A Practical Ap(?roach To Identifying
Storage and Timing Channelsj

Richard A. Kemmerer

Department of Computer Science
University of California
Santa Barbara, California

Abstract

Recognizing and desaling with storage and timing
channels when performing the security analysis of a
computer system is an elusive task. Methods of discov-
ering and dealing with these channels for the most part
have been ad hoc, and those that are not are restricted
to a particular specification language.

This paper outlines a practical methodology for dis-
covering storage and timing channels that can be used
through all phases of the software life cycle to increase
the assurance that all channels have been identified.
The methodology is presented and its application to
three different descriptions (English, formal
specification, and high order language implementation)
are discussed.

1. Imtroduction

When performing a security analysis of a system both
overt and covert channels of the system must be con-
sidered. Overt channels use the system's protected
date objects to transfer information from one subject to
another. That is, one subject writes into a data object
and another subject reads from the object; thus, infor-
mation is transferred from one object to another. The
channels are overt because the entity used to hoid the
information is a data object; i.e., it is an object that is
normelly viewed as a data container. Examples of
objects used for overt channels are buffers, files, and
i/o devices. Covert channels, in contrast, use entities
not normally viewed as data objects to transfer informe-
tion from one subject to another. These nondata
objects such as file locks, device busy flags, and the
passing of time are needed to register the state of the
system. *

Overt chennels are controlled by enforcing the access
control policy of the system being designed and imple-
mented. The access control policy states when and how
overt reads and writes of data objects may be made.
Part of the security analysis must verify that the imple-
mentation of the system correctly implements the
stated access control policy. An example of verification
is the UCLA Data Secure Unix project [2]. Access con-
trol is not further addressed in this paper.

t This research has been supported in part by the National Science
Foundation under Grant No. ECS81-06688.

* Note that this definition of covert channels differs from that intro-
duced by Lampson in his original note on the confinement problem
[1]. The covert channels as discussed in this paper include both
storage and timing chanmels.

CH1753-3/82/0000/0066$00.75 © 1982 IEEE

66

Recognizing and dealing with covert channels is more
elusive. As stated above, objects used to hold the infor-
mation being transferred are normally not viewed as
data objects, but can often be manipulated maliciousty
to transfer information. There are examples of these
channels and methods for blocking them [1,3,4,5,6].
However, methods to discover these covert channels for
the most part have been ad hoc, and assurance that all
storage and timing channels have been discovered has
been lacking. Previous work on flow analysis [7,8] has
located covert chanmels; however, both of these systems
are tightly coupled to a restricted subset of a particular
specification language. This paper presents a methodol-
ogy that can be applied to a variety of system descrip-
tion forms and can increase the assurance that all
storage and timing channels have been found. It is
easily reviewed, it disregards resources that are not
shared, and it is iterative as the design is refined or
changed. In addition, it can be used throughout all
phases of the software life cycle. The methodology,
called the shared resource matrix methodology, uses a
matrix to graphically represent shared resources that
might permit a channel.

The next section introduces the methodology; its
application to three different system descriptions is
demonstrated in Section 3; in Section 4 its advantages
are discussed; and in the last sections, experience with
the methodology, future work and conclusions are
presented.

2. The Shared Resource Matrix Methodology

Storage and timing chamnnel analysis is performed in
two steps in the shared resource matrix methodology.
First, all shared resources that can be referenced or
modified by a subject are enumerated, and then each of
these resources is carefully examined to determine
whether it can be used to transfer information from one
subject to another covertly. The methodology assumes
that the subjects of the system are processes and that
there is a single processor which is shared by all of the
processes. The processes may be local or distributed;
however, only one process may be active at any one
time.

To determine which shared resources can be modified
or referenced one must first identify the shared
resources. A shared resource is any object or collection
of objects that may be referenced or modified by more
than one process. Examples of common shared
resources are files and devices. After all shared
resources have been enumerated it is necessary to

further refine each shared resource by indicating its
attributes. For instance, the attributes of a file might
be security.level, locked/unlocked, owner, size, and
value. This step is necessary since, although two
processes may be able to view the same shared
resource, they may each view a different attribute of
that resource. For example, the first process may be
able to determine only whether a shared file is locked,
while the second process may be able to determine only
the size of the file. The attributes of all shared
resources are indicated in the row headings of the
shared resource matrix.

Next, it is necessary to determine all operation primi-
tives of the system being analyzed. Some examples of
primitives are write_file, read_file, lock file, and
file_locked. The primitives of the system make up the
column headings of the shared resource matrix.

After determining all of the row and column headings
for the shared resource matrix one must determine for
each attribute of each shared resource (the row head-
ings) whether the primitive indicated by the colummn
heading modifies or references that attribute. This is
done by carefully reviewing the description for each of
the primitives, whether it is an English requirement,
formal specification, or implementation code. This task
ijs performed differently for each phase of the software
life cycle. (The different approaches are discussed in
Section 3 and a detailed application using the methodol-
ogy is presented in {9].) As an example, the write_file
primitive might reference the security-.level,
locked/unlocked, and owner attributes of a file object
and modify the value attribute. Figure 2.1 shows the
matrix filled in for the write_file primitive; "R" indi-
cates reference and "M" indicates modify. The matrix
generation is completed when each element of the
matrix has been considered and marked indicating
whether a modification or reference could occur.

The shared resource matrix generated is then used to
determine whether any covert information channels
exist using these resources.

Two types of channels are considered in a covert
channel analysis: storage channels and timing chammels.
With a storage channel the sending process alters a par-
ticular data item and the receiving process detects and
interprets the value of the altered data to receive infor-
mation covertly. With a timing chennel the sending pro-
cess modulates the amount of time required for the
receiving process to perform a task or detect a change
in an attribute, and the receiving process interprets
this delay or lack of delay as a bit of information. Each
type of channel is considered separately in the following
paragraphs.

In order to have a storgge channel the following
minimum criteria must be satisfied:

a. The sending and receiving processes must have
access to the same attribute of a shared resource.

b. There must be some means by which the sending
process can force the shared attribute to change.

c. There must be some meeans by which the receiving
process can detect the attribute change.

d. There must be some mechanism for initiating the
sending and receiving processes and for sequencing
the events correctly.

For a channel to be of concern the sending and receiv-
ing processes must be in distinct protection domains
and must not be &allowed to communicate with each

67

other directly. Therefore, any storage channels that
exist between processes in the same protection domain
can be ignored. In particular, if a process can sense
only modifications made by itself no channel exists.

The matrix is used to determine whether criteria a, b,
and ¢ are satisfied. I they are, then one must find a
scenario that satisfies criterion d. If such a scenario
can be found a storage channel exists. This last step
requires imagination and insight into the system being
analyzed. However, by using the shared resource
matrix approach, attributes of shared resources that do
not satisfy criteria a, b, and c can readily be identified
and discarded.

An example of a storage channel is as follows: process
1 can lock file A (lock_file primitive), and process 2 can
detect whether file A is locked (file locked primitive).
Now, if one can initialize and sequence process 1 and
process 2, then process 1 can signal to process 2 ones
and zeroes by locking and unlocking file A. The file lock
is not considered a data object that can be read and
written directly, but reading and writing can occur any-
way.

Timing channels are discovered in a similar manner;
however, slightly different criteria are used. The
minimum criteria necessary in order for a timing chan-
nel to exist are as follows:

a. Both the sending and receiving process must have
access to the same attribute of a shared resource.

b. Both the sending and receiving process must have
access to a time reference such as a reel-time
clock.

c. The sender must be capable of modulating the
receiving process's response time for detecting a
change in the shared attribute.

d. There must be some mechanism for initiating the
processes and for sequencing the events.

It is important to note that any time & processor is
shared there is a shared attribute which is the response
time of the cpu. A change in response time is detected
hy the receiving process by monitoring the shared
resource attribute and using the clock to determine the
amount of time for a change to occur. Again for a tim-
ing channel to be of concern the sending and receiving
processes must be in distinet protection domains and
must not be allowed to communicate with each other
directly.

Again, the shared resource matrix is used to elim-

inate shared attributes that cannot be used as timing
channels.

Once a storage or timing channel has been identified
it is necessary to determine the bandwidth of the chan-
nel. That is, it is necessary to determine how many bits
per second can be transferred between two cooperating
processes using the identified channel.

3. Application to Different System Descriptions

The intent of this section is to show how the shared
resource matrix approach cen be used through the
entire software life cycle to detect potential storage
and timing channels. First, its application to an English
description of the system is considered, then to a for-
mal specification, and finally to implementation code.

3.1 Applying the Methodology to English Requirements

3.1.1 Constructing the Matrix

The first thing to be done when applying the shared
resource approach to the English requirements is to
determine what are the objects of the system and what
attributes they possess. Consider a system which con-
sists of two types of objects: processes and files. The
attributes of a process are [D, Access Rights, Buffer, and
CurrentProcess. The attributes of a file are ID, Security
Classes, Owner, Locked, [n-Use Set, and Value.

After identifying the attributes, it is necessary to
identify the operational primitives of the system. These
are the operations used to change the state of the sys-
tem (eg. the system calls if dealing with an operating
system or kernel calls if dealing with a security kernel).
Using this information the skeleton of the matrix can be
constructed with the attributes as row headings and the
primitives as column headings.

The skeletal matrix is now filled in by carefully deter-
mining for each attribute of each shared resource
whether the primitive indicated by each column head-
ing modifies or references the attribute. When working
with English requirements key words such as “checks"”,
"reads”, "if", and "copy from" lead the user to find atiri-
butes that are referenced and key words such as
“change”, "set”, "replace”, and "copy to” lead the user
to attributes that are modified. Consider the descrip-
tion of Write_File:

“If the file is locked and the current process is the
owner of the file, then the value of the file is modified
to contain the contents of the current process's
buffer.”

When one sees the keyword "if” then he knows that what
follows probably indicates attributes whose values are
referenced. Therefore, for this operation the file's
Locked and Owner attributes, as well as the Current
Process are referenced. The keyword "modify” alerts
the user to look for what is modified and with what. For
this operation the file's Value attribute is modified using
the process's Buffer attribute. Therefore, the Value
attribute of file is modified and the Buffer attribute of
the process is referenced. Thus, the Buffer, Owner,
Locked, and Current Process rows of the Write_File
column contain Rs, the Value row contains an M, and the
other rows of this column remain blank. This process is
repeated for all of the primitives. An example matrix is
shown in Figure 3.1.

Since the attributes referenced by one primitive may
have been modified by another primitive that refer-
enced additional attributes, it is necessary to generate
the transitive closure of the shared resource matrix.
For instance, suppose an operation Login references the
password file and modifies the active_.user attribute.
Furthermore, suppose a second operation references
the active_user attribute. The shared resource matrix
for these two operations would indicate a reference to
active_user but no reference to the password file in the
column that corresponds to the second operation. How-
ever, it may be the case that the active_user attribute
is modified in a manner which compromises a user's
password. Thus, it is necessary to indicate this indirect
reference in the matrix. Then when analyzing the
matrix for possible storage and timing channels one
must assure that the modification to active_user
doesn’t reveal information about user's passwords.

68

The tremsitive closure of the matrix is generated by
looking &t each entry that contains an R. If there is an
M in the row in which this entry appears, then it is
necessary to check the column that contains the M and
see if it references any atiributes that are not refer-
enced by the original primitive. That is, if the column
that contains the M has an R in any row in which there is
not an R in the corresponding row of the original
column, then an R must be added to that row in the ori-
ginal column.

For instance, consider the column for Write_File in
the matrix presented in Figure 3.1. Since Write_File
references the file's Locked attribute there is an R in
the Locked row of this column., However, if the Locked
row is scanned one sees that the Locked attribute is
modified by the Lock File primitive. Therefore, it is
necessary to see what attributes were referenced to
make this modification. This is done by checking which
rows of the Lock_File column contain Rs. A quick check
reveals that the attributes Access Rights, Security
Classes, Locked, In-Use Set, and Current Process are
referenced. Of these five Access Rights, Security
Classes, and [n-Use Set are not directly referenced by
the Write_File primitive so they must be added to that
column. Thus, the Write_File column now contains Rs in
rows Access Rights, Buffer, Security Classes, Owner,
Locked, In-Use Set, and Current Process.

This process is repested until no new entries can be
added to the matrix. The resulting matrix is the transi-
tive closure (with respect to references) of the original
matrix.* This completes the first step of the shared
resource matrix approach.

3.1.2 Analyzing the Matrix

Now that the shared resource matrix is complete it is
necessary to use it to locate potential storage and tim-
ing channels. From the criteria presented in Section 2
it can be seen that the only attributes that need be con-
sidered are those whose rows contain both an R and an
M. Thus, for the example matrix of Figure 3.1 the only
attributes that need to be considered are QOwner,
Locked, In-Use Set, Buffer and Value.

For discussion purposes assume that the access pol-
icy is defined es follows. For & process to read informa-
tion from a file each of the security classes in the file's
security class set must exist in the access rights set of
the process with either read or read/write access. [f
this is the case, then the process is said to have "read
access” for the file. For a process to write information
to-a file each of the security classes in the file's security
class set must exist in the access rights set of the pro-
cess with either write or read/write access. If this con-
dition is satisfied the process is said to have "write
access” for the file.t

For an attribute to be a potentiel storage channel one
must be able to transfer information from one process
to another in a direction that is not allowed by the
access control mechanism. Therefore, if the sending
process (that is, the process that modifies the attri-
bute) is required to have write access, then a storage
channe! exists only if the receiving process (that is, the
process that references the attribute) is not required to

* Note that this is not the standard mathematical transitive closure
sincs it relates to the modify operator as well as the rsference
operator.

1 The security model presented hers is not the Bell-LaPadula securi-
ty model [10]; however, both ths sproperty and the simple security
condition can be represented using the proposed model

have read access. That is, it is not necessary to con-
sider cases where the the access control mechanism
requires the sending process to have write access and
the receiving process to have read access, because if
they satisfy these requirements the sender can write
the file and the receiver can read the file. Thus, no
storage channel is needed to communicate.

The analysis discussed above deals only with storage
channels. To provide an example of a timing channel,
assume the processes are scheduled in a round-robin
fashion with each process being allowed to execute n
operations before giving up the cpu. In addition,
assume there is an operation called Process_Sleep
which a process may invoke if it wents to give up the
cpu before it has executed n operations. Finally,
assume that each process has access to a real-time
clock.

The closure of the shared resource matrix with the
Process._Sleep operation added is shown in Figure 3.2,
Notice that a process can modify the Current Process
attribute by invoking the Process Sleep operation.
Thus, the Current Process attribute must now be
analyzed as a candidate storage channel. Analyzing this
attribute for a storage channel one discovers that any
process can modify Current Process and any process
can reference this attribute. However, the only infor-
mation that the executing process can glean from this
attribute is that it is the current process which is not
useful information.

Next, this attribute is analyzed to determine if it can
be used as a timing channel. The only information that
a process can obtain is that it is the currently executing
process, but if the executing process can determine
how much time has elapsed since it last had control of
the cpu and if another process can vary this amount of
time, then the Current Process attribute can be used as
a timing channel.

After locating the storage and timing chennels each
must be analyzed to determine its worst case (i.e., larg-
est) bandwidth. A decision is then made to determine
whether to block the potential chanmel or ignore it.
Ezample storage and timing channels complete with
baud rate estimates are presented in [8].

3.2 Formal Specifications

In this section the shared resource matrix methodol-
ogy is-applied to a formal specification of the example
system. The formal specifications for the system are
written in Ina Jo*, a non-procedural assertion language
that is an extension of first-order predicate calculus.
The lengusage assumes that the system is modeled as a
state machine. The key elements of the language are
types, constants, veriables, definitions, initial condi-
tions, criterion, and transforms. The criterion is a con-
junction of assertions that specify what is a good state.
The criterion is often referred to as a state invariant
since it must hold for all states including the initial
state. An Ina Jo language transform is a state transition
function; it specifies what the values of the state vari-
ables will be after the state transition relative to what
their values were before the transition took place. A
complete description of the Ina Jo language can be
found in the na Jo Reference Manual [11].

Before giving the specification for the example sys-
tem a brief discussion of some of the Ina Jo notation is

*Ina Jo is a trademark of System Development, Corporation

69

necessary. The following symbols are used for logical
operations:

& Logical AND

| Logical OR

~ Logical NOT

—> Logical implication
In addition there is conditionel form

(A=>B<>C) ifAthenBelseC.
The notation for set operations is:

<: isa member of

| set union

~r~ set difference

S"(a,b..c)
The language also contains the following quantifier nota-
tion:

A" for &ll

E" there exists

Two other special Ina Jo symbols that are used in the
example specification are:
N" toindicate the new velue of a variable
(eg. N"'v1 is new value of variable v1)
NC" which indicates no change to a variable.

A partial system specification is shown in Figure 3.3.
The transforms correspond to the operations of the
English description.

the set consisting of elements a,b..and e.

321 Applying the Methodology to the Foarmal
Specifications

As was the case with the English requirements the
user first must identify the attributes that can be
modulated and the primitives of the system. When
using an Ina Jo specification the variables are the attri-
butes and the transforms are the primitives. Notice
that Acc_Rights and Sec_Levels can be eliminated
immediately since they are declared to be constants in
the Ina Jo specification. Also, since it is necessary to
explicitly specify the result of the File..Locked and
File—Opened transforms, there is an attribute Result
that was missing from the matrix generated for the
English requirements. Therefore, the row headings of
the skeletal matrix are Owner, Locked, In_.Use_Set,
Value, Buifer, Result, and Current_Process, and the
column headings are the eight transform names.

To fill in the matrix one must determine which attri-
butes are referenced and modified by each transform.
When working with an Ina Jo specification any variable
that occurs in the Effects section of a transform pre-
ceded by the new value notation is considered to be
modified. All other attributes that are mentioned in the
Effects section, except those preceded by the no-change
notation, are referenced. Consider the specification for
the Write.File transform. Since the Value attribute is
preceded by N” it may be meodified by this transform.
The ettributes that occur in the Effects section of the
Write_File transform not preceded by N" or NC" are
Locked, Owmer, Current_Process, Buffer, and Value.
Each of these is referenced by the transform. Thus, the
column corresponding to the Write_File transform con-
tains Rs in the Buffer, Owner, Locked, Value, and
Current_Process rows and an M in the Value row. This
process is repeated for each of the transforms.

Entries must then be added to the matrix by comput-
ing its transitive closure (with respect to references).

The same process that was used for the matrix con-
structed from the English requirements is applied
again. The resultant matrix is shown in Figure 3.4.

A problem may occur when using the approach out-
lined above to determine which attributes are refer-
enced in an Ina Jo specification. The problem arises
because when using the Ina Jo language if a variable is
to be changed under certain circumstances, but not
others, all circumstances must be described explicitly.
This is not enforced by the specification processor;
therefore, the Effect section of an Ina Jo transform may

not be deterministic. For instance, a possible
specification for the File Locked trensform is:
A"pl:Process (
N"Result(pl) =

pl = Current _Process
& OK_To(write,Current_Process,f)
=> Locked(f)))

Notice that this specification differs from the one that
appears in PFigure 3.3. The interpretation of this
specification is that if the executing process has write
access to file { then the new value of the executing
process's Result attribute will be true if file f is locked
and false if it is not locked. However, it does not specify
what the value of the Result attribute will be if the exe-
cuting process doesn't have write access io file f; nor
does it specify what the new value of the Result attri-
bute for the other processes will be. That is, this
specification is equivalent to the following specification.

A"pl:Process (
N''Result(pl) =
(p1 = Current_Process
& OK_To(write,Current_Process,)
=> Locked(f)
<> N"Result(p1)))

In the Ina Jo langusge the meaning of N'var=N"var is
that the variable var can assume any value in the new
state. Thus, its new value can be the result of referenc-
ing any of the state variables. Therefore, when filling in
the matrix for this type of specification one must
assume the worst case. That is, it is assumed that all
state variables are referenced to determine the value of
the Result attribute. The column that corresponds to
this transform would have an R in every row. Notice
how this differs from the value for the File_locked
column in Figure 3.4. Thus, whenever the Effects sec-
tion of a transform is nondeterministic the user must
assume that all shared attributes can be referenced.

The shared resource matrix generated from the Ina
Jo specification is analyzed in the same manner as was
described for the English requirements matrix.

3.3 Implementation Code

In this section the methodology is applied to imple-
mentation code. Figure 3.5 is an incomplete Pascal-like
implementation of the example system. Each of the
primitives is implemented as a Pascal procedure, and
the attributes are the fields of the variables.

To determine which attributes are modified one need
find only those attributes that appear on the left-hand
side of an assignment statement (:=). Thus, for the
writefile primitive the Buffer attribute may be modified.

Finding which attributes are referenced by a pro-
cedure is more difficult. First, any attribute that
appears on the right-hand side of an assignment state-
ment may be referenced since its value may be used to

70

generate the value essigned. However, there are addi-
tional attributes that may be referenced to determine
whether to meke the assignment. These references are
usuelly referred to as conditional references. That is,
any attribute whose value is used to determine which
path to take in the program is referenced. For
instance, if the program contains the following piece of
code:

if attributel=cons
then attribute2:=attribute3d

then attributel is referenced since the new value of
attribute? is dependent on the value of attribute1. That
is, if attributel is equal to cons then the new value of
attribute2 is assigned the value of attribute3 and if
attributel doesn't equal cons then the value attribute2
is unchanged.

The attributes that are referenced conditionally by
the writefile procedure are the Locked and Owner fields
of the datafile type and the Currentprocess. In addi-
tion, the Value field of the datafile type is referenced
directly.

After the direct and conditionally referenced attri-
butes as well as the modified attributes are marked in
the matrix its transitive closure is generated in the
same way as before. The shared resource matrix is now
complete and the anelysis is performed as described in
section 3.1.2.

3.4 Other Phases of the Saftware Life Cycle

Although Section 3.2 dealt with only top level
specifications, the shared resource methodology may be
applied to more detailed specifications in the same
manner. The more detailed specification may introduce
new attributes {eg. the size of a file), more transforms,
and transforms may have more parameters {eg. offset
in a file or buffer size).

The shared resource matrix is also useful during the
debugging and maintenance phases of the life cycle. I
one wants to know which elements are affected by a
particular attribute all that is necessary is to consult
the matrix. For instance, if one wants to modify a vari-
able it can immediately be determined what other attri-
butes would be affected by the modification. Finally, if
it is desirable to change the structure of some variable
one can determine from the matrix what procedures
would be affected by the change.

As the system is modified any changes in the attri-
butes that are referenced or modified should be
reflected in the shared resource matrix and the changes
to the matrix should be analyzed for the introduction of
possible storage and timing channels.

4. Advantages of The Methodology

There are several advantages to using the shared
resource attribute matrix to locate storage and timing
channels as opposed to searching for these channels in
an ad hoc fashion. The first advantage, discussed above,
is that by using the matrix, attributes that do not meet
the preliminary criteria of being modified or referenced
by a process are quickly discarded.

Another advantage of the approach is that by
presenting the shared resource information in graphical
form it can be checked easily by those persons partici-
pating in the design, implementation, testing, and
maintenance of the system, whether they are involved
directly in the security analysis or not.

The matrix also serves as an excellent design tool. By
indicating which attributes are affected by a primitive,
design oversights that may have been left out of the
preliminary design may be discovered. Also, if & primi-
tive is to be changed the attributes that may be
affected are readily determined from the matrix.

Finally, since the process of generating the matrix is
an iterative process, the matrix can be used throughout
the software life cycle of the project as a design tool as
well as a security analysis tool. As the specifications
become more detailed, more attributes and primitives
are added to the matrix. Furthermore, since the
methodology is not tied to a particular description
form, it can be applied to a description whose consti-
tuent parts are described in different forms (eg. English
requirements and formal specification). That is, part of
the system may be implemented while other parts have
only English requirements or formal specifications
describing them, but the methodology can be applied to
the collection of descriptions.

5. Experience and Future Wark

The shared resource matrix methodology has been
successfully applied to the design of a secure network
front end {12]. This application revealed a number of
storage and timing channels. Of the channels
discovered the worst case bandwidth was 5000 bits per
second with a typical bandwidth of 20 bits per second.
As a result the front end was redesigned to block or
reduce the bandwidth of these channels.

At present the matrix construction and ansalysis has
mostly been performed manually. However, much of
the work of generating the matrix could be eutomated.
Currently the generation of the transitive closure of the
matrix has been automated. This process is not depen-
dent on the form of the system description; therefore,
mechanizing the process did not restrict the versatility
of the approach.

8. Conclusions

This paper has attempted to present a practical
methodology for discovering storage and timing chan-
nels that can be used throughout the software life cycle.
A complete example used to illustrate the use of the
methodology on an English requirement, a formal
specification, and implementation code can be found in
[e].

It is hoped that the work presented here will help in
the understanding of covert channels and more impor-
tantly how they may be enumerated.

Acknowledgments

It is a pleasure to acknowledge Tom Aycock, Francis
Chan, Tom Hinke, and John Scheid who participated in
the original development and application of this metho-
dology to the secure network front end design. Also
Paul Eggert, Dino Mandrioli, Steve Bunch, and Gary
Grossman who reviewed earlier drafts of the paper and
provided helpful comments.

71

References

[1] B.W. Lampson, "A Note on the Confinement Prob-
lem,” Communications of the ACH, Vol. 18, pp.
813-615, Oct. 1973.

[2] B.J. Walker, R.A. Kemmerer, and G.J. Popek,
"Specification and Verification of the UCLA Unix
Security Kernel," Communications of the ACM, Vol.
23, pp. 118-131, Feb. 1980.

[3] S.B. Lipner, "A Comment on the Confinement Prob-
lem,” Proceedings of the Fifth Symposium on
Operating Systems Principles, The University of
Texas at Austin, Nov. 1975.

[4] J.K Millen, "Security Kernel Validation in Practice,”
Communications of the ACH, Vol. 18, pp. 243-250,
May 1976.

[5] M. Schaefer, B. Gold, R. Linde, and J. Scheid, "Pro-
gram Confinement in KVM/370," Proceedings of the
1977 Annual Conference ACH, Seattle, Washington,
pp. 404-410, Oct 1977.

[8] C.8. Kline, "Data Security: Security, Protection,
Confinement, Covert Channels, Validation,” Ph.D.
Dissertation, Computer Science Department, UCLA,
Los Angeles, California, 1980.

[7] JK Millen, G.A. Huff, and M. Gasser, “Flow Table
Generator,” Mitre Working Paper, WP-22554, The
Mitre Corporation, Bedford, Massachusetts, Nov.
1979,

[8] RJ. Feiertag, “A Technique for Proving
Specifications are Multilevel Secure,” CSL-109, SRI
[nternational, Menlo Park, California, Jan 1880.

[8] ‘R.A. Kemmerer, "Shared Resource Matrix Methodol-
ogy: A Practical Approach To Identifying Covert
Channels,” Report TRCSB1-10, Computer Science
Department, University of California, Santea Bar-
bara, Nov. 1881,

[10] D.E. Bell and L.J. LaPadula, "Secure Computer Sys-
tems,” ESD-TR-73-278, Vol -III, The Mitre Corpora-
tion, Bedford, Massachusetts, Jun. 1974

[11] R. Locasso, J. Scheid, V. Schorre, and P. Eggert,
"The Ina Jo Specification Language Reference
Manual,” SDC document TM-8888/000/01, System
Development Corporation, Santa Monica, California,
Nov. 1980.

[12] G.R. Grossman, "A Practical Executive for Secure
Communications,” DTI working paper, Digital Tech-
nology Incorporated, Champaign, llinois, Sep 1881.

FIGURES

T
PRIMITIVES i
WRITE READ ock | oFnE
i RESOURCE FILE FILE FILE | LOCKED
| ATTRIBUTES L. ! ;
- : J
| , : !
: SECURITY-LEVEL : R ! |
i |
! LOCKED/UNLOCKED i R : :
| "
| FILE GWNER i R H .
: SIZE | i
i VALUE i L i :
: i i * :
H i i i
| ; ; i
. | ! | ;
s b '
DEVICE ; !
i 1 '
i {
1 i j ’
i 1
i !
t 1 |
: | i
Figure 2.1
Example of a Shared Resource Matrix
Filled-in for the WRITE_FILE Primitive
‘ S S S S B 1
PRIMITIVE !) : i | i)
WRITE! READ | LOCK UNLOCK ; OPEN ! JIOSE ; FILE . FILE |
RESQURCE FILf FIE FILE | FILE G FILE - FILE - LOCKED . OPENED |
ATTRIBUTE i . . i
| i : :
! i : ; |
| access | i : i
PROCESS i RIGHTS | . R . R 1 R R ;
i i ! .
I t N i M
faurFER | R N ; ! ! |
i ; ; : ! ; i
; : j i
Pomoy ; !
! | ' !
seceRITY | ! i ; :
Y ; i i :
CLASSES | R PR ;B R
1 N H
H |
OWMER | R n R ! i
, FILES i ! ;
- -
i o | or | R R, R 3
IN-USE | : ' i ;
N-USE | ;
s | R * i LB R
i ; ! :
\ i
VALLE R R B :
SURRENT ! I i
PROCESS 2 i ® ? R RoR
: L]
Figure 3.1

Resource Matrix Filled-in from the English Description

T T H 1 1
PRIMITIVE i i |
WRITE | READ | LOCK | UNLOCK | oPey | cLosE| FuE | Fuse | smocess
' RESOURCE FILE | FIIE | FI FILE | FILE| FILE | LOCKED | OPENED| SLEEP |
| ATTRIBUTE i ; ; ; ! ! i
— T } + * * :
' o : I ' :
i - :
B H]
: ACCESS : ;
jPRocESS | icR R R{ ! = RloRow R
| |
! BUFFER R | R | :
! ‘
| ID i i
H | {
P ' '
| SECURITY i
| Lasses | R R OR LI R R R
| —
i OWRER R R | R R | R R R R
| F1LES : : ;
1
! M 1 ? *
! LOCKED R R, R RMI R| R ' R ; R
! 1 N + N i
N H 1 1 i 1 i i
| IN-uSE i i ! !
i SET R R R ; R0 R R R R
; | , i ; .
1 H i N T
: VALUE Ry | ® : i
' CURRENT i :
) PROCESS R R R R i R i R] R
' SYSTEY ; : !
; o R LI i R, R E ER
Figure 3.2

Transitive Closure of Matrix for English
Description with Timing Example Added

$TITLE Confinement
SPECIFICATION Confinement
LEVEL Top_Level

TYPE
Process,
Processes = Set Of Process,
File,
Data
TYPE
Access = (read,write), /* enumerated type */
Accesses = Set Of Access,
Security_Class,
Security_Classes = Set Of Security._Class,
Access_Right,
Access_Rights = Set Of Access_Right

CONSTANT
Acc_Rights(Process).Access_Rights,
Sec_Classes{File):Security_.Classes,
Class{Access_Right):Security_Class,
Acc(Access._Right).Accesses

CONSTANT
OK _To{r:access,p:Process,f:File):Boolean =
A"s:Security_Class (

s <: Sec__Classes(f) —>
E"a Access_Right {
a < Acc_Rights(p)
& Class{a) = s
&r < Acc{a)))

VARIABLE
Current_Process.Process,
Owner(File):Process,
Locked({File):Boolean,
In_Use_Set{File):Processes,
Value(File).Data,
Buffer(Process):Data,
Result(Process).Boolean

TRANSFORM Write_File(f.File) External
Effect
A"f1:File (
N''Value(f1)=
(f1=t
& Locked(f)
& Owner(f) = Current_Process
=> Buffer(Current_Process)
<> Value(f1)))

END Top_Level
END Confinement
Figure 3.3

Ina Jo Specification of Example System

I ! | I

i 1
ZRITE | READ LOCK 1 UNLOCK | OPEN j CLOSE I FILE
: |

T
\ PRIMITIVE |
~

FILE

RESOURCE ™\ Vsile | FILE | FILE ¢ FILE FILE ' FILE | LOCKED | OPENED
ATTRIBUTE ! .
~ .
’ i

I BUFFER R R .

!]
PROCESS '
|

RESULT . f o ki

; t + i

| ! |

JOWNER | R i R | ORM RoboR R R R

| : ; ;

' b i i
: |LOCKED | R . R | R | R R R L R
P FILES | t | i 1

{ ! ! } i ¢

; IN-USE ' : ’)

p 1 R R R TR R R

Fler | R R i ; : !
' T 1 T - i

VALVE RM | R ' ; |

H]
|
CURRENT
| R R R R R
| PROCESS R R R l
{
Figure 3.4

Transitive Closure of Matrix for Ina Jo Specification

73

program toysystem (input,output);

const numproc = 30;
numfiles = 5;
filesize = 255;

type access = (read,write);
securitylevel = (uncl,conf,secret,topsecret);
procrange = 1..numproc;
filerange = 1..numfiles;

datafile =

record
owner: procrange;
locked: boolean;
inuseset: set of procrange;
securitylevels. set of securitylevel;
value: array|0..filesize] of integer

end;

accessright =
record
level: securitylevel;
acc: access
end;

process =
record
accrights: set of accessright,
buffer: array[0..fllesize] of integer
end;

var files: array{1..numfiles] of datafile;
processes: array[l..numproc] of process;
currentprocess: procrange;
procedure writefile (fileid:filerange);
begin
if (files{filexd].locked and (files{fileid].owner=currentprocess))
then processes{currentprocess].buffer:=files(fileid] value
end;

procedure readfile {fileid:filerange);
begin
end.

Figure 3.5

Pascal-like Implementation Of Example System

