
 

 

Abstract -- Distributed Denial of Service (DDoS) attack is a 
critical threat to the Internet. Currently, most ISPs merely rely 
on manual detection of DDoS attacks after which offline fine-
grain traffic analysis is performed and new filtering rules are 
installed manually to the routers. The need of human intervention 
results in poor response time and fails to protect the victim before 
severe damages are realized. The expressiveness of existing 
filtering rules is also too limited and rigid when compared to the 
ever-evolving characteristics of the attacking packets. Recently, 
we have proposed a DDoS defense architecture that supports 
distributed detection and automated on-line attack 
characterization. In this paper, we will focus on the design and 
evaluation of the automated attack  characterization, selective 
packet discarding and overload control portion of the proposed 
architecture. Our key idea is to prioritize packets based on a per-
packet score which estimates the legitimacy of a packet given the 
attribute values it carries. Special considerations are made to 
ensure that the scheme is amenable to high-speed hardware 
implementation. Once the score of a packet is computed, we 
perform  score-based selective packet discarding where the 
dropping threshold is dynamically adjusted based on (1)  the 
score distribution of recent incoming packets and (2) the current 
level of overload of the system. 
 
Keywords— System design, Simulations, Denial-of-Service 
Attack, Security, Overload Control, Selective Packet Discarding, 
Traffic characterization. 
 

I. MOTIVATION 
 
One of the major threats to cyber security is  Distributed 
Denial-of-Service (DDoS) attack in which the victim 
network element(s) are bombarded with high volume of 
fictitious, attacking packets originated from a large 
number of machines. The aim of the attack is to 
overload the victim and render it incapable of 
performing normal transactions. DDoS attacks can be 
categorized into end-point attacks and infrastructure 
attacks. In an end-point attack, the victim can be an 
individual end-host or, more typically, an entire 
customer stub-network served by an Internet Service 
Provider (ISP). In an infrastructure attack, high volume 
of attacking packets are forced through a port of an ISP 
router to create one or more choke-points within the ISP 
infrastructure based on the knowledge of the routing 
pattern within the domain. Currently, most ISPs merely 
rely on manual detection of DDoS attacks. Once an 
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attack is reported, an offline fine-grain traffic analysis is 
performed by a subject-matter expert to identify and 
characterize the attacking packets. New filtering rules/ 
access control list are then constructed and installed 
manually to the routers according to the outcome of 
attack characterization. The need of human intervention 
results in poor response time and fails to protect the 
victim before severe damages are realized. This 
procedure also lacks adaptability and renders the system 
vulnerable towards fast-varying DDoS attacks. Further, 
the expressiveness of existing rule-based filtering is too 
limited as it requires an explicit specification of all types 
of packets to be discarded.  As the difference between 
legitimate and attacking packets become increasingly 
subtle, the number of required filtering rules as well as 
the number of packet attributes included in each rule 
explode. Increase in rule-set complexity also poses 
serious scalability problems for high-speed 
implementation of rule-based filtering. 
 
Recently, the DDoS problem has attracted much 
attention from the research community.  So far, the 
focus has been on the design of traffic marking and 
traceback protocols [Be01, Pa01, Sa01, Sn01] which 
enable downstream routers to determine and notify the 
upstream routers of the attacking packets. Most of the 
work emphasizes the backward compatibility of protocol 
support for traceback under the existing Internet 
infrastructure. Once the upstream sources of the attack 
have been identified, proposed pushback mechanisms 
[Io02, Ya02] are used to contain the damage of the 
attack. However, the effectiveness of such an approach 
is contingent upon the ability to extract a precise 
characterization of the attacking packets. Without such 
characterization, the legitimate traffic within the 
suspicious flows will be equally affected by the 
pushback mechanism.  While there has been recent work 
by the data-mining research community to recognize 
intrusion patterns using offline machine-learning 
approaches [Le98, Ma99], these schemes are mostly 
offline-oriented. An exception to this trend is the D-
WARD approach [Mi02], which does perform limited 
statistical traffic profiling at the edge of the networks to 
perform online detection of new types of DDoS attacks. 
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By monitoring the nominal per-destination type traffic 
arrival and departure rate of TCP, UDP, ICMP packets, 
as well as any abnormal asymmetrical behavior of the 
two-way traffic at the edge router connecting to a stub-
network, D-WARD aims at stopping DDoS attacks near 
their sources, i.e., the ingress routers. While such 
"source-side" tackling approach is attractive in terms of 
having less demanding operating-speed and scalability 
requirements, its viability hinges on the voluntary 
cooperation of majority of ingress network 
administrators internet-wide. In theory, one can 
circumvent this deployment problem by applying the D-
WARD approach to the backbone network. However, in 
order to realize such a backbone approach, one must 
address the key scalability issues such as the large 
number of targets required to be protected and the high 
operating speed within the backbone network. This is 
indeed the emphasis of our proposed scheme. There are 
also a small set of commercial products [Mazu, Rive] 
which advertise limited support of statistics-based 
adaptive filtering techniques. However, most of these 
solutions do not fully automate packet differentiation or 
filter enforcement. Instead, they only recommend a set 
of binary filter rules to the network administrator to be 
installed in their routers or firewalls. The recommended 
rule set is often too complex to be comprehensible, let 
alone to be debugged or modified. The technical details 
of their statistics-based adaptive filtering schemes are 
not available to the public. The performance of the 
schemes, especially in terms of scalability and impact on 
legitimate traffic is not clear either. The situation is well 
summarized by a quote from a recent article on anti-DoS 
device review   [Fo01]: 
 

"In the end, we felt as though we were left playing 
Russian roulette when it came to installing the 
recommended filters." 

  
The rest of this paper is organized as follows:  in Section 
II, we provide an overview of the entire PacketScore 
DDoS defense architecture. In Section III, we focus on 
the design and implementation of the intelligent packet 
differentiation, selective discarding and overload control 
portion of our proposal, which is the main subject of this 
paper.  In particular, we will concentrate on a standalone 
implementation of these schemes, which is directly 
applicable for protecting infrastructure DDoS attacks. 
Due to limited space, the details of their distributed 
implementation are beyond the scope of this paper, and 
will be the subject of a sequel of this paper. In Section 
IV, we evaluate the performance of the standalone 
packet differentiation/ discarding scheme. The paper is 

concluded in Section V with a list of future investigation 
directions. 
 

II. OVERVIEW OF THE PACKETSCORE APPROACH 
 
Recently, we have proposed adefense scheme based on 
distributed detection and automated on-line attack 
characterization [La03]. The proposed scheme consists 
of the following 3 phases: 
 
• Detect the onset of an attack and identify the victim 

by monitoring four key traffic statistics of each 
protected target while keeping minimum per-target 
states. 

• Differentiate between legitimate and attacking 
packets destined towards the victim based on a 
readily-computed, Bayesian-theoretic metric of each 
packet. The metric is the so-called "Conditional 
Legitimate Probability"  (CLP).  

• Discard packets selectively by comparing the CLP 
of each packet with a dynamic threshold. The 
threshold is adjusted according to (1) the 
distribution of CLP of all suspicious packets and (2) 
the congestion level of the victim.   

 
We name our scheme the PacketScore approach because 
CLP can be viewed as a score which estimates the 
legitimacy of a suspicious packet. By taking a score-
based filtering approach, we avoid the problems of 
conventional binary rule-based filtering discussed in 
Section I. The score-based approach also enables the 
prioritization of different types of suspicious packets. It 
is much more difficult, if not impossible, for rule-based 
filtering to support such prioritization. The ability to 
prioritize becomes even more important when a full 
characterization of the attacking packets becomes 
infeasible. By linking the CLP discard threshold to the 
congestion level of the victim, our approach allows the 
victim system to opportunistically accept more 
potentially legitimate traffic as its capacity permits. In 
contrast, once a rule-based filtering scheme is 
configured to discard a specific type of packets, it does 
so regardless of the victim utilization.   
 
For end-point attacks, we employ a scalable, distributed 
attack detection process using Bloom filter/ leaky bucket 
arrays (BFLBA) similar to those proposed by [Fe01, 
Es02] to monitor key traffic statistics of each protected 
target. The BFLBA's allow us to simultaneously monitor 
such statistics for a large number of protected targets 
while keeping minimal per-target state information. 
Distributed attack detection is realized via a DDoS 
control server (DCS) which correlates and consolidates 



 

 

possible incidents reported by routers residing along a 
security perimeter. We refer such routers as Detecting-
Differentiating-Discarding routers (3D-R). Once an 
attack victim is identified, the 3D-Rs collaborate with 
the DCS to perform a distributed, online 
characterization of the attacking traffic by comparing 
the fine-grain characteristics of the suspicious traffic 
with a nominal traffic profile of the victim. The result 
enables each 3D-R to compute a "score", i.e., the CLP, 
for each suspicious packet at wire-speed which ranks the 
likelihood of the packet being an attacking packet, given 
the attribute values it carries, using a Bayesian-theoretic 
approach. Based on a dynamic thresholding mechanism 
against such score, the 3D-Rs perform selective packet 
discarding and overload control for the victim in a 
distributed manner.  The DCS coordinates this 
distributed overload control process by adjusting the 
threshold dynamically based on the arrival rate of 
suspicious traffic and score distributions reported by 
different 3D-Rs. Fig. 1 depicts the support of distributed 
detection and overload control by a set of 3D-Rs and 
DCSs. 
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Figure 1: Deployment of 3D-Rs and DCSs to tackle DDoS Attacks 
 
From here onwards, we focus the design and 
implementation of the intelligent packet differentiation, 
selective discarding and overload control portion of our 
proposal, which is the main subject of this paper.  In 
particular, we will concentrate on a standalone 
implementation of these schemes, which is directly 
applicable for protecting infrastructure DDoS attacks.  
 

III. DETAILED PACKETSCORE METHODOLOGIES 
 
In this section, we first discuss the design issues as well 
as implementation details related to the packet 
differentiation, selective packet discarding and overload 
control the proposed scheme.  
 

A. Packet Differentiation via Fine-grain 
Traffic Profile Comparison 

 
Once a DDoS attack is detected, the next step is to 
distinguish the attacking packets from the legitimate 
ones amongst the suspicious traffic. Our approach is to 
perform online profiling of the suspicious traffic and 
compare the findings with the nominal traffic profile of 
the victim. The viability of this approach is based on the 
premise that there are some traffic characteristics that 
are inherently stable during normal network operations 
of a target network, in the absence of DDoS attacks.  
  
A disproportional increase in the relative frequency of a 
particular packet attribute value is an indication that the 
attacking packets also share the same value for that 
particular attribute. The greater the disproportional 
increase, the stronger the indication.  The more  
"abnormal" attribute values a packet possesses, the 
higher the probability that the packet is an attacking 
packet. For example, if it is found via that the suspicious 
packets contain abnormally high percentage of (1) UDP 
packets and (2) packets of size S and (3) packets with 
TTL value T, then UDP packets of size S and TTL value 
T destined to the DDoS victim should be treated as 
prime suspects and given lower priority upon selective 
packet discarding during overload.   
 
Candidate packet attributes considered to be used for 
traffic profiling include: the marginal distributions of 
the fraction1 of recently arrived packets having various 
(1) IP protocol-type values, (2) packet size, (3) server2 
port numbers, (4) source/ destination IP prefixes 3, (5) 
Time-to-Live (TTL) values, (6) IP/TCP header length4, 
(7) TCP flag patterns. We are also interested in the 
fraction of packets which (8) use IP fragmentation and 
(9) bear incorrect IP/TCP/UDP checksums. It is 
worthwhile to consider the joint distribution of the 
fraction of packets having various combinations of (10) 
TTL value and source IP prefix, (11) packet-size and 
                                                      
1  Profiling against relative frequency of different attribute values 
(instead of absolute packet arrival rates) helps to alleviate the 
difficulties caused by the expected fluctuation of nominal traffic 
arrival rates due to time-of-the-day and day-of-the-week behavior. 
2 We employ the heuristics of taking the server port number to be the 
minimum of the source and destination port numbers carried by the 
packet. This eliminate the need of identifying whether the packet is 
client-bound or server-bound. Also, since client port number is 
usually selected in random by the client operating system, it does not 
meet  the “invariant” criteria to be used for profiling. 
3 In our study, we have used the 16-bit IP prefix as an approximation 
of the IP subnet. In practice, we can extract the actual prefix-length 
of the subnet from routing tables and/or route-server databases.  
4 This is to detect possible abuse of IP/TCP options. 



 

 

protocol-type, (12) server port number and protocol-
type, as well as (13) source IP prefix and TTL value.  
 
To validate our claim of the relatively “invariant” nature 
of  the distribution of  the above packet attributes, we 
have conducted extensive statistical analysis on real-life 
Internet traces collected from the traffic archive of the 
WIDE-project [WIDE]. Fig. 2(a)-(d) show the time 
variation of  the distribution of various packet attributes 
values observed from a moderately loaded wide area 
network link. For each attribute, the relative frequency 
of its values are computed every 10 minutes for the 
period between May 10, 1999 8:00pm and May 11, 
2:00pm for a total of 108 non-overlapping periods. Fig. 
2(a) shows the time-variation of the distribution of TTL 
values. In particular, the ends of the error-bar 
correspond to the maximum and minimum fraction 
observed for the given TTL value over the 
aforementioned 18-hour interval and the black-dot 
represents the average. The corresponding time-varying 
distributions for protocol-type, packet-size, TCP-flag 
pattern, server port number and 16-bit source IP prefix 
are shown in Fig. 2 (b)-(f) respectively. Notice from Fig. 
2 that while the fraction of an attribute value does vary 
over the 18-hour period, the variation  is always within a 
few percentage of the total number of packets arrived 
over a 10-minute window. Due to the overwhelming 
volume of DDoS attack packets compared to normal 
ones,  the formers are expected to increase the fraction 
of particular attribute values they carry by more than a 
few percentage and change the overall distribution 
substantially. Furthermore, the variability of  nominal 
attribute value distribution can be substantially reduced 
if hourly time-of-the-day profile are used. One may 
argue that it  is relatively straightforward for a 
sophisticated attacker to learn the approximated 
distribution of some attributes, e.g. protocol-type, TCP-
flag pattern and packet-size, based on publicly available 
data on Internet traffic characteristics, and thus be able 
to generate the attribute distributions for the attacking 
packets accordingly to circumvent our profile-based 
differentiation scheme. Note however that distributions 
of other attributes such as TTL and source IP-prefixes, 
and to a lesser extent, server-port distribution, are 
expected to be site-dependent (or link/port dependent) 
and thus more difficult for an outside attacker to collect 
such information.  For instance, it is quite difficult for 
an outsider to determine the joint-distribution of source-
IP-prefix and the TTL value for a given site.  As long as 
there exists profiling information which is known only 
to the site/network-operator but not to the attacker, our 
scheme can use it as the information edge to 
differentiate among attacking and legitimate packets. 
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Figure 2 (a): Time variation of TTL value distribution 
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Figure 2 (b): Time variation of Protocol Type distribution  
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 Figure 2 (c): Time variation of Packet-size distribution 
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Figure 2 (d): Time variation of 6-bit TCP flag pattern distribution 
(e.g. SYN = 000010 = 2 ; ACK = 010000 = 16) 
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Figure 2 (e): Server Port distribution 
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Figure 2 (f): Source IP prefix distribution  
 

Figure  2: Time Variation of Packet Attribute Values Distribution  
 
 

1. Conditional Legitimate Probability 
  

In this section, we formalize the notion of conditional 
legitimate probability of a suspicious packet which 
measures the likelihood of the packet being a legitimate  
(instead of an attacking) one given the attribute values it 
possesses. Consider all the packets destined towards a 
DDoS attack target. Each packet carries a set of discrete-
valued attributes A, B, C, ....  For example, A can be the 
protocol-type, B can be the packet-size, C can be the 
TTL values etc. Let  ( , , , )nJP A B C   be the joint 
probability mass function of attribute values under 
normal operations.  The probability of a legitimate 
(attacking) packet having values a, b, c, ... for attributes 
A, B, C,...,  is given by ( , , , )nJP A a B b C c= = =   (and 

( , , , )aJP A a B b C c= = =   respectively). Similarly, we 
use ( , , , )mJP A B C   to denote the joint probability mass 
function of packet attributes measured during an attack. 
Define the conditional legitimate probability (CLP) of 
packet p as:  
 

( ) Pr ob(  is a legitmate packet | 
                          Attributes ,  , ,... of packet  are equal to
                          , , , , respectively)p p p

CLP p p
A B C p

a b c

=



Assume that there are mN  packets in total within a 
measurement interval among which nN  are from 
legitimate ones, and aN  are attacking ones. Using 
standard Bayesian argument, we have:   
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where nρ  ( mρ ) is the nominal (currently measured) 
utilization of the system, respectively. Here we have 
used /n mρ ρ  to estimate /n mN N . Observe that, since 

/n mρ ρ  is constant for all packets within the same 
observation period, one can even ignore its contribution 
when comparing and prioritizing packets based on their 
CLP values as long as the packets arrive within the same 
observation period.  If we assume the attributes to be 
independent of each other, Eq.(1) can be rewritten as, 
 

( ) ( ) ( )
( ) ,

( ) ( ) ( )
............ .(2)

n p n p n pn

m m p m p m p

P A a P B b P C c
CLP p

P A a P B b P C c
Eq

ρ
ρ

= = =
= ⋅ ⋅ ⋅ ⋅

= = =
  

where  ( )nP X  ( ( )mP X ) is the marginal probability mass 
function of packet attribute X under nominal (currently 
measured) traffic conditions, respectively. To achieve a 
compromise between profile storage requirement and 
the need to capture important inter-attribute dependency, 
we use joint distribution(s) for the strongly-correlated 
attributes while using marginal distribution(s) for the 
remaining ones. The CLP is therefore expressed in the 
form of a product of marginal and joint probability mass 
function values. In Section IV, we will compare the 
performance impact and storage requirements for  
different combinations of marginal/ joint distributions. 
 

2. Variation of Nominal Profiles  
 
In the above formulation, we have assumed that the 
nominal profiles, i.e., ( , , , )nJP A B C   and ( )nP X 's are 
constant for ease of illustration. In general, the nominal 
traffic profile is a function of time which exhibits 
periodical time-of-the-day, e.g., diurnal, day-of-the-week 
variations as well as long term trend changes. While 
long-term profile changes can be handled via periodical 
re-calibration using standard time-series forecast and 
extrapolation techniques [Br00], the daily or weekly 
variation between successive re-calibration may require 
time-of-the-day, day-of-the-week specific traffic 
profiles. To reduce storage and maintenance 
requirement of a large set of time-specific nominal  



 

 

profiles, our approach is to use a high percentile, say 95-
percentile, of the fraction of each attribute value 
observed amongst the multiple time-of-the-day nominal 
profiles as the corresponding reference value. In Section 
IV, we will investigate the performance impact due to 
inherent variation of nominal traffic profile. 
 

3. Managing Nominal Traffic Profiles using 
Iceberg-style Histograms 

 
We expect that a nominal traffic profile of each target to 
be consisted of a set of marginal and joint distributions 
of various packet attributes. This profiling information 
will be stored in the form of normalized histograms of 
one or higher dimensions.  Due to the number of 
attributes to be incorporated in profile (in the order of 
ten or more) and the large number of possible values of 
each attribute (as much as tens of thousands or more, 
e.g., in the case of possible source IP prefixes), an 
efficient data structure is required to implement such 
histograms. This is particularly important for the case of 
distributed overload control because traffic profiles have 
to be exchanged between the 3D-Rs and the DCS. 
Towards this end, we propose to use iceberg-style 
histograms [Ba02]. By "iceberg-style", it means that the 
histogram only includes those entries in the population 
which appear more frequently than a preset percentage 
threshold, say x%. This guarantees that there are no 
more than 100/x entries in the histogram.  For entries 
which are absent from the iceberg-style histogram, we 
will use the upper bound, i.e., x% as their relative 
frequency.  Due to the vast dimensions of joint 
distribution functions, an iceberg-style implementation 
is particularly important. With iceberg-style histograms, 
a fine-grain per-target profile can be kept to a 
manageable size. As we will demonstrate in Section IV, 
in practice, most packet attributes are dominated by a 
small set of  attribute values. As such, the actual number 
of non-null values, the so-called number of icebergs, in 
the corresponding iceberg histograms are much smaller 
than the maximum bound given above. More 
importantly, one-pass iceberg-style histogram 
maintainance/ updates can be implemented efficiently in 
hardware, e.g. by applying a two-stage pipelined 
approximation of the scheme proposed in [Ka03]. 
Tradeoffs between iceberg-threshold, histogram storage 
requirement and packet differentiation performance are 
discussed Section IV.  
 
To handle infrastructure attacks, each 3D-R stores and 
maintains the nominal traffic profile of each of its egress 
ports. Since there is a limited number of ports per 3D-R, 
this should not be an excessive burden.  For the case of 

end-point attacks, a large number of nominal profiles, 
namely, one per protected target, has to be stored and 
maintained. By having a DCS to coordinate distributed 
fine-grain traffic profiling, the maintenance of per-target 
nominal profiles is offloaded to the DCS.  Upon the 
detection of an end-point attack, each 3D-R simply 
measures the fine-grain profile of traffic destined 
towards the victim and forwards the local measurements 
to the DCS for aggregation and comparison with their 
nominal counterparts. In fact, the same distributed 
measurement and aggregation mechanism is used to 
establish the nominal traffic profile of each end-point 
target at during initial and periodical calibrations 5. The 
management of nominal profiles of different target end-
points within a domain can be further partitioned among 
multiple DCSs for enhanced scalability.  
 
 

4.  Real-time Traffic Profiling and Per-packet 
CLP Computation 

 
According to Eqs. (1) and (2), the real-time per-packet 
processing of a naive implementation of the CLP 
computation seems formidable: The current packet 
attribute distributions have to be updated as a result of 
the arriving packet.  The CLP for the incoming packet 
can be computed only after the packet attribute 
distributions have been updated.  To make wire-speed 
per-packet CLP computation possible, we decouple the 
update of packet attribute distribution from that of CLP 
computation to allow CLP computation and packet 
attribute distribution to be conducted in parallel, but at 
different time-scales.  With such decoupling, the CLP 
computation is based on a snapshot of   "recently" 
measured histograms while every packet arrival (unless 
additional sampling is employed) will incur changes to 
the current packet attribute histograms. To be more 
specific, a frozen set of recent histograms is used to 
generate a set of  "scorebooks" which maps a specific 
combination of attribute values to its corresponding 
"score". The scorebooks are updated periodically in a 
time-scale longer than the per-packet arrival time-scale, 
or upon detection of significant change of the measured 
traffic profile. By assuming attribute independence and 
using the logarithmic version of Eq. (2) as shown below,  
 

                                                      
5 In practice, an ISP may choose to perform comprehensive nominal 
traffic profiling for the set of "premium-paying" stub-networks only. 
For the rest of the end-points, the ISP may choose their profiles from 
a set of standard templates based on their business nature, ingress 
access speed as well as their size.  
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we can construct a scorebook for each attribute that 
maps different values of the attribute to a specific partial 
score. For instance, the partial score of a packet with 
attribute A equal to pa  is given by 

[log( ( ) log( ( )]n p m pP A a P A a= − = . According to Eq.3, we 
can sum up the partial scores of different attributes to 
yield the logarithm of the overall CLP of the packet. 
This scorebook approach enables hardware-based 
computation of per-packet CLP by replacing numerous 
floating-point multiplications and divisions in Eq.(2) 
with simple additions and table lookups. This scorebook 
approach can be readily extended to handle nominal 
profiles which contain of a mixture of marginal and joint 
packet attribute distributions.  Of course, the scorebook 
for a multiple-attribute joint-distribution will be larger.  
The size of the scorebook can be further reduced by 
adjusting (1) the iceberg threshold and (2) quantization 
steps of the score. 
 

B. Selective Packet Discarding and Overload 
Control 

 
Once the CLP is computed for each suspicious packet 
via fine-grain real-time traffic profiling, selective packet 
discarding and overload control can be conducted using 
CLP as the differentiating metric. The key idea is to 
prioritize packets based on their CLP values. Since an 
exact prioritization would require offline, multiple-pass 
operations, e.g., sorting, we take the following 
alternative approach to realize an online, one-pass 
operation: First, we maintain the cumulative distribution 
function (CDF) of the CLP of all incoming suspicious 
packets using one-pass quantile computation techniques 
described in [Ch00,Gr01]6. We then discard a suspicious 
packet if its CLP value is below a dynamically adjusted 
threshold 7 .  If there is a need to guarantee certain 

                                                      
6  Comparing to a score CDF representation using constant width 
score-buckets, a 100-quantile score CDF representation works much 
better due to the unpredictable spacing of packet scores in advance. 
Also, a 1% resolution in system utilization is already fine enough for 
overload control purpose.  
7 For practical implementation, we actually keep the CDF of log 
(CLP) of all suspicious packets and apply the discarding threshold 
against log (CLP). This is to eliminate the need of performing real-
time inverse logarithm after the partial scores of various attributes are 
summed up according to Eq. (3).  

minimum throughput for particular types of packets, we 
can incorporate such "immunity" rules by artificially 
boosting the scores of a given portion of these specific 
types of packets.  
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 Figure 3: Packet Differentiation and Overload Control 
 
Fig. 3 depicts the integrated operation between CLP 
computation and the determination of dynamic 
discarding threshold for CLP. First, a load-shedding 
algorithm, such as those described in [Ka01], is used to 
determine the fraction ( Φ ) of arriving suspicious 
packets required to be discarded in order to control the 
utilization of the victim to be below a target value. 
Typical inputs to a load-shedding algorithm include: 
current utilization of the victim, maximum (target) 
utilization allowed for the victim as well as the current 
aggregated arrival rate of suspicious traffic. (See 
Appendix I for a description of the actual load-shedding 
algorithm used in PacketScore.) Once the required 
packet-discarding percentage, Φ , is determined, the 
corresponding CLP discarding threshold, Thd, is looked 
up from a recent snapshot of the CDF of the CLP values 
of all suspicious packets. The use of a snapshot version 
of the CDF  (instead of the most up-to-date one) 
eliminates possible race-conditions between discarding 
threshold updates and CDF changes upon new packet 
arrivals. The snapshot is updated periodically or upon 
significant changes of the packet score distribution.  The 
adjustment of the CLP discarding threshold, as well as 
the load-shedding algorithm, are expected to operate at a 
time-scale which is considerably longer than the packet 



 

 

arrival time-scale. When a suspicious packet 8  arrives, 
the following tasks are performed in parallel:  
(1) The aggregate arrival rate towards the victim is 
adjusted. This, in turn, changes the input of the load-
shedding algorithm.  
(2) The packet attribute values are used for updating the 
fine-grain traffic profile, i.e. measured histograms, of 
the suspicious traffic.  
(3) The CLP-based score is computed for the arriving 
packet using frozen scorebooks generated from a recent 
snapshot of suspicious traffic profile.  
Once the score of an arriving packet is computed, the 
score CDF is updated.  The packet is then discarded if 
its score is below the current discarding threshold, Thd. 
Notice that the use of frozen scorebooks is essential for 
the parallelization of tasks (2) and (3). It is also 
important to re-emphasize that, while CLP-computation 
is always performed for each incoming packet, selective 
packet discarding only happens when the system is 
operating beyond its safe (target) utilization level targetρ . 
Otherwise, the overload control scheme will set Φ  to 
zero. 
 

IV. PERFORMANCE EVALUATION 
 
In this section, we will evaluate the performance of the 
proposed CLP-based packet-discarding scheme in a 
stand-alone setting via simulation. Unless stated 
otherwise, the default settings for the simulation is 
summarized in Table 1.  
 

Attack Type Generic attack in Section IV A 
Scorebook/ 
CDF Update 
Interval 

Every 60 seconds 

Baseline 
Profile 

Five 10-minute windows of traffic, collected 
between 8:00pm to 8:10pm, Monday through 
Friday, in the week of May 10, 1999, by the 
WIDE project [WIDE].   

Target Max. 
Load ( targetρ ) 

Set to the maximum incoming load of the 
baseline profile observed over any 10-minute 
period. This corresponds to 1660 pps for the 
default baseline profile. 

 Legitimate 
traffic 

Use a trace of the same link, collected between 
8:00pm to 10:00pm, Tue, May 11, 1999. Its 
average arrival rate is 900pps.  

Attack Intensity 10 times the nominal arrival rate 
Scoring Strategy Option 5 in Section IV D 
Iceberg Thd 90%-adaptive-coverage scheme in Section IV E   

Table 1: Default Simulation Settings 

                                                      
8 For endpoint attacks, the suspicious packets are the ones which 
destinate to the victim subnet. For infrastructure attacks, all the 
packets passing through the victim choke-point are considered to be 
suspicious. 

 
Performance Criteria: First, we examine the differences 
in the score distribution for attack and legitimate 
packets. Such differences are quantified using 2 metrics, 
namely, RA and RL as illustrated in Fig. 4.   
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Figure 4: Characterizing difference in Score Distribution between 

legitimate and attacking packets 

Let MinL (MaxA ) be the lowest (highest) score observed 
for the incoming legitimate (attacking) packets. Define  
RA (RL) to be the fraction of attacking (legitimate) 
packets which have a score below MinL  (above MaxA). 
The closer of the values of RA and RL to 100%, the better 
the score-differentiation power. In practice, the score 
distributions usually have long but thin tails due to very 
few outliner packets with extreme scores. To avoid the 
masking effect of such outliers, we have taken MinL  
(MaxA) to be the 1st  (99th) percentile of the score 
distribution of legitimate (attacking) packets. A typical 
set of score distributions for the attacking and legitimate 
packets are shown in Fig 5. 
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Figure 5: Sample Score Distributions 
While  RA and RL can quantify the score differentiation 
power, the final outcome of selective discarding also 
depends on the dynamics of the threshold update 
mechanisms. We therefore also measure the false 
positive (i.e., fraction of legitimate packets got falsely 
discarded), and false negative (i.e., fraction of attacking 
packets got falsely admitted) ratios of the proposed 
scheme.  To check the effectiveness of the overload 
control scheme, we compare the actual output utilization 

outρ  against the target maximum utilization targetρ set by 
the scheme.  
 



 

 

A. Different Attack Types 
 
We have evaluated the performance of PacketScore  in 
defending against the following types of attacks: 
• Generic attack: all attribute values of the attacking 

packets are uniformly randomized over their 
corresponding allowable ranges. 

• TCP-SYN Flood attack 
• SQL Slammer Worm attack 
• Nominal attack: all attacking packets resemble the 

most dominant type of legitimate packets observed 
in practice, i.e. 1500-byte TCP packets with server-
port 80 and TCP-flag set to ACK, with uniformly 
random source IP addresses. 

• Mixed attack: equally combines the above 4 types of 
attacks while keeping the overall attack rate to the 
10 times of that of the target rate 

• Changing attack: Similar to the Mixed attack except 
that the different types of attacks take turns. An 
attack type is randomly selected and continues for 
an exponentially distributed period. 

 
The corresponding results are depicted in Table 2. In 
general, the proposed packet scoring scheme can 
successfully distinguish between attacking and 
legitimate packets. In all cases except the Changing 
attacks, RA and RL are above 99%. It is noteworthy that 
the false positive probability for the TCP-SYN flood 
attack is kept at a very low level (0 and 0.39%). 
Although the signature of the TCP-SYN flood packets 
can easily be derived by the PacketScore scheme, the 
ability of PacketScore to prioritize legitimate TCP-SYN 
packets over attacking ones based on other packet 
attributes, e.g. source IP prefix and TTL, is an essential 
feature. Without such priorization, e.g. in the case of 
stateless rule/signature-based filtering, all TCP-SYN 
packets would have been discarded and thus ensure the 
success of the DDoS attack towards the victim.  
 
Changing attacks  are more challenging due to their 
complex/ time-varying attacking packet characteristics. 
When the average change-period of the attack is much 
longer than the measurement/ scorebook generation 
interval (300 sec vs. 60 sec in our case), the change in 
attacking packet characteristics can readily be tracked. 
However, when such changes occur at the same (or 
shorter) time-scale of the measurement update interval, 
the PacketScore scheme can be misled to defend against 
some no-longer-exist attack packets. A possible remedy 
is to shorten the measurement update interval or apply 
more sophisticated change-detection techniques [Ke93] 
on the current profile measurements to trigger and speed 

up scorebooks/ CDF updates 9 . However, even in the 
worst case, the proposed scheme can still successfully 
discard more than 94% of the attacking packets 
(together with about 11% legitimate ones). This is 
substantially better than random packet dropping as the 
aggregate arrival rate is more than 10 times of the target 
load of the system. Furthermore, outρ is successfully kept 
close to its target value in all cases. 
 

PDF Separation Attack Type % 
False 
+ ve 

% 
False - 
ve % RA  % RL 

out

target

ρ
ρ

 

Generic  0.31 4.49 99.49 99.54 0.99 
SYN flood 0 4.09 100 100 0.95 
SQL Worm 0 4.38 100 100 0.98 
Nominal 0 4.26 100 100 0.97 
Mixed 0.02 4.49 99.83 99.67 0.99 
Changing (Ave. ON 
period = 60 sec) 10.82 5.84 95.15 97.43 1.07 
Changing (Ave. ON 
period = 300 sec) 2.01 4.53 100 100 0.98 
Table 2a: 

target legitimate/ 1660 / 900 185%ρ ρ = = , based on the default 

targetρ  setting 

 
PDF Separation Attack Type % 

False 
+ ve 

% 
False 
- ve % RA  % RL 

out

target

ρ
ρ

 

Generic 1.03 0.93 99.49 99.54 0.98 
SYN flood 0.39 1.12 100 100 1.01 
SQL Worm 0.39 0.91 100 100 0.99 
Nominal 0.26 0.74 100 100 0.97 
Mixed 0.75 0.99 99.82 99.67 0.99 
Changing (Ave. ON 
period = 60 sec) 11.26 2.56 95.15 97.43 1.05 
Changing (Ave. ON 
period = 300 sec) 4.75 1.29 100 100 0.98 

Table 2b: 
target legitimate/ 1000 / 900 110%ρ ρ = = , based on a lower 

targetρ setting 

Table 2: Performance against various Attack Types under different 
target maximum system utilization  

 
The differences between Table 2a and 2b illustrate the 
tradeoffs of accepting more suspicious packets 
opportunistically by raising targetρ beyond the legitimate 

traffic load legitimateρ : When targetρ  is increased from 

110% to 185% of  legitimateρ , the fraction of falsely 
discarded legitimate packets is reduced at the expense of 
the admission of more attacking traffic. Conversely, this 
indicates that the 4-5% false negative rate in Table 2a is 
mainly due to the gap between targetρ and legitimateρ , i.e. 
the extra system capacity left over by the legitimate 
packets allows some attacking packets to slip through.  
 

                                                      
9 However, there is a limit on the minimum number of packets to be 
observed before valid histogram statistics can be derived. 



 

 

B. Increasing Attack Intensity 
 
Fig. 6 shows the proposed scheme can effectively 
provide overload control as attack intensifies. Even  
when the volume of attacking packets increases from 
one time to 25 times of the nominal load, the scheme 
still consistently allow more than 99.5% of legitimate 
packets to pass through unaffected. The attacking 
packets are admitted only due to the gap between 

targetρ and legitimateρ  as discussed before. 
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Figure 6: Effect of Increasing Attack Intensity 

 
By design, the differentiation power of PacketScore 
improves as the DDoS attack intensifies. This is because 
as attack traffic volume increases, the difference 
between the current traffic profile and the nominal one 
also increases. Conversely, this reveals a limitation of 
the PacketScore approach: it is designed to protect 
against DDoS attacks which create their damage by 
overloading the victim with their sheer-volume of 
traffic. PacketScore is not effective against attacks 
which are based on very-low traffic volume, e.g. in 
Tear-Drop or Ping-of-Death attacks where a single 
carefully crafted packet is used to crash the entire 
system. Signature-based filtering would be more 
appropriate for such types of attacks. 
 

C. Nominal Profile Sensitivity 
 
In this subsection, we study the effect of the choice of 
nominal profile. In the first case, we build the nominal 
profile based on an hourly trace collected in during 
Monday, May 10, 8:00PM—9:00 pm, 1999. This is then 
used as the baseline for scoring 5 different 2-hour long 
traces (including itself), with attacking packets added, 
collected at the same hours but different days of the 
same week. The results are depicted in Table 3.   
 

PDF 
Separation 

 % 
False 
+ve 

%  
False 
-ve % RA  % RL 

 

out

target

ρ
ρ

 

Mon 0.42 0.86 99.65 99.71 1.00 
Tue 1.78 1.65 87.61 98.54 0.99 
Wed 1.56 1.45 87.9 98.57 0.99 
Thu 38.08 0.36 0.01 66.97 1.00 
Fri 36.53 0.31 0 72.77 1.00 
Table 3:  Mon 1-hour profile applied to other days of the week 

 
PDF 
Separation 

 % 
False 
+ve 

%  
False 
-ve % RA  % RL 

 

out

target

ρ
ρ

 

Mon 0.38 4.03 99.5 99.49 0.99 
Tue 0.31 4.49 99.49 99.54 0.99 
Wed 0.31 4.34 99.5 99.55 0.99 
Thu 2.51 0.25 99.58 99.6 1.00 
Fri 1.98 0.33 99.52 99.55 1.00 

Table 4: Weekly profile applied to weekdays of the week 

 
Observed from Table 3 that while the false negative 
probability is always maintained at a very low level (at 
most 1.65%), the false positive probability for Thursday 
and Friday 1-hour traces using the Monday profile is 
unacceptably high (> 38%). Upon further examination 
of the data, we find that this is an artifact of our default 
setting of targetρ according to the maximum traffic rate of 
the baseline profile observed over any 10-minute 
window (which is about 1100pps for the Monday trace). 
Since the incoming traffic rate for the Thursday and 
Friday traces are significantly greater than the Monday 
one, such default choice of  targetρ inadvertently forces 
the system to discard a significant portion of legitimate 
packets. As shown in Table 4, the poor performance due 
to the mismatch among different daily legitimate traffic 
profile and targetρ  can be overcome by using the default 
weekly profile as described in Table 1. 
 

D. Different Scoring Strategies 
 
In this subsection, we explore the trade-offs of using 
different combinations of marginal and joint attribute 
distributions in establishing the nominal profile. Table 5 
describes the options for baseline profile/scorebook 
generation: 
 

Scoring 
Strategy 

Description 

1 Assume independence between each attribute and 
include the marginal distributions of packet-size, 
protocol-type, server-port number, TCP-flag pattern, 
TTL value in the nominal profile generation while 
excluding the source IP prefix distribution. 

2 Same as (1) except using the 3-dimensional joint-
distribution of packet-size, protocol-type and server-
port number to replace their corresponding marginal 
distributions. 



 

 

port number to replace their corresponding marginal 
distributions. 

3 Same as (1) except including the marginal distribution 
of 16-bit source IP prefixes during baseline profiling. 

4 Same as (2) except including the marginal distribution 
of 16-bit source IP prefixes during baseline profiling. 

5 Same as (4) except using the 2-dimensional joint-
distribution of 16-bit source IP prefixe and TTL value 
to replace their corresponding marginal distributions. 

Table 5: Different Options of Scoring Strategies 
 
Fig. 7 shows the differentiation performance and storage 
requirements of these five scoring options. As expected, 
among the five options, (5) yields the best scoring/ 
differentiation performance at the expense of increased 
storage size for baseline-profile and scorebook, while 
(1) has the smallest baseline-profile/ scorebook 
footprint. The performance improvement of (2) over (1), 
(as well as (4) over (3)) is due to the exploit of 
dependency among packet-size, protocol-type and 
server-port number. The improvement of (3) over (1) (as 
well as (4) over (2)) reflects the information value of  
source IP prefixes, even at a very coarse 16-bit 
granularity. The advantage of (5) over (4) illustrates the 
value of dependency information between source IP 
prefix and TTL value, which, to a large extent, captures 
the  nominal “distance” between the source and the 
site/port/link to be protected.  
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Figure 7:   Comparison of scoring strategies 

 
 

E. Setting the Iceberg Thresholds 
 
In this subsection, we investigate the impact of iceberg 
threshold value on packet differentiation performance 
and profile/ scorebook storage requirements. We have 
considered two different iceberg threshold setting 
strategies. Under the static strategy, we fix the iceberg 

thresholds for all single attribute marginal distributions, 
2-dimensional and 3-dimensional joint distributions at 
0.01, 0.001 and 0.0001 respectively.  Under the  
adaptive strategy, the iceberg threshold value is 
determined separately for each marginal/ joint 
distribution of interest so that 90%, 95% or 99% of the 
overall entries observed in the baseline trace are covered 
by the corresponding iceberg histograms. Table 6 
summarizes the results of these various approaches. As 
shown in Table 6, there is no significant difference in 
the differentiation power of all the approaches. 
However, since the adaptive iceberg-threshold setting 
strategy should be more robust against possible changes 
in nominal profile traces, it is recommended over the 
static strategy. Among different coverage of the adaptive 
strategy, the 90%-coverage produces the best balance 
between storage requirement and differentiation 
performance. It also shows that with iceberg histograms, 
each nominal profile (as well as its corresponding set of 
scorebooks) requires less than 100Kbyte of memory. 
 

PDF 
Separation 

 % 
False 
+ve 

% 
False 
-ve % RA  % RL 

out

target

ρ
ρ

 

Normalized 
Storage Req. 
(absolute size)  

 
Static 0.10 4.51 99.41 99.87 0.99 

1.0  
(13.6 Kbyte) 

Adaptive 
90% 0.30 4.48 99.49 99.53 0.99 

5.6 
(76 Kbyte) 

Adaptive 
95% 0.07 4.50 99.62 99.90 0.99 

9.4  
(127.8 Kbyte) 

Adaptive 
99% 0.04 4.54 99.95 99.92 1.00 

21.2 
(288.3 Kbyte) 

Table 6: Performance results against different thresholding methods 

 
V. CONCLUSIONS AND FUTURE WORK 

 
In this paper, we have outlined an architecture using a 
set of collaborating 3D-Rs and DCSs to defend against 
DDoS attacks. The proposed scheme leverages hardware 
implementation of advanced data-stream processing 
techniques, including one-pass operations of iceberg-
style histograms and quantile (CDF) computations, to 
enable scalable, high-speed fine-grain traffic profiling 
and per-packet scoring. We have studied the 
performance and design tradeoffs of the proposed packet 
scoring scheme in the context of a stand-alone 
implementation. Such scheme can tackle never-seen-
before  DDoS  attack types by providing a statistical-
based adaptive differentiation between attacking and 
legitimate packets to drive selective packet discarding 
and overload control at high-speed. In a sequel of this 
paper, we will study the performance of a distributed 
implementation of the proposed scheme. In particular, 
we will investigate the effects of update and feedback 



 

 

delays, as well as the impact of profile and  score CDF 
resolutions on the performance of the distributed 
implementation. We will also study the ability and 
possible enhancements of the proposed scheme for 
defending against more sophisticated DDoS attacks. 
Another investigation topic is on how the time-scale of 
updates of the scorebooks, score CDF, and dynamic 
discarding threshold, will impact the response time and 
decision error of the proposed selective packet 
discarding scheme when subject to more orchestrated 
synchronized DDoS attacks. While the current CLP-
based packet differentiation is theoretically attractive 
due to its Bayesian roots, it is conceivable to use a 
surrogate packet differentiating metric to replace CLP 
and design an even more hardware-amenable scheme 
based on a rudimentary per-attribute scoring mechanism, 
e.g. using an array of leaky-buckets.  We intend to study 
the performance and complexity trade-offs of such 
alternatives for hardware implementation purpose. 
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Appendix I 
 
Here, we describe the load-shedding algorithm by 
Kaufman [Ka01], which is used as a sub-module in the 
PacketScore scheme. Let (1 )

iiΨ = − Φ denote the 
fraction of packets permitted to pass the throttle point 
during the ( 1)thi +  interval.  Let 0 1Ψ =  and 

i
Ψ  be 

always constrained within the interval min[ ,1]Ψ , where 

min
Ψ is a small but non-zero number which prevents the 
throttle from shutting off all incoming packets. At the 
end of the ith measurement interval, the load estimate iρ  
is available and we calculate target /i iφ ρ ρ= , where 

targetρ  is the target maximum utilization allowed by the 
server (or port) which is chosen to permit the server to 
maintain a reasonable delay for all incoming packets.  If 

0iρ = , we set maxiφ φ=  where maxφ  is a large number 
whose precise value is unimportant. After iφ  has been 
computed, the throttle ratio for in the next interval, 
denoted by 

i
Ψ  is given by: 

1i i i
φ

−
Ψ = Ψ . Since 

i
Ψ must be truncated to lie in the interval min[ ,1]Ψ , we 
can rewrite the above as:  

{ }0 min
1

max min ,1 ,
i j

i

j
φ

=

 Ψ = Ψ ∏ Ψ 
 

. 
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