
Guest Editors’ Introduction:

Ruby B. Lee

Hewlett-Packard

Michael D. Smith

Harvard University

igital information processing used
to involve only numbers and text.
Graphical user interfaces (GUS)-

with pull-down menus. icons. and win-
dows-extended this to txo-dimensional
graphics. Now we are seeing a transition to
media-rich digital information This includes
images, video, audio, 2D and 31~ graphics,
animation. text, and numbers-collectively
called multimedia information. Media pro-
cessing-a shorter term for digital multime-
dia information processing-is the decoding,
encoding, interpretation, enhancement. and
rendering of digital multimedia information

IMultimedia information has existed for a
long time. but in the past it in\.olved analog
processing. When we digitally represent
images, I;ideo, audio, graphics. and anima-
tion, we reduce them to binary bits. which
can be processed by digital processors.

Real-time digital \,ideo and audio. how-
ever, place certain minimum performance
constraints on information de\-ices and conl-
puters For example. displaying MPEG-1
standard compressed \?deo requires a
device to decode and r-ender 30 video
frames per second, each frame comprising
on the order of 1Oi pixels. The processing
complexity is on the order of 1Oj operations
per pixel per second, requiring on the order
of 10’ MOPS (million operations per sec-
ond). .blI’Ix~-2 11x5 rrnrrl~~ 0lAL CCIIltdlIl four
times as many pixels and more complex
decoding, requirmg on the order of 1 GOPS
(billion operations per second). Dealing with
multimedia information thus requires a
quantum leap in total computation, storage.
and transmission, heralding a new era for
computer designers.

Along with the need for higher perfor-
mance, there is a paradoxical price constraint
on media-processing computers. Video and
audio have long been the media of entertain-
ment and communications. and consumers

expect relatively low prices for devices such
as televisions, VCRs, telephones, and game
machines. So media processing represents a
challenging design target: higher performance
computers at an ever lower cost.

dewices
cessin

Initially, a separate special-purpose device
or chip processed each media type. Audio,
video, and 3D graphics required separate
boards, each with its own specialized pro-
cessing chips and memory.

Specialkpurpose audio chips with algo-
rithms implemented in hardware evolved to
chips we could configure for more than one
algorithm, and then to digital signal proces-
sors (DSPs), which we could program for
different algorithms. However, each audio
data stream needed a separate DSP. For
example, we had to use a separate DSP for
each channel of sound, and another for tele-
phony. In addition, the programmability
tended to be at a low level, requiring DSP
programmers to understand the underlying
hardware very well.

Video and 3D graphics require greater
bandwidth and processing performance than
low-cost DSPs for audio or modems can pro-
vide. Today, video support consists of either
I> separate special-purpose video chips’,’ for
MPCG-1, MPEG-2, did H.&l stadards. 2)

multi-algorithm video chip sets that imple-
ment a group of relatively similar video algo-
rithms; or 3) programmable video processors.

A video processor can be considered a very
sophisticated DSP specialized for processing
pixel data Guttag et al. give an example,’ a
multiprocessor on a single chip. The
TMS320C82 is a cost-reduced version, which
can be programmed to support many inter-
esting multimedia applications, including
H.324 videoconferencing over existing tele-
phone lines. (See Golston’s article, this issue.)

6 lEEE Micro 0272.1732/96/$5.00 0 1996 IEEE

As video, audio, and graphics use increases, designers have
considered consolidating memory and processing require-
ments. A common memory allows dynamic redistribution of
memory resources based on the workload or the multimedia
data mix. Consolidated processing is feasible because proces-
sors that satisfy video requirements can often meet the needs
of other media data types with minimal incremental cost. In
addition, combining memory and processing resources can
reduce the cost and footprint of a media-processing device.
However, a common memory system must have access band-
width equivalent to the sum of the access needs of the sep-
arate media data types it services. Similarly, a common
processor must have computational bandwidth equivalent to
the sum of their processing needs.

Along these lines, the next step in the media-processing
evolution appears to be media coprocessors and media
processors. A media coprocessor is a computing device, usu-
ally a single chip, that simultaneously supports processing
requirements of different media data types. It works in con-
junction with a general-purpose processor that handles such
functions as memory management, access protection, text
processing, and number crunching. Golston’s article in this
issue discusses a sophisticated DSP that can also be called a
media coprocessor (as do works by Foley4 and Rathnam and
Slavenburg’ elsewhere).

A media processor also simultaneously processes different
media data types, but it functions as a genera-purpose
processor as well. Hansen’s article presents this issue’s exam-
ple of a media processor.

An alternative to these approaches is adding multimedia
acceleration features to a general-purpose processor.6 In this
issue, articles by Peleg and Weiser, Tremblay et al., and Lee
discuss such multimedia extensions.

From the point of view of general-purpose microproces-
sors, the support of new data types often evolves from spe-
cial-purpose chips, to optional coprocessors, to a non-optional
part of a microprocessor’s instruction set architecture (ISA).
This evolution path was true for floating-point data types. For
graphics data types, many microprocessors. such as the i860,
M88110, and PA-RISC, have already introduced specialized
support for graphics at the ISA level.‘~” While some of these
instructions also accelerate other forms of multimedia data,
the designers specifically targeted graphics functionality. The
design goal of adding support in microprocessors for all forms
of multimedia data has come more recently.

In the next few processor generations, the development of
media processors with general-purpose functionality is like-
ly to converge with the evolution of general-purpose micrcl-
processors with multimedia extensions. While these processor
types’ major and secondary design targets are reversed, both
may eventually cover and streamline the needs of general-
purpose processing and media processing in full.

Multimedia extensions for microprocessors
Early attempts at introducing multimedia extensions into

microprocessors have resulted in many similarities, with
some notable differences. The basic similarity is that they are
all based on operating in parallel on lower precision data

Media processing represents a

challenging design target:

higher performance computers

at an ever lower cost.

packed into higher precision words. While this concept has
appeared sporadically in earlier computers sucl~ as the llliac
IV, it has not been formalized, especially in its current rein-
carnation in microprocessors. The article by Lee in this issue
attempts to formalize subword parallelism as a general tech-
nique for operation parallelism in processor design.

With the PA-71OOLC, Hewlett-Packard introduced a small
set of multimedia acceleration extensions, MAXI ,6 which
performed parallel subword arithmetic. Though thle design
goal was to support all forms of multimedia, the application
that best illustrated its performance was real-time MPEG-1,‘”
which was achieved with high-level C software, using macros
to directly invoke MAX-l instructions.

Next, Sun introduced VIS, a much larger set of multime-
dia extensions for UltrdSparc microprocessors (see the arti-
cle by Tremblay and coauthors in this issue). In addition to
the parallel arithmetic instructions, VIS provides novel
instructions specifically designed for reducing memory laten-
cy for algorithms that manipulate visual data. In addition, it
includes a special-purpose instruction that computes the sum
of absolute differences of eight pairs of pixels, simil.ar to that
found in media coprocessors such as Philips’ Trimedia.’

Then, Hewlett-Packard introduced MAX-2 with its 64bit
PA-RISC 2.0 microprocessors.” MAX-2 added a few new
instructions to MAX-l for subword data alignment and
rearrangement to further support s&word parallelism. MAX
2 is interesting in its attempt to provide a minimalistic set of
general-purpose media acceleration primitives. (See Lee’s
article in this issue.)

The MMX technology is a set of multimedia extensions for
the Intel x86 family of processors (see Peleg’s and Weiser’s
article in this issue). It lies between MAX-2 and VIS in terms
of both the number and complexity of new instructions. The
Iw\IIx designers have skillfully integrated a useful set of media
acceleration instructions within the somewhat constrained
register structure of the x86 architecture. MMX shares some
characteristics of both MAX-2 and VIS, and also includes
interesting new instructions, such as the parallel 16.bit mul-
tiply-accumulate instruction.

VIS, MAX-2, and MMX all have the Same basic goal: to pro-
vide high-performance media processing on a genera-pur-
pose microprocessor. All three support the full set of
subword-parallel instructions on 16-bit subwords, with a par-
allelism of four subwords per 64-bit register word. Differences
exist in the type and amount of support they provide, some
of which are driven by the needs of the target markets. For
example, some support is provided for a-bit subwords when

August 1996 7

target mdrkets include lower end multimedia (for eXmlple,

games) in addition to higher fidelity multimedia (for example.
workstations and medical imaging). An evaluation of the
importance of the differences awaits the generation of com-
parable application performance data.

Software support
Currently, application developers have three common

methods for accessing media-processing hardware within a
system. They can

l invoke vendor-supplied, media-processing libraries.
0 rewrite key portions of the application in assembly- lan-

guage using the media-processing instructions: or
l code in a high-level language (HLL) and use vendor-

supplied macros that make available the function&t)-
of the media-processing primitives through a simple
function-call-like interface.

The simplest approach to improving media-processing
application performance is to rewrite the system libraries to
employ the media-processing hardware. The clear advan-
tage of this approach is that existing applications can irnme-
diately take advantage of the new hardn;are without
recompilation. However, the restriction of media-processing
hardware to the system libraries also limits potential perfor-
mance benefits. An application’s performance will not
improve unless it invokes the appropriate system libraries.
and the overheads inherent in the general interfaces associ-
ated with syslem ftmctions will limit application performance
improvements. Even so, this is the easiest approach for a sys-
tern vendor, and vendors have announced or plan to pro-
vide media-processing-enhanced libraries.

At the other end of the programming spectrum, an appli-
cation developer can benefit from media-processing hard-
ware by rewriting key portions of an application in assembl)-
language. Though this approach gives a developer gl-eat flex-
ibility, it is generally tedious and error prone. In addition. it
does not guarantee a performance win (over code produced
by an optimizing compiler) , given the complexity of to&)-‘5
microarchitectures.

Recognizing the tedious and difficult nature of assembl\
coding, most media-processing hardware vendors ha\-e
developed programming~language abstractions. These gi\.e
an application developer access to the low-level media-pro-
cessing primitives without having to actually write assembl>
lang:uage co&. Typically, this approach results in 3 function-
call-like abstraction that represents one-to-one mapping
between a function call and a media-processing instruction.

There are several benefits to this approach. First, the com-
piler-not the developer-performs machine~specilic opti-
mizations such as register allocation and instruction
scheduling. Second, this method integrates media-process-
ing operations directly into the surrounding high-level code
Lwithout an expensive procedure call to a separate assembly
language routine. Third, it provides a degree of transporta-
bility and isolation from the specifics of the underlying harci-
wart implementation. If the media-processing primitives do
not exist in hardware on the particular target machine, the

8 IEEE Micro

compiler can replace the media-processing macro with a set
of equiJ;alent operations.

The most common language extension for specifying media-
processing primitives is to provide function-call-like macros
n-ithin the C programming language. C compilers for the HP
1LAX2. Intel MMX, MicroUnity, Sun VIS, and Philips Trimedia’
architectures suppol~ this approach. Several articles in this spe-
cial issue give excellent code examples as illustrations. Each
macro dii-ectly translates to a single media-processing instruc-
tion, and the compiler allocates registers and schedules instruc-
tions. This approach would be even more attractive to
application developers if the industry agreed to a common set
of macros. rather than having a different set from each vendor.

Future directions for corn
While macros may be an acceptable-and even efficient-

solution for invoking multimedia instructions within a high-
le\.el language, subword parallelism could be further
exploited with automatic compilation from high-level lan-
guages to multimedia instructions. Some research directions
ton-ard automatic compilation techniques for media-pro-
cessing architectures are discussed next.

Data streaming. One of the keys to a fast media-pro-
cessing application is the efficient streaming of data into and
out of the processor. Multimedia programs such as video
decompression stress the data memory system in ways that
the multile\-el cache hierarchies of many general-purpose
pl-ocessors cannot handle efficiently. These programs are
data intensive with working sets bigger than many first-level
caches. Streaming memory systems and compiler optimiza-
tions aimed at reducing memory latency (for example,
prefetching) have the potential to improve these applica-
tions’ performance.” Current research in data and compu-
tation transformations for parallel machines” may provide
starting points for further gains in this area.

Subword parallelism. To fully automate the compilation
pi-ocess for media-processing architectures, the compiler
must recognize opportunities for using subword-parallel (or
pack&data) instructions. This requires techniques that iden-
tify the maximum width of the significant bits in the result of
each operation. The compiler can obtain this information
from the types of variables involved in the operation or from
an analysis of the manipulation of these variables. (For exam-
ple, if a variable is logically ANDed with Oxff, we know that
all but the last 8 bits are zero.) Each of these information
sources has its problems. With type information, a pro-
~‘ammer‘s indiscriminate use of unnecessarily large data
types may hide opportunities for subworcl~parallel instruc-
tions. Techniques such as Function Width Analysis,14 used
in logic synthesis systems to find sequences of instructions
amenable for conversion to programmable logic. may iden-
tify opportunities for subword parallelism. However, code
sequences within loop structures with no clear iteration
bound rnay make the compiler estimation of the function
width too pessimistic.

Vectorization. Media-processing techniques have parallels
in the compilation of numerical codes for vector machines.
One of the greatest challenges for this new generation of “vet-
torizing” optimizations is that the media-processing applica-

tions are written in C, not Fortran. C’s use of pointers makes
the determination of alias information difficult. Improvements
in interprocedural analysis or the use of programmer-speci-
fied directives would greatly improve the ability of the com-
piler to generate parallel or suhword-parallel code.

THE EVOLUTION AND REFINEMENT of media-pro-
cessing hardware has just begun. As programmable proces-
sors or coprocessors with media-processing enhancements
gradually replace fixed-function, special-purpose devices,
compiler support for these features will also improve. Today,
an application developer who organizes program and data
structures to exploit media-processing hardware achieves
the best performance. Eventually, language extensions will
probably emerge to support improved programmer effi-
ciency without loss of application performance. Media pro-
cessing-with its almost limitless appetite for computational
power-provides an exciting new target for hardware and
software design innovation. Q

References
1.

2.

3.

4.

5.

6

7.

8.

9.

10.

11.

12.

13.

i Kondo etal., “Two-Chip MPEG-2 Video Encoder,” HEMicro,
Vol. 16, No. 2,Apr. 1996, pp. 51-58.
CL480 and CL484 VideoCD Decoder User’s Manual, Part
Number 92-0484-I 01, C-Cube Microsystems Inc., Milpltas,
Calif , 1996.

Ruby B. Lee is chief architect for multi-
media architecture and senior architect for
processors and systems in the Computer
Systems Organization at Hewlett-Packard.
She was instrumental in developing the
architecture of several generations of PA-
RISC processors and systems. She is also

a consulting professor of electric&l engineering at Stanford
LJniversity. Her current interests are in operation parallelism,
media processing, and system architecture.

Lee holds a BA from Cornell University. and an MS in com-
puter science and a PhD in electrical engineering fl-om
Stanford University. She holds 12 patents in processor arch-
tecture, pipeline design, cache hints, branch optimizations,
and multimedia architecture and algorithms. She is a mem-
ber of the IEEE, ACM, Phi Beta Kappa, and Alpha Lambda
Delta.

K. Guttag et al., “A Single-Chip Multiprocessor for Multimedia:
The MVP,” /EEE Computer Graphics & Applications, Vol 12, No.
6, Nov. 1992, pp. 53-64
P. Foley, “The Mpact Media Processor Redefines the Multimedia
PC,” Proc. Compcon, IEEE Computer Society Press, Los Alamltos,
Calif., 1996, pp. 311-318.
S. Rathnam and G. Slavenburg, “An Architectural Overview of
the Programmable MultImedia Processor, TM-l,” froc.
Compcon, IEEE CS Press, 1996, pp 319-326.
R. Lee, “Accelerating Multimedia with Enhanced Micro-
processors,” /EEE Micro, Vol. 15, No. 2, Apr. 1995, pp. 22-32.
L. Kohn and N. Margulls, “Introducing the Intel i860 64-Bit
Microprocessor,” /EEE Micro, Vol. 9, No. 4, Aug 1989, pp. 15.
30.
K. Dlefendorff and M. Allen, “Organization of the Motorola
88110 Superscalar RISC Microprocessor,” IEEE Micro, Vol. 12,
No. 2, Apr. 1992, pp. 40-63.

Michael D. Smith is an assistant profes-
sor of electrical engineering and com-
puter science in the Division of Applied
Sciences at Harvard University. His
research focuses on the experimental
realization of innovative compilation
techniques and novel computer architec-

tures to improve the capability and performance of com-
puter systems. Earlier, he worked for Honeywell Information
Systems, where he designed CPU boards and VLSI chip sets
for a minicomputer product line.

Smith has a BS degree in electrical engineering and com-
puter science from Princeton LJniversity, an MS degree in
electrical engineering from Worcester Polytechnic Institute,
and a PhD in electrical engineering from Stanford University.
He is a member of the IEEE and the ACM, and is the recipi-
ent of a 1974 NSF Young Investigator Award.

C. Dowdell and L Thayer, “Scalable Graphics Enhancements Address questions concerning this special issue to Ruby B.
for PA-RISC Workstations,” Proc Compcon, IEEE CS Press, Lee at Hewlett~Packard, 19410 Homestead Rd., MS 43UG.
1992, pp. 122-128. Cupertino, CA 95014; rblee@cup.hp.com.
L. Gwennap, “New PA-RISC Processor Decodes MPEG Video,”
Microprocessor Report, Vol. 8, No. 1, Jan. 24, 1994, pp 16-17.
R Lee and J. Huck, “64-bit and MultimedIa Extensions for the
PA-RISC 2.0 Architecture,” Proc. Compcon, IEEE CS Press, 1996,
pp. 152-160.
D. Zucker, M. Flynn, and R. Lee, “lmprovlng Performance for
Software MPEG Players,” Proc. Compcoon, IEEE CS Press, 1996,
pp. 327-332.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 150 Medium 15 1 High 152
J. Anderson, S Amaraslnghe, and M. Lam, “Data and

Computation Transformations for Multiprocessors,” Proc. Fifth
ACM SlGPLAN Symp. Prinaples and Practice of Parallel
Programming, ACM, New York, 1995, pp. 166-178.

14. R. Razdan and M.D. Smith, “A High-Performance Micro-
architecture with Hardware-Programmable Functional Units,”
Proc. 27th Ann. IEEE/ACM Int’l Symp. Microarchitecture, IEEE,
Piscataway, N J., 1994, pp. 172-180.

August 1996 9

