
A Practical Ap roach To Identifying
i’Storage an Timing Channelq

l?ichaTd A. &?7?WYL&?TG?T

Department of Computer Science

University of California

Santa Barbara, California

Recognizing and dealing with storage and timing
channels when performing the security analysis of a
computer system is an elusive task. Methods of discov-
ering and dealing with these channels for the most part
have been ad hoc, and those that are not are restricted
to a particular specification language.

This paper outlines a practical methodology for dis-
covering storage and timing channels that can be used
through all phases of the software life cycle to increase

the assurance that all channels have been identified.
The methodology is presented and its application to
three different descriptions (English, formal

specification, and high order language implementation)
are discussed.

1. btroductian

When performing a security analysis of a system both
overt and covert channels of the system must be con-
sidered. Overt channels use the system’s protected

data objects to transfer information from one subject to

another. That is, one subject writes into a data object
and another sub ject reads from the object; thus, infor-

mation is tran#erred from one object to another. The
channels are overt because the entity used to hold the
information is a data object i.e., it is an object that is
normally viewed as a data container. Examples of
objects used for overt channels are buffers, files, and
if o devices. Covert channels, in contrast, use entities

not normally viewed as data objects to transfer informa-
tion from one siibject to another. These nondata
objects such as file locks, device busy fiags, and the
passing of time are needed to register the atate of the
system. *

Overt channels are controlled by enforcing the access
control policy of the system being designed and impk+

mented. The access control policy states when and how
overt reads and writes of data objects may be made.
Part of the security analyzis must verify that the imple-
mentation of the system correctly implements the
stated access control policy. An example of verification
is the UCLA Data Secure Unix project [2], Access con-
trol is not further addressed in this paper.

~ ‘Ms research b been supported in part by the Nathmnl Scienee
Foundation under Grant No. ECS81-066LM.
● Note tlmt this detition of covert channels cWere hum that hltro-
duced by Lmnpson h MS original note on tlm confinement problem
[1]. The covert chmumle as dkuseed in this paper include both
storege end timing channels

Recognizing and dealing with covert chzmnels is more
elusive. As stated above, objects used to hold the infor-
mation being transferred are normally not viewed as
data objects, but can often be manipulated maliciously
to transfer information. There are examples of these

channels and methods for blocking them [1,3,4,5,6],

However, methods to discover these covert channels for
the most part have been ad hoc, and assurance that all
storage and timing channels have been discovered has
been lacking. Previous work on flow analysis [7,8] has
located covert channels; however, both of these systems

are tightly coupled to a restricted subset of a particular

specification language. This paper presents a methodol-
ogy that can be applieti to a variety of system descri-
ption forms and can increase the assurance that all
storage and timing channels have been found. It is
easily reviewed, it disregards resources that are not
shared, and it is iterative as the design is refined or
changed. b addition, it can be used throughout all
phases of the software life cycle. The methodology,
called the shared resource matrix methodology, uses a
matrix to graphicaHy represent shared resources that
might permit a channel.

‘he next section introduces the methodology; its
application to three different system descriptions is

demonstrated in Section $ in Section 4 its adventages
are discussed; and in the last sections, experience with
the methodology, future work and conclusions are
presented.

Z The Stmmd Resmree Matrix Methodology

Storage and timing channel analysis is performed in
two steps in the shared resource matrix methodology.
First, all shared resources that can be referenced or
modified by a subject are enumerated, and then each of

these resources is carefully examined to determine
whether it, can be used to transfer information from one
subject to another covertly. The methodology assumes

that the subjects of the system are processes and that
there is a zingle processor wluch is shared by all of the
processes. The processes may be local or distributed;
however, only one process may be active at any one
time.

To determine which shared resources can be modified
or referenced one must first identify the shared

resources. A shared resource is any object or collection
of objects that may be referenced or modified by more
than one process, Examples of common shared

resources are files and devices. After all shared
resources have been enumerated it is necessary to

66

CH1753-3/82/0000 /0066$00.75 @ 1982 IEEE

further reline each shared resource by indicat@ its
attributes. For instance, the attributes of a file might

be security-level, locked unlocked, owner, size, and

value. This step is necessary since, although two
processes may be able to view the same shared
resource, they may each view a different attribute of
that resource. For example, the fh%t process may be
able to determine only whether a shexed file is locked,

while the second process may be able to determine only
the size of the file. The attributes of all shared
resources are indicated in the row headings of the

shared resource matrix.

Next, it is necessary to determine all operation primi-
tives of the system being analyzed. Some examples of
primitives are write-iile, read_file, locLfile, md

f31eJocked. The primitives of the system make up the
column headings of the shared resource mati.

After dete rmining all of the row and column headings
for the shared resource matrix one must determine for
each attribute of each shared resource (the row head-
ings) whether the primitive indicated by the column
heading modifies or references that attribute. This is
done by carefully reviewing the description for each of
the primitives, whether it is an English requirement,

formal specification, or implementation code. This task

is performed differently for each phase of the software
life cycle. (l’he different approaches are discussed in
Section 3 and a detailed application using the methodol-
ogy is presented in [9].) As en example, the write-file
primitive might reference the security-level,
locked Amlocked, and owner attributes of a file object
and modify the value attribute. Figure 2. I shows the

matrix filled in for the Writde primitive; ‘w’ indi-
cates reference and “M” indicates modify. The mati
generation is completed when each element of the
matrix has been comvidered and marked indicating
whether a modification or reference could occur.

The shared resource matrix generated is then used to

determine whether any covert information channels
exist using *ese resources.

Two types of channels are considered in a covert
channel analysis: storage channels and timing channels.
With a storage channel the sending process alters a par-

ticular data item and the receiving process detects and
interprets the value of the altered data to receive info~
mation covertly. With a timing channel the sending prm

cess modulates the amount of time required for the
receiving process to perform a tasik or detect a change

in an attribute, and the receiving process !mterprets
this delay or lack of delay as a bit of information. Each
type of channel is considered separately in the following

paragraphs.

In order to have a storage channel the following

minimum criteria must be satisfied:

a. The sending and receiv@ processes must have
access to the same attribute of a shared resource.

b. There must be some means by which the sending

process can force the shared attribute to change.

c. There must be some means by which the receiving
process can detect the attribute change.

d. There must be some mechanism for initiating the
sending and receiving processes and for sequencing
the events correctly.

other directly. Therefore, any storage channels that
exist between processes in the same protection domain

can be ignored. In particular, if a process can sense
only modifications made by itself no channel exists.

The matrix is used to determine whether criteria a, b,
and c are satitied. If they are, then one must fhd a
scenario that satisfies criterion d. If such a scenario

can be found a storage channel exists, This last step
requires imagination and insight into the system being
analyzed, However, by -g the shared resource
matrix approach, attributes of shared resources that do
not satisfy criteria a, b, and c cam readily be identified

and discarded.

An example of a storage channel is as followw process

1 can lock file A (lockdile primitive), and process 2 can
detect whether tie A is locked (fi.kdocked primitive).
Now, if one can initialize and sequence process 1 and
process 2, then process 1 can signal to process 2 cries
and zeroes by Ioctig and unlocking file A. The file lock
is not considered a data object that can be read and
written directly, but reading and writing can occur any-
way.

Timing channels are discovered in a similar manner;

however, slightly different criteria are used. The

minimum criteria necessary in order for a timing chan-
nel to exist are as follows:

a. Both the sending and receiving process must have

access to the same attribute of a shared resource.

b. Both the sending and receiving process must have
access to a time reference such as a real-time
clock.

c. The sender must be capable of modulating the

receiving process’s response time for detecting a
change in the shared attribute.

d. There must be some mechanism for initiating the
processes and for sequencing the events.

It is important to note that any time & processor is
shexed there is a shared attribute which is the response
time of the cpu. A change in response time is detected
by the receiving process by monitoring the shared
resource attribute and using the clock to determine the
amount of time for a change to occur. Again for a tim-
ing channel to be of concern the sending and receiving
processes must be in distinct protection domains and
must not be allowed to communicate with each other
directly.

Again, the shared resource matrix is used to elim-
inate shared attributes that cannot be used as timing

channels.

Once a storage or timing channel has been identified
it is necessary to determine the bandwidth of the chan-
nel. That is, it is necesssxy to determine how many bits
per second can be transferred between two cooperating
processes using the identified channel.

3. Ap’#icatiarl to Ixfkrentsystem Descriptions

The intent of this section is to show how the shared
resource matrix approach can be used through the
entire software life cycle to detect potential storage
and timing channels. First, its application to an English
description of the system is considered, then to a for-
mal specification, and finally to implementation code.

For a channel to be of concern the sentig and receiv-

ing processes mm be in di*inct protection dom~ns
and must not be allowed to communicate with each

67

3.1 Ap#yingthe Method610gy to Engkihkquirementa

2.1.1 Ctmstruetingthe Ha&ix

The first thingto be done when applying the shared

resource approach to the English requirements is to
determine what are the objects of the system and what

attibutes they possess. Consider a system which con-
sists of two types of objects: processes and files. The
attributes of a process are ID, Access Rights, Buf7er, and
CurrentProcess. The attributes of a file are ID, Security
Classes, Owner, Locked, In-Use Set, and Value.

After identifying the attributes, it is necessary to
identify the operational primitives of the system. These
are the operations used to change the state of the sys-
tem (eg. the system calls if dealing with an operating
system or kernel calls if dealing with a security kernel).
Usiag this tiormation the skeleton of the matrix can be

constructed with the attributes as row headings and the
primitives as column heackings.

The skeletal matrix is now filled in b y carefully deter-

mining for each attribute of each shared resource
whether the primitive indicated by each column head-
ing modifies or references the attribute. When working
with English requirements key words such as “checks”,
“reads”, “if”, and “copy from” lead the user to find aM.ri-
butes that are referenced and key words such as

“chfmge”, “set”, “replace”, and “cop y to” lead the user

to attributes that are modified. Consider the descrip-
tion of Wtite_File:

“1~ the file is locked and the current process is the
owner of the file, then the value of the file is modi..ai
to contain the contents of the current process’s

bufter.”

When one sees the keyword “if” then he knows that what
follows probably indicates attributes whose values are
referenced. Therefore, for this operation the file’s
Locked and Owner attributes, as well as the Current

Process are referenced. The keyword “modify” alerts
the user to look for what is modified and with what. For
this operation the file’s Value attribute is retied using
the process’s Buf7er attribute, Therefore, the Value
attribute of file is modified and the Buffer attribute of
the process is referenced. Thus, the Buffer, Owner,
Locked, and Current process rows of the Write-File
column contain Rs, the Value row contains an M, and the
other rows of this column remain blank, This process is
repeated for all of the primitives. An example matrix is
shown in Figure 3.1.

Shce the attributes referenced by one ~rimitive may

have been modified by another primitive that refer-
enced additional attributes, it is necessary to generate
the transitive closure of the shared resource matrix.
For instance, suppose an operation Login references the
password file emd modifies the activ~user attribute.
Furthermore, suppose a second operation references
the active_user attribute. The shared resource matrix
for these two operations would indicate a reference to
active-user but no reference to the password file in the
column that corresponds to the second operation How-
ever, it may be the case that the active-user attribute
is modified in a manner which compromises a user’s
password. Thus, it is necessary to indicate this indirect
reference in the matrix. Then when analyzing the
matrix for possible storage and timing channels one
must assure that the modification to active-user
doesn’t reveal information about user’s passwords.

The transitive closure of the matrix is generated by
looking at each entry that contains an R. If there is an

M in the row in which this entry appears, then it is
necessary to check the column that contains the M and
see if it references any attributes that are not refer-

enced by the original primitive. That is, if the column

that contains the M has an R in any row in which there is
not an R in the corresponding row of the original
column, then an R must be added to that row in the ori-
ginal Column.

For instance, consider the column for Write_File in
the matrix presented in Figure 3.1. Since Write-File
references the file’s Locked attribute there is an R in
the Locked row of this column However, if the Locked
row is scanned one sees that the Locked attribute is

modified by the Lock-File primitive. Therefore, it is

necessary to see what attibutes were referenced to
make this modification. This is done by checking which
rows of the LocLFile column contain Rs. A quick check

reveals that the attributes Access Rights, Security
Classes, Locked, In-Use Set, and Current Process are
referenced. Of these five Access Rights, Security
Classes, end In-Use Set are not directly referenced by
the Write-File primitive so they must be added to that
column. Thus, the Write-File column now contains Rs h
rows Access Rights, Bufler, Security Classes, Owner,
Locked, In-Use Set, and Current Process.

This process is repeated until no new entries can be
added to the matrix. The resulting matrix is the transi-

tive closure (with respect to references) of the original
matrix. * This completes the first step of the shared
resource matrix approach,

31.2 &lal@ngthe Matrix

Now tbet the shared resource matrix is complete it is
necessary to use it to locate potential storage and tim-
ing channels. From the criteria presented in Section 2
it can be seen that the only attributes that need be con-

sidered are those whose rows contain both an R and an
M, ‘Thus, for the example matrix of Figure 3.1 the only
attributes that need to be considered are Owner,
Locked, In-Use Set, Buffer and Value,

For discussion purposes assume that the access pol-
icy is defined as follows. For a process to read informa-
tion from a file each of the security classes in the file’s
security class set must exist in the access rights set of
the prccess with either read or read/write access, E
this is the case, then the process is said to have “read
access” for the file. For a process to write information
to- a file each of the security classes in the file’s security
class set must exist in the access rights set of the pro-
cess with either write or read/write access. If this con-
dition is satisfied the process is said to have “write
access” for the file,?

For an attribute to be a potential storage channel one
must be able to transfer information from one process

to another in a direction that is not allowed by the
access control mechanism. Therefore, if the sending
process (that is, the process that modifies the attri-
bute) is required to have write access, then a storage
channel exists only if the receiving process (that is, the
process that references the attribute) is not required to

● Noti that this is nat the etendard mdematid treneiuve elemre
niaee it reletes to the madfy operak as well as tie reference
operator.
~ The sectity model presetied here ie not the Bell-LeFndula securi-
ty model [10]; however, both the ~property and the simple security
conditian can be represented using the proposed model

68

have read access. That is, it is not necesaaryto con-
sider cases where the the access control mechanism
requires the sending process to have write access and

the receiving process to have read access, because if
they satisfy these requirements the sender can write
the file and the receiver can read the file. ‘I!nus, no
storage channel is needed to communicate.

The analysis discussed above deals only with storage
channels. To provide an example of a timing channel,
assume the processes are scheduled in a ~ound-robin
fashion with each process being allowed to execute n
operations before giving up the CPU In addition,
assume there is an operation called Rocess_Sleep
which a process may invoke if it wants to give up the
cpu before it has executed n operations. Finally,

assume that each process has access to a real-time
clock.

The closure of the shared resource matrix with the
Procesa_Sleep operation added ia shown in Figure 3.2.
Notice that a process can modify the Current Process
attribute by tivoking the Procesflleep operation.
Thus, the Current Process attribute must now be
analyzed as a candidate storage channel. Analyzing this
attribute for a storage channel one discovers that any
process can modify Current Process and any process
can reference this attribute. However, the only infor-

mation that the executing process can glean from this
attribute is that it is the current process which is not
useful information.

Next, this attribute is analyzed to determine if it can
be used as a timing channel. The only information that
a process can obtain is that it is the currently executing
process, but if the executing process can determine
how much time has elapsed since it last had control of
the cpu and if enother process can vary this amount of
time, then the Current Process attribute can be used as
a timing chsxmel,

After locating the storage and timing channels each
must be analyzed to determine its worst case (i.e., larg-
est) bandwidth. A decision is then made to determine

whether to block the potential channel or ignore it.
Example ztorage and timing channels complete with
baud rate estimates are presented in [9].

3.2 Formal Sp=btti(ma

In this section the shared resource matrix methodol-
ogy is. applied to a formal specification of the example
system. The formal s#eci.fications for the system are
written in Ina Jo $, a non-procedural assertion language

that is an extension of first-order predicate calculus.
The language assumes that the system is modeled as a
state machine. The key elements of the language are
types, constants, v.m-iables, definitions, initial condi-

tions, criterion, and transforms. The criterion is a con-
junction of assertions that specify what is a good state.
The criterion is often referred to as a atate invariant
since it must hold for all states including the initial
atate. An Ina Jo language transform is a state transition
functiow it specifies what the values of the state vti-
ables will be after the state transition relative to what
their values were before the transition took place. A

complete description of the ho Jo language can be
found in the Ina Jo Reference Manual [1 1].

Before giving the specification for the example sys-
tem a brief discussion of some of the Ins Jo notation is

● Ine Jo ls a trademark of Syetem Development Corpomt.ion

necessary. The following symbols are used for logical
operations

& Logical AND

I Logical OR

- Logical NOT

-> Logical implication

In addition there is conditional form

(A=> B<> C) if A then B else C.

The notation for set operations is:

<: is a member of

II set union

-~ set difference

S“(a,b..c) the set consisting of elements a,b..and c.

The language also contains the following quantifier nota-
tion

A“ for all

E there exists

Two other special Ins Jo symbols that are used in the
example specification are:

N“ to indicate the new value of a variable
(eg, N“vl is new value of variable vI)

NC” which indicates no change to a variable.

A partial system specification is shown in Figure 3.3.

The transforms correspond to the operations of the
English description.

3.21 Ap@@g the kthdolagy to the Formal

Aa was the case with the English requirements the
user first must identify the attributes that can be
modulated and the primitives of the system. When
using an Tna Jo specification the variables are the attri-
butes and the transforms are the primitives. Notice
that Acc.J?ights and See-Levels can be eliminated
immediately since they are declared to be constants in
the Ina Jo specification. Also, since it is necessary to

explicitly specify the result of the File_Locked and
File-Opened transforms, there is an attribute Result
that was missing from the matrix generated for the
English requirements. Therefore, the row headings of

the skeletal matrix are Owner, Locked, Ln-UseGiet,
Value, 13@er, Result, and Currentirocess, and the

column headings are the eight transform names.

To fill in the matrix one must determine which attri-

butes are referenced and modified by each transform.
When working with an Ina Jo speciilcation any variable
that occurs in the Effects section of a transform pre-

ceded by the new value notation is considered to be
modified. All other attributes that are mentioned in the
Effects section, except those preceded by Me n=~e

notation, are referenced. Consider the specification for
the Write_Pile transform. Since the Value attribute is
preceded by N“ it may be modified by this transform.
The attributes that occur in the Effects section of the
Write-File transform not preceded by N“ or NC” are
Locked, Owner, Current_Process, BufTer, and Value.

Each of these is referenced by the transform Thus, the
column corresponding to the Write_Pile transform con-
tains Ra in the Buffer, Owner, Locked, Value, and
Current._Process rows and an M in the Value row. This
process is repeated for each of the transforms

Entries must then be added to the matrix by comput-

ing its transitive closure (with respect to references),

69

The same process that was used for the matrix con-
structed from the English requirements is applied
again. The resultant matrix is shown in Figure 3.4.

A problem may occur when using the appr-ch out-
lined above to determine which attributes are refer-
enced in an Ins Jo specification. The problem arises
because when using the Em Jo language if a variable is
to be changed under certain circumstances, but not
others, all circumstan ces must be described explicitly.
This is not enforced by the specification processoq
therefore, the Effect section of an I.na Jo transform may
not be deterministic. For instance, a possible
specification for the File_Locked tmansform is:

A“pl:Rocess (
N“Result(yl)=

(pl = Current-Process
& OK-To(write,Current-Process,f)

=> Locked(f)))

Notice that this specification di.t7ers from the one that
appears in Figure 3.3. The interpretation of this
specification is that if the executing process has write
access to file f then the new value of the execut@
process’s Result attribute will be true if file f is locked
and false if it is not locked. However, it does not specify
what the value of the Result attribute will be if the exe-
cuting process doesn’t have write access to file fi nor
does it specify what the new value of the Result attri-
bute for the other processes will be. That is, this
specification is equivalent to the following specification,

A“pl:Process (
N“Result(pl) =

(pl = Current_Process
& OKTo(write,Current_Process,f)

=> Locked(f)
<> N“Result(pl)))

Jn the tna Jo language the meaning of N“var=N’’var is
that the variable var can assume any value in the new
state. Thus, its new value can be the result of referen~
ing any of the state variables. Therefore, when filling in
the matrix for this type of specification one must
assume the worst case. That is, it is assumed that all

atate variables are referenced to determine the value of
the Result attribute. The column that corresponds to
this transform would have an R in eve~ row. Notice
how this difTers from the value for the File-Locked
column in Figure 3.4. Thus, whenever the EfIects see
tion of a transform is nondeterministic the user must
assume that all shared attributes can be referenced.

The shared resource matrix generated from the Ina
Jo specification is analyzed in the same manner es was
described for the English requirements matrix.

9.3 hlplemenwion code

In this section the methodology is applied to impl~
mentation code. Figure 3,5 is an incomplete Pascal-like
implementation of the example system. Each of the
primitives is implemented as a Pascal procedure, end

the attributes are the fields of the variables.

To determine which attributes are modified one need
find only those attributes that appear on the left-hand
side of an assignment statement (:=). Thus, for the

writefile primitive the Buffer attribute may be modified.

Finding which attributes are referenced by a prw

cedure is more diflicult. First, any attribute that
appears on the right-hand side of an assignment state
ment may be referenced since its value may be used to

generate the value assigned. However, there are addi-
tional attributes that may be referenced to determine
whether to make +&e assignment, These references are
usually referred to as conditional references. That is,
any attribute whose value is used to determine which
path to take in the program is referenced. For
instance, if the program contains the following piece of
code:

if attribute 1=cons
then attribute2:=attribute3

then attribute 1 is referenced since the new value of
attribut e2 is dependent on the value of attribute 1. That
is, if attribute I is equal to cons then the new value of
attribute2 is assigned the value of attribute3 end if
attribute 1 doesn’t equal cons then the value attxibute2
is unchanged.

The attributes that are referenced conditionally by
the writefile procedure are the Locked and Owner fields
of the datafile type and the Currentprocess. In addi-
tion, the Value field of the datafile type is referenced

directly.

After the direct and conditionally referenced attri-
butes as well as the modified attributes are marked in
the matrix its transitive closure is generated in the
same way as before, The shared resource matrix is now
complete and the analysis is performed as described in
section 3.1.2.

34 other ~dthe%ftuare Life Cycle

Although Section 3.2 dealt with only top level
spec%cations, the shared resource methodology may be
applied to more detailed specifications in the same

manner. T’he more detded specification may introduce
new attributes (eg. the size of a file), more transforms,
and transforms may have more parameters (eg. offset
in a file or buffer size).

The shared resource matrix is also useful during the
debugging and maintenance phases of the life cycle. If
one wants to lmow which elements are affected by a

particular attribute all that is necessary is to consult
the matrix. For instance, if one wants to modify a vari-

able it can immediat ely be determined what other attri-

butes would be tiected by the modification. Finally, if
it is desirable to change the stmcture of some variable
one can determine from the matrix what procedures
would be aflected by the change.

As the system is modified any changes in the attri-
butes that are referenced or modified should be

reflected in the shared resource matrix end the changes
to the matrix should be analyzed for the introduction of
possible storage and tinung channels.

4. Advantages d ‘l’he Methodology

There are several advantages to using the shared
resource attribute matrix to locate storage and timing
channels as opposed to searching for these channels in

an ad hoc fashion. The first advantage, discussed above,
is that by using the matrix, attributes that do not meet
the preliminary criteria of being modified or referenced
by a process are quickly discarded.

Another advantage of the approach is that by
presenting the shared resource information in graphical
form it can be checked easily by those persons particip-
ating in the design, implementation, testing, and
maintenance of the system, whether they are involved
directly in the security analysis or not.

70

The mati also serves as an excellent design tool. By

indicating which attributes are affected by a primitive,
design oversights that may have been left out of the

preliminary design may be discovered, Also, if a primi-
tive is to be changed the attributes that may be

afTected are readily determined from the matrix.

Finally, since the process of generating the matrix is
an iterative process, the matrix can be used throughout
the software life cycle of the project as a design tool as
well as a security analysis tool. As the specifications
become more detailed, more attributes and primitives
are added to the matrix. Furthermore, since the
methodology is not tied to a particular description
form, it can be applied to a description whose consti-
tuent parts are described in tierent form (eg. English
requirements and formal specification), That is, part of

the system may be implemented while other parts have
only English requirements or formal specifications
describing them, but the methodology can be applied to
the collection of descriptions,

5 Experience and Future Wnrk

The shared resource matrix methodology has been
successfully applied to the design of a secure network
front end [12]. This application revealed a number of

storage and titig chamnels. Of the channels
discovered the worst case bandwidth was 5000 bits per
second with a typical bandwidth of 20 bits per second.

As a result the front end was redesigned to block or

reduce the bandwidth of these channels,

At present the matrix construction and analysis has
mostly been performed manually. However, much of
the work of generating the matrix cotid be automated.
Currently the generation of the transitive closure of the
matrix has been automated. This process is not depen-
dent on the form of the system descriptio~ therefore,

mechanizing the process did not restrict the versatility
of the approach,

6. conclusions

This paper has attempted to present a practical
methodology for discovering storage and timing chan-
nels that can be used throughout the software life cycle.
A complete example used to illustrate the use of the
methodology y on an English requirement, a formal
specification, and implementation code can be found in
[9].

It is hoped that the work presented here will help in
the understanding of covert channels and more impo~

tantly how they maybe enumerated.

Acknaded.gmemh

Referemes

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

B.W, Lampson, “A Note on the Confinement Prob-
lem,” Communications of ths ACM, Vol. 16, pp.
613-615, Oct. 1%’3.

B.J. Walker, R.A. Kemmerer, and G.J. Popekt

“Spectication and Verification of the UCLA Unix
Security Kernel,” Communications of the ACM, Vol,
23, pp. 115131, Feb. 1980.

S.B. Lipner, “A Comment on the Confinement Prob-
lem,” Ruceedings of the fifth ~mposium on
@ending &stems Principles, The University of
Texas at Austin, Nov. 1975.

J. K Millen, “Security Kernel Validation in Practice,”

Communications of ths ACM, Vol. 19, pp. 243-250,
May 1976.

M. Schaefer, B. Gold, R. Linde, and J. Scheid, “Pro-
gram Confinement in KVM/3?0,” Roceedings of the

197? Annual Lbnfwsn.ce ACM, Seattle, .Washington,
pp. 404-410, Ott 1977.

C. S. Kline, “Data Security Security, Protection,
Confinement, Covert Channels, Validation,” Ph.D.
Dissertation, Computer Science Department, UCLA,
Los Angeles, California, 1980,

J,K Millen, G.A. Huff, and M. Gasser. “Flow Table
Generator,” Mitxe Work!mg Paper, WP-22554, The

Mitre Corporation, Bedford, Massachusetts, Nov.
1976.

R.J. FeierLag, “A Technique for Proving

Specifications are Multilevel Secure,” CSL 109, SRI

International, Menlo Park, California, Jan 1960.

‘R.A. Kemmerer, “Shared Resource Matrix Methodol-

ogy A Practical Approach To Identifying Covert
Channels,” Report TRCS81-10, Computer Science

Department, University of California, Santa B-
bara, Nov. 1961,

[10] D.E. Bell and L.J. LaPadula, “Secure Computer Sys-
tems,” ESD-TR-73-278, Vol I-III, The Mitre Corpora-

tion, Bedford, Massachusetts, Jun. 1974

[11] R. Locasso, J. Scheid, V. Scheme, and P. Eggert,
“The Ina Jo Specification Language Reference
Manual,” SDC document TM-6669/000/01, System

Development Corporation, Santa Monica, California,
NOVO 1960.

[12] G.R. Grossman, “A Practical Executive for Secure
Communications,” DTI working paper, Digital Tech-

nology Incorporated, Champaign, Illinois, Sep 1961.

It is a pleasure to aclmowledge Tom Aycock, Francis
Chan, Tom Hh.ke, and John Scheid who participated in
the original development and application of this metho-
dology to the secure network front end design. Also
Paul Eggert, Dino Mandrioli, Steve Bunch, and Gary
Grossman who reviewed earlier drafts of the paper and
provided helpful comments.

71

I sEcmI?Y-uvE1 ; R I I
f

I
LOCkZD/UNLOCKID ! R

~ nLE OWNER IR:

I!i!l!

Figure 2.1

Example of a Shared Resource ?’atrix
Filled-in for the lYlllTE._FILE Primitive

Figure 3.2

Transitive Closure of Matrix for English
Description with Timing Example Added

ACCESS
‘ROcEss ~ RIGHTS

i
!3hmR!RYi(!1 I

!,.

Figure 3.1

Resource Matrix Filled-in from the English Description

program toysystem (input, output);STITLE Confinement
SPECIFICATION Confinement
LEVEL Top.Level

TYPE
Process,
Processes = Set Of Process,
File,
Data

TYPE
Access = (read, write), I* enumerated type */
Accesses = Set Of Access,
Securlty_Class,
Securlty_Classes = Set Of Security__ Class,
Access-l?lght,
Access-Rights = Set Of Access-Right

CONSTANT
Acc-Rlghts(Proce ss).Access-Rights,
Sec–Classes(Flle) :Security-Classes,
Class (Access_Rlght): Securlty-C1ass,
Acc(Acces&Rlght) .Accesses

CONSTANT
OK-To(r:access, p: Process, f: File) :Boolean =
Ars:Securlty.-Class (

s <: See—Classes(f) ->
E“aAccess__Rlght (

a < Acc_Rights(p)
& Class(a) = s
& r < Ace(a)))

VARIABLE
Current-.Process. Process,
Owner (Flle):Process,
Locke d(Fde):Boolean,
In_Use._Set(Flle) :Processes,
Value (Flle),Data,
BufTer(Process) :Data,
ResuIt(Process) .Boolean

TRANSFORM Write-File(f.File) External
Effect
A’fl:Fde (

N“Value(fl)=

(fl=f
& Locked(f)
& Owner(f) = Current_Process

=> Bufier(Current.-Process)

<> Value))

END Top-_Level
END Confinement

Figure 3.3

Im Jo Specification of Example System

const numproc = 30;
numflles = 5;
filesize = 255;

type access = (read,write);
securitylevel = (Uncl,conf,secret, topsecret);
procrange = I..numproc;
filerange = I..numfdes;

datafile =
record

owner procrange;
locked: boole~
inuseset: set of procrange;
securitylevels. eet of securitylevel;
value: array [O. .filesize] of integer

end;

accessright =
record

level: securit ylevel;
ace: access

end;

process =
record

accnghts: set of accessrlght,
buffer array [O. .lileslze] of integer

end;

var files: array[1. .nurnflles] of datafile;
processes: array[1. .numproc] of process;
currentprocess: procrange;

procedure writefile (fileld:tllerange);
begin

If (files[fdeld].locked and (fdes[fileid]owner= currentprocess))
then processes[currentproces s]. buffer: =files[fileld] value

end;

procedure readfile (fileid:filerange);

begin

end.

Figure 3.5

Pascal-hke Implementation Of Example System

Figure 3.4

Transitive Closure of Mattvx for Ina Jo Specification

73

