixels and more complex 
decoding, requirmg on the order of 1 GOPS 
(billion operations per second). Dealing with 
multimedia information thus requires a 
quantum leap in total computation, storage. 
and transmission, heralding a new era for 
computer designers. 

Along with the need for higher perfor- 
mance, there is a paradoxical price constraint 
on media-processing computers. Video and 
audio have long been the media of entertain- 
ment and communications. and consumers 

expect relatively low prices for devices such 
as televisions, VCRs, telephones, and game 
machines. So media processing represents a 
challenging design target: higher performance 
computers at an ever lower cost. 

dewices 
cessin 

Initially, a separate special-purpose device 
or chip processed each media type. Audio, 
video, and 3D graphics required separate 
boards, each with its own specialized pro- 
cessing chips and memory. 

Specialkpurpose audio chips with algo- 
rithms implemented in hardware evolved to 
chips we could configure for more than one 
algorithm, and then to digital signal proces- 
sors (DSPs), which we could program for 
different algorithms. However, each audio 
data stream needed a separate DSP. For 
example, we had to use a separate DSP for 
each channel of sound, and another for tele- 
phony. In addition, the programmability 
tended to be at a low level, requiring DSP 
programmers to understand the underlying 
hardware very well. 

Video and 3D graphics require greater 
bandwidth and processing performance than 
low-cost DSPs for audio or modems can pro- 
vide. Today, video support consists of either 
I> separate special-purpose video chips’,’ for 
MPCG-1, MPEG-2, did H.&l stadards. 2) 

multi-algorithm video chip sets that imple- 
ment a group of relatively similar video algo- 
rithms; or 3) programmable video processors. 

A video processor can be considered a very 
sophisticated DSP specialized for processing 
pixel data Guttag et al. give an example,’ a 
multiprocessor on a single chip. The 
TMS320C82 is a cost-reduced version, which 
can be programmed to support many inter- 
esting multimedia applications, including 
H.324 videoconferencing over existing tele- 
phone lines. (See Golston’s article, this issue.) 

6 lEEE Micro 0272.1732/96/$5.00 0 1996 IEEE 



As video, audio, and graphics use increases, designers have 
considered consolidating memory and processing require- 
ments. A common memory allows dynamic redistribution of 
memory resources based on the workload or the multimedia 
data mix. Consolidated processing is feasible because proces- 
sors that satisfy video requirements can often meet the needs 
of other media data types with minimal incremental cost. In 
addition, combining memory and processing resources can 
reduce the cost and footprint of a media-processing device. 
However, a common memory system must have access band- 
width equivalent to the sum of the access needs of the sep- 
arate media data types it services. Similarly, a common 
processor must have computational bandwidth equivalent to 
the sum of their processing needs. 

Along these lines, the next step in the media-processing 
evolution appears to be media coprocessors and media 
processors. A media coprocessor is a computing device, usu- 
ally a single chip, that simultaneously supports processing 
requirements of different media data types. It works in con- 
junction with a general-purpose processor that handles such 
functions as memory management, access protection, text 
processing, and number crunching. Golston’s article in this 
issue discusses a sophisticated DSP that can also be called a 
media coprocessor (as do works by Foley4 and Rathnam and 
Slavenburg’ elsewhere). 

A media processor also simultaneously processes different 
media data types, but it functions as a genera-purpose 
processor as well. Hansen’s article presents this issue’s exam- 
ple of a media processor. 

An alternative to these approaches is adding multimedia 
acceleration features to a general-purpose processor.6 In this 
issue, articles by Peleg and Weiser, Tremblay et al., and Lee 
discuss such multimedia extensions. 

From the point of view of general-purpose microproces- 
sors, the support of new data types often evolves from spe- 
cial-purpose chips, to optional coprocessors, to a non-optional 
part of a microprocessor’s instruction set architecture (ISA). 
This evolution path was true for floating-point data types. For 
graphics data types, many microprocessors. such as the i860, 
M88110, and PA-RISC, have already introduced specialized 
support for graphics at the ISA level.‘~” While some of these 
instructions also accelerate other forms of multimedia data, 
the designers specifically targeted graphics functionality. The 
design goal of adding support in microprocessors for all forms 
of multimedia data has come more recently. 

In the next few processor generations, the development of 
media processors with general-purpose functionality is like- 
ly to converge with the evolution of general-purpose micrcl- 
processors with multimedia extensions. While these processor 
types’ major and secondary design targets are reversed, both 
may eventually cover and streamline the needs of general- 
purpose processing and media processing in full. 

Multimedia extensions for microprocessors 
Early attempts at introducing multimedia extensions into 

microprocessors have resulted in many similarities, with 
some notable differences. The basic similarity is that they are 
all based on operating in parallel on lower precision data 

Media processing represents a 

challenging design target: 

higher performance computers 

at an ever lower cost. 

packed into higher precision words. While this concept has 
appeared sporadically in earlier computers sucl~ as the llliac 
IV, it has not been formalized, especially in its current rein- 
carnation in microprocessors. The article by Lee in this issue 
attempts to formalize subword parallelism as a general tech- 
nique for operation parallelism in processor design. 

With the PA-71OOLC, Hewlett-Packard introduced a small 
set of multimedia acceleration extensions, MAXI ,6 which 
performed parallel subword arithmetic. Though thle design 
goal was to support all forms of multimedia, the application 
that best illustrated its performance was real-time MPEG-1,‘” 
which was achieved with high-level C software, using macros 
to directly invoke MAX-l instructions. 

Next, Sun introduced VIS, a much larger set of multime- 
dia extensions for UltrdSparc microprocessors (see the arti- 
cle by Tremblay and coauthors in this issue). In addition to 
the parallel arithmetic instructions, VIS provides novel 
instructions specifically designed for reducing memory laten- 
cy for algorithms that manipulate visual data. In addition, it 
includes a special-purpose instruction that computes the sum 
of absolute differences of eight pairs of pixels, simil.ar to that 
found in media coprocessors such as Philips’ Trimedia.’ 

Then, Hewlett-Packard introduced MAX-2 with its 64bit 
PA-RISC 2.0 microprocessors.” MAX-2 added a few new 
instructions to MAX-l for subword data alignment and 
rearrangement to further support s&word parallelism. MAX 
2 is interesting in its attempt to provide a minimalistic set of 
general-purpose media acceleration primitives. (See Lee’s 
article in this issue.) 

The MMX technology is a set of multimedia extensions for 
the Intel x86 family of processors (see Peleg’s and Weiser’s 
article in this issue). It lies between MAX-2 and VIS in terms 
of both the number and complexity of new instructions. The 
Iw\IIx designers have skillfully integrated a useful set of media 
acceleration instructions within the somewhat constrained 
register structure of the x86 architecture. MMX shares some 
characteristics of both MAX-2 and VIS, and also includes 
interesting new instructions, such as the parallel 16.bit mul- 
tiply-accumulate instruction. 

VIS, MAX-2, and MMX all have the Same basic goal: to pro- 
vide high-performance media processing on a genera-pur- 
pose microprocessor. All three support the full set of 
subword-parallel instructions on 16-bit subwords, with a par- 
allelism of four subwords per 64-bit register word. Differences 
exist in the type and amount of support they provide, some 
of which are driven by the needs of the target markets. For 
example, some support is provided for a-bit subwords when 
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target mdrkets include lower end multimedia (for eXmlple, 

games) in addition to higher fidelity multimedia (for example. 
workstations and medical imaging). An evaluation of the 
importance of the differences awaits the generation of com- 
parable application performance data. 

Software support 
Currently, application developers have three common 

methods for accessing media-processing hardware within a 
system. They can 

l invoke vendor-supplied, media-processing libraries. 
0 rewrite key portions of the application in assembly- lan- 

guage using the media-processing instructions: or 
l code in a high-level language (HLL) and use vendor- 

supplied macros that make available the function&t)- 
of the media-processing primitives through a simple 
function-call-like interface. 

The simplest approach to improving media-processing 
application performance is to rewrite the system libraries to 
employ the media-processing hardware. The clear advan- 
tage of this approach is that existing applications can irnme- 
diately take advantage of the new hardn;are without 
recompilation. However, the restriction of media-processing 
hardware to the system libraries also limits potential perfor- 
mance benefits. An application’s performance will not 
improve unless it invokes the appropriate system libraries. 
and the overheads inherent in the general interfaces associ- 
ated with syslem ftmctions will limit application performance 
improvements. Even so, this is the easiest approach for a sys- 
tern vendor, and vendors have announced or plan to pro- 
vide media-processing-enhanced libraries. 

At the other end of the programming spectrum, an appli- 
cation developer can benefit from media-processing hard- 
ware by rewriting key portions of an application in assembl)- 
language. Though this approach gives a developer gl-eat flex- 
ibility, it is generally tedious and error prone. In addition. it 
does not guarantee a performance win (over code produced 
by an optimizing compiler) , given the complexity of to&)-‘5 
microarchitectures. 

Recognizing the tedious and difficult nature of assembl\ 
coding, most media-processing hardware vendors ha\-e 
developed programming~language abstractions. These gi\.e 
an application developer access to the low-level media-pro- 
cessing primitives without having to actually write assembl> 
lang:uage co&. Typically, this approach results in 3 function- 
call-like abstraction that represents one-to-one mapping 
between a function call and a media-processing instruction. 

There are several benefits to this approach. First, the com- 
piler-not the developer-performs machine~specilic opti- 
mizations such as register allocation and instruction 
scheduling. Second, this method integrates media-process- 
ing operations directly into the surrounding high-level code 
Lwithout an expensive procedure call to a separate assembly 
language routine. Third, it provides a degree of transporta- 
bility and isolation from the specifics of the underlying harci- 
wart implementation. If the media-processing primitives do 
not exist in hardware on the particular target machine, the 
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compiler can replace the media-processing macro with a set 
of equiJ;alent operations. 

The most common language extension for specifying media- 
processing primitives is to provide function-call-like macros 
n-ithin the C programming language. C compilers for the HP 
1LAX2. Intel MMX, MicroUnity, Sun VIS, and Philips Trimedia’ 
architectures suppol~ this approach. Several articles in this spe- 
cial issue give excellent code examples as illustrations. Each 
macro dii-ectly translates to a single media-processing instruc- 
tion, and the compiler allocates registers and schedules instruc- 
tions. This approach would be even more attractive to 
application developers if the industry agreed to a common set 
of macros. rather than having a different set from each vendor. 

Future directions for corn 
While macros may be an acceptable-and even efficient- 

solution for invoking multimedia instructions within a high- 
le\.el language, subword parallelism could be further 
exploited with automatic compilation from high-level lan- 
guages to multimedia instructions. Some research directions 
ton-ard automatic compilation techniques for media-pro- 
cessing architectures are discussed next. 

Data streaming. One of the keys to a fast media-pro- 
cessing application is the efficient streaming of data into and 
out of the processor. Multimedia programs such as video 
decompression stress the data memory system in ways that 
the multile\-el cache hierarchies of many general-purpose 
pl-ocessors cannot handle efficiently. These programs are 
data intensive with working sets bigger than many first-level 
caches. Streaming memory systems and compiler optimiza- 
tions aimed at reducing memory latency (for example, 
prefetching) have the potential to improve these applica- 
tions’ performance.” Current research in data and compu- 
tation transformations for parallel machines” may provide 
starting points for further gains in this area. 

Subword parallelism. To fully automate the compilation 
pi-ocess for media-processing architectures, the compiler 
must recognize opportunities for using subword-parallel (or 
pack&data) instructions. This requires techniques that iden- 
tify the maximum width of the significant bits in the result of 
each operation. The compiler can obtain this information 
from the types of variables involved in the operation or from 
an analysis of the manipulation of these variables. (For exam- 
ple, if a variable is logically ANDed with Oxff, we know that 
all but the last 8 bits are zero.) Each of these information 
sources has its problems. With type information, a pro- 
~‘ammer‘s indiscriminate use of unnecessarily large data 
types may hide opportunities for subworcl~parallel instruc- 
tions. Techniques such as Function Width Analysis,14 used 
in logic synthesis systems to find sequences of instructions 
amenable for conversion to programmable logic. may iden- 
tify opportunities for subword parallelism. However, code 
sequences within loop structures with no clear iteration 
bound rnay make the compiler estimation of the function 
width too pessimistic. 

Vectorization. Media-processing techniques have parallels 
in the compilation of numerical codes for vector machines. 
One of the greatest challenges for this new generation of “vet- 
torizing” optimizations is that the media-processing applica- 



tions are written in C, not Fortran. C’s use of pointers makes 
the determination of alias information difficult. Improvements 
in interprocedural analysis or the use of programmer-speci- 
fied directives would greatly improve the ability of the com- 
piler to generate parallel or suhword-parallel code. 

THE EVOLUTION AND REFINEMENT of media-pro- 
cessing hardware has just begun. As programmable proces- 
sors or coprocessors with media-processing enhancements 
gradually replace fixed-function, special-purpose devices, 
compiler support for these features will also improve. Today, 
an application developer who organizes program and data 
structures to exploit media-processing hardware achieves 
the best performance. Eventually, language extensions will 
probably emerge to support improved programmer effi- 
ciency without loss of application performance. Media pro- 
cessing-with its almost limitless appetite for computational 
power-provides an exciting new target for hardware and 
software design innovation. Q 
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