
Architectural Support for Fast Symmetric-Key Cryptography

Jerome Burke John McDonald Todd Austin

Advanced Computer Architecture Laboratory
University of Michigan

fjaburke,johngm,austing@eecs.umich.edu

Abstract

The emergence of the Internet as a trusted medium for
commerce and communication has made cryptography an
essential component of modern information systems. Cryp-
tography provides the mechanisms necessary to implement
accountability, accuracy, and confidentiality in communi-
cation. As demands for secure communication bandwidth
grow, efficient cryptographic processing will become in-
creasingly vital to good system performance.

In this paper, we explore techniques to improve the per-
formance of symmetric key cipher algorithms. Eight pop-
ular strong encryption algorithms are examined in detail.
Analysis reveals the algorithms are computationally com-
plex and contain little parallelism. Overall throughput on a
high-end microprocessor is quite poor, a 600 Mhz proces-
sor is incapable of saturating a T3 communication line with
3DES (triple DES) encrypted data.

We introduce new instructions that improve the efficiency
of the analyzed algorithms. Our approach adds instruction
set support for fast substitutions, general permutations, ro-
tates, and modular arithmetic. Performance analysis of the
optimized ciphers shows an overall speedup of 59% over a
baseline machine with rotate instructions and 74% speedup
over a baseline without rotates. Even higher speedups are
demonstrated with optimized substitutions (SBOXes) and
additional functional unit resources. Our analyses of the
original and optimized algorithms suggest future directions
for the design of high-performance programmable crypto-
graphic processors.

1 Introduction

In an increasingly connected world, cryptography has
become an essential component of modern information sys-
tems. Cryptography provides the mechanisms necessary to
provide accountability, accuracy and confidentiality in in-

herently public communication mediums such as the Inter-
net. Today, cryptographic processing is primarily reserved
for electronic commerce transactions and secure e-mail,
however, the adoption of virtual private networks (VPNs)
[12] and secure IP (IPSEC) [3] will subject more of all com-
munication to cryptographic processing. As secure commu-
nication bandwidth demands continue to grow, so too will
the importance of efficient cryptographic processing.

Cryptography is the art of using mathematics to encrypt
and decrypt data. There are many cryptography algorithms
(or ciphers) in use today, some good, and some not so good.
The quality of a cipher is judged by its ability to prevent
an unrelated party from determining the original content of
an encrypted message. Figure 1 illustrates the two forms of
cryptography most commonly used in information systems
today. The simplest ciphers are known as symmetric-key ci-
phers. Communicating parties share a common private key
which is used to transform the message from plaintext to ci-
phertext. The ciphertext is communicated to the other party,
and then the process is reversed using the same private key.

The primary obstacle in making private key symmetric
ciphers useful is distribution of private keys. To securely
share a private key, communicating parties would first have
to be holding a shared private key! Public key cryptog-
raphy solves this conundrum by implementing encryption
with two keys, a well-known public key and a private key.
Only the receiver knows the private key value. The re-
ceiver’s public key, on the other hand, is widely published
by trusted sources. As shown in Figure 1, to encrypt a mes-
sage using a public key cipher, it is first converted to cipher-
text using the public key. The resulting ciphertext can only
be decrypted using the receiver’s private key. Secure com-
munication now proceeds without any insecure exchanges
of private information. The process may also be reversed to
produce what is known as a digital signature. Digital signa-
tures authenticate the sender, i.e., verify the identity of the
sender. Since only the person holding the private key knows
its value, only that person can create a digital signature that
others can decrypt with the public key (assuming the private
key has not been compromised).

It would seem that the additional benefits of public key
encryption would obviate the need for private key encryp-
tion, however, the high cost of employing public key en-
cryption requires that it be used sparingly. Strong public
key ciphers are computationally very expensive, running

plaintext ciphertext plaintextf()

private
key

private
key

f()

plaintext ciphertext plaintextf()

private
key

public
key

g()

Figure 1. Private Key and Public Key Cryptography.

usually 1000 times slower than comparable private key ci-
phers [23]. Public key encryption requires exponentiation
and modular multiplication of large multi-precision num-
bers of 1024 bits in length or more. As a result, most secure
information systems only use public key encryption at the
start of a session to authenticate communicating parties and
to effect a secure exchange of private keys. The remain-
der of the session employs efficient private key algorithms,
using the private keys exchanged during authentication.

An example of a system that uses this session manage-
ment strategy is the Secure Sockets Layer (SSL) protocol
[29]. SSL extends TCP/IP to support secure encrypted
connections with authentication of senders and receivers.
The protocol is used by web servers and browsers to es-
tablish secure HTTP connections. Figure 2 illustrates the
relative costs of private and public key cryptography for a
web server. The numbers shown were gathered by Intel for
a heavily loaded web server running on an iA32 platform
[22]. The results show the total fraction of time spent in
the public key cipher code, private key cipher code, and
other parts of the web server and operating system. Re-
sults are shown for increasing session length, where a ses-
sion includes an initial public key authentication and private
key exchange, and a transfer of a single message of the size
listed.

Clearly, for very short sessions fast public key cipher
processing is crucial for high transaction throughput. For
sessions lengths on the order of a single web page object
(approximately 21k bytes [2]), private key cipher process-
ing dominates web server run time. For a 32k session
length, private key processing overheads rise to 48% of
overall run time. Since a session will likely see a user visit
many web pages and web pages with many objects, private
key cipher performance will quickly dominate the perfor-
mance of SSL sessions. To further reduce the cost of public
key authentication, SSL allows the use of a session cache,
where authenticated private keys are held and can later be
reused when users reconnect to view other web pages.

In this paper, we focus our attention on improving
the performance of private key symmetric ciphers. We
first examine the execution of eight widely known strong
symmetric-key ciphers. We analyze their performance on
detailed microarchitectural models, where we are able to

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1k 2k 4k 8k 16k 32k

SSL Session Length (bytes)

R
el

at
iv

e
C

o
n

tr
ib

u
ti

o
n

 t
o

 R
u

n
 T

im
e

Public
Other
Private

average size of a
single web object (21k)

Figure 2. SSL Characterization by Session Length.

clearly show their performance and the bottlenecks that
slow their progress. Armed with these insights, we pro-
pose architectural extensions that streamline cipher kernel
processing. The new instructions speed modular arithmetic,
substitutions, general bit permutations, and rotates. We re-
code the cipher using these new instructions and then ex-
amine their performance on microarchitectural models with
varying levels of support for fast cryptography. Our ap-
proach is a general one, the instructions are shown to be
useful across a broad array of cipher algorithms.

2 Private Key Symmetric Ciphers

Figure 3 shows the kernel of the Twofish cipher, devel-
oped by Counterpane Systems [26]. It is a candidate for
the Advanced Encryption Standard (AES) [1], the US gov-
ernment’s effort to develop a new strong encryption stan-
dard. Twofish is a particularly good example to look at be-
cause it captures many of the operations that ciphers em-
ploy. The code shown in Figure 3 is the encryption kernel,
run on one 128-bit block of data to encrypt it into a 128-
bit ciphertext block using a 128-bit key value. The Twofish
decryption kernel is nearly identical except the order of the
operations is reversed and inverted (e.g., rotate left becomes
rotate right).

The cipher algorithm first reads the input data, XOR’s it
with the 128-bit intermediate vector (IV) and key, and then
enters the encryption loop. The encryption loop executes
16 iterations (or rounds as they are called in cryptography
literature) to produce 128 bits of ciphertext. The ciphertext
is then once again XOR’ed with the key and stored to the
intermediate vector and the output buffer.

Within the kernel loop, the cipher algorithm employs a
series of reversible operations to implement a process called
diffusion. Diffusion works to randomly impress upon each
of the output bits some information from each of the input
bits. The direction of the diffusion process is set by the

x[0] = input[0] ˆ key[0] ˆ IV[0];
x[1] = input[1] ˆ key[1] ˆ IV[1];
x[2] = input[2] ˆ key[2] ˆ IV[2];
x[3] = input[3] ˆ key[3] ˆ IV[3];

for (ii=15, jj=0; ii >= 0; ii--, jjˆ=2) {
t0 = (sbox1[x[jj][0]] ˆ sbox2[x[jj][1]]

ˆ sbox3[x[jj][2]] ˆ sbox4[x[jj][3]]);
t1 = (sbox1[x[jjˆ1][3]] ˆ sbox2[x[jjˆ1][0]]

ˆ sbox3[x[jjˆ1][1]] ˆ sbox4[x[jjˆ1][2]]);

x[jjˆ3] = x[jjˆ3] <<< 1;
x[jjˆ2] = x[jjˆ2]ˆ(t0+t1+key[ii<<1]);
x[jjˆ3] = x[jjˆ3]ˆ(t0+(t1<<1)+key[(ii<<1)+1]);
x[jjˆ2] = x[jjˆ2] >>> 1;

}

output[0] = IV[0] = x[2] ˆ key[0];
output[1] = IV[0] = x[3] ˆ key[1];
output[2] = IV[0] = x[0] ˆ key[2];
output[3] = IV[0] = x[1] ˆ key[3];

Figure 3. The Twofish Cipher Kernel. All variables are 32-bit
integers. Rotates are indicated by <<< and >>>.

private key. The more seemingly random and complete the
diffusion process is, the more difficult it is to recreate the
plaintext without the key value. With large keys and good
diffusion, the ciphertext is extremely resistant to attackers.
Quantitatively, a strong encryption algorithm is one where
any change in the input results in a random perturbation of
each output bit with probability 50%. Moreover, any change
to the key value should have an equally dramatic effect on
the ciphertext produced.

The process of diffusion has two important implications
to the underlying machine architecture. First, diffusing in-
put bits is computationally expensive on modern micropro-
cessors. Most algorithms run their kernel loop at least 16
times on each block of data encrypted, successively mixing
the data more and more on each round. The second implica-
tion is that cipher kernels have little parallelism. Parallelism
in the cipher (especially coarse-grained parallelism) would
imply that some aspect of the computation does not affect
later ciphertext results, which would in turn imply that the
cipher algorithm was not a strong one! While we did find a
small level of ILP in cipher kernels, the process of making
the kernels run fast primarily entails improving their execu-
tion efficiency on the underlying microarchitecture.

The intermediate vector IV ensures that the diffusion
process propagates to all remaining ciphertext in the com-
munication stream. The ciphertext value of encrypted block
i is first XOR’ed with plaintext block i + 1 before it is en-
crypted. The end results is that the cipher kernel execution
is a very long recurrence with virtually no parallelism.

To ensure that the ciphertext can be decrypted back to
the plaintext, the cipher kernel must employ a series of key-
parameterized reversible operations. The Twofish algorithm
demonstrates a number of these:

Rotates Rotates are easily reversible (simply rotate the
same distance in the opposite direction). Rotates also have

good diffusion properties, impressing each bit onto another
bit of the output.

Modular Addition Modular arithmetic, if based on
a power-of-two base, is cheap, fast, and has relatively
good diffusion properties. Moreover, it is easily inverted
using modular subtraction or modular addition with the
two’s-complement of the addend. XOR operations, which
are modular additions in base 2, are easily reversible by
XOR’ing the same value onto the resulting ciphertext.

Substitutions Table-based substitutions can be used to
quickly implement any key-parameterized function. An
SBOX is a table of values indexed with plaintext (usually
a byte) that produces the result of the key-parameterized
function. SBOX’s are easily reversible by inverting the ta-
ble, i.e., indices become values and values become indices.

In addition, other algorithms often employ two other mech-
anisms, modular multiplication and XBOXs.

Modular Multiplication Modular multiplication has
been shown to have particularly good diffusion properties
[18], and the operation can be easily reversed with modular
multiplication of the modular inverse of the multiplicand.
If the multiplicand is part of the key, all divides (which are
typically much more expensive) can be confined to the ci-
pher setup code. If the modulus of the operation is a power-
of-two (as in RC6), it can be efficiently implemented using
existing multiply instructions. A few algorithms (most no-
tably IDEA) use a modulus of a 2N +1 prime number. This
further improves diffusion properties of the operation at the
expense of more computation. Techniques have been devel-
oped to efficiently implement 2N +1 prime modulus opera-
tions using only two additional (and parallel) adds plus one
multiply [18].

General Permutations General permutations map N
bits onto N bits with an arbitrary exchange of individual
bit values. While trivial to implement in hardware with
a wire network (called an XBOX), these permutations are
quite expensive to implement in software. Consequently,
newer ciphers strictly avoid permutations. We still consider
them, however, as they are used in DES [11], the US en-
cryption standard put into practice in the early 1970’s and
still in wide use today.

3 Experimental Framework

3.1 Cipher Benchmarks
We analyzed the eight private key symmetric ciphers

listed in Table 1. The table lists for each algorithm the
key size used for the experiments, the block size encrypted
by each application of the cipher kernel, the number of
rounds (iterations) executed within the cipher kernel, the
author of the algorithm, and popular applications that use
the cipher. Each of the algorithms use at least 128 bits of
key data, and each is generally considered a strong algo-
rithm, having undergone review and aggressive cryptanal-
ysis. Four of the ciphers, i.e., 3DES [11], Blowfish [8],

Cipher Key Blk Rnds/ Author Example
Size Size Blk Application

3DES 186 64 48 CryptSoft SSL, SSH
Blowfish 128 64 16 CryptSoft Norton Utilities
IDEA 128 64 8 Ascom PGP, SSH
Mars 128 128 16 IBM AES Candidate
RC4 128 8 1 CryptSoft SSL
RC6 128 128 18 RSA Security AES Candidate
Rijndael 128 128 10 Rijmen AES Candidate
Twofish 128 128 16 Counterpane AES Candidate

Table 1. Private Key Symmetric Ciphers Analyzed.

IDEA [18], and RC4 [25], are algorithms used in popular
software packages. 3DES runs the US DES standard en-
cryption algorithm [11] serially three times with three 56-bit
keys. This is the mode of operation specified in the Secure
Sockets Layer (SSL) protocol specification [29]. The re-
maining algorithms, i.e., Mars [6], RC6 [24], Rijndael [10],
and Twofish [26], are second round candidates for the Ad-
vanced Encryption Standard (AES) [1]. The National Insti-
tute of Standards and Technologies (NIST) is coordinating
the multi-year AES competition that will ultimately lead to
the selection of a new US encryption standard (to replace
DES). However, many of the AES algorithms will likely
emerge as high-quality encryption algorithms that will see
use in popular applications and protocols.

Our baseline implementation of each algorithm is quite
efficient. We obtained optimized implementations of each
of the AES finalists from the inventors of the algorithms.
3DES, Blowfish, and RC4 were all developed by Eric
Young of CryptSoft [9]. CryptSoft’s code is quite efficient,
as a result, it has found its way into many popular soft-
ware systems including SSH, OpenSSL, FreeBSD, and the
Mozilla web browser. The optimized IDEA implementation
was provided by Ascom, inventors of the algorithm.

Operation of the algorithms can be tailored significantly,
e.g., number of rounds, block size, key size. We config-
ured each algorithm as suggested by the inventors to main-
tain good strength and performance. 3DES was configured
as per the SSL specification [29]. All ciphers were run
in chaining-block-cipher (CBC) mode. In this mode, the
value of cipher text block i is XOR’ed with plaintext block
i+1 before it is encrypted. Nearly all applications use CBC
mode as it produces ciphertext that is more resistant to at-
tacks.

All baseline codes were compiled with the Compaq Al-
pha CC compiler (version 5.9) with full optimization and
EV6 architecture optimizations (e.g., byte and word loads).
All hand coded versions of the algorithms were based on
assembly outputs from the Compaq CC compiler with the
same optimizations. All analyzed codes (baseline and opti-
mized) were validated by running the optimized encryption
kernel with the original decryption kernel (and vice versa).

3.2 Performance Analysis Tools

Performance analysis was performed with the Sim-
pleScalar Tool Set version 3.0 for the Alpha architecture [5].

The SimpleScalar tool set includes detailed microarchitec-
ture simulators that can be tailored to reveal the bottlenecks
within a program. We used the SimpleView visualization
framework to optimize the performance of the cipher ker-
nels. The SimpleView viewer displays graphically the stalls
experienced by instruction as they pass though the modeled
pipeline, making it fairly straightforward to identify the bot-
tlenecks that slowed cipher kernels.

We analyzed program performance on the detailed tim-
ing simulator (sim-outorder). The timing simulator ex-
ecutes user-level instructions, performing a detailed tim-
ing simulation of an aggressive 4-way dynamically sched-
uled microprocessor with two levels of instruction and data
cache memory. Simulation is execution-driven, including
execution down any speculative path until the detection of
a fault, TLB miss, or branch misprediction. Our baseline
simulation configuration models a future generation out-
of-order processor microarchitecture. The processor has a
large window of execution; it can fetch and issue up to 4 in-
structions per cycle. It has a 256 entry re-order buffer with a
64 entry load/store buffer. Loads can only execute when all
prior store addresses are known. There is an 8 cycle mini-
mum branch misprediction penalty. The baseline processor
has 4 integer ALU units, 2-load/store units, 2-FP adders,
1-integer MULT/DIV, and 1-FP MULT/DIV. The latencies
are: ALU 1 cycle, MULT 7 cycles, Integer DIV 12 cycles,
FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV 12 cy-
cles. All functional units, except the divide units, are fully
pipelined allowing a new instruction to initiate execution
each cycle.

The processor we simulated has 32k 2-way set-
associative instruction and data caches. Both caches have
block sizes of 32 bytes. The data cache is write-back, write-
allocate, and is non-blocking with 2 ports. The data cache
is pipelined to allow up to 2 new requests each cycle. There
is a unified second-level 512k 4-way set-associative cache
with 32 byte blocks, with a 12 cycle hit latency. If there is
a second-level cache miss it takes a total of 120 cycles to
make the round trip access to main memory. We model the
bus latency to main memory with a 10 cycle bus occupancy
per request. Address translation is implemented a 32 en-
try 8-way associative instruction TLB and a 32 entry 8-way
associative data TLB, each with a 30 cycle miss penalty.

4 Cipher Kernel Analysis
4.1 Cipher Throughput

Figure 4 shows the encryption performance of each al-
gorithm.1 The performance of each algorithm is expressed
as a rate, bytes encrypted per 1000 cycles. We selected this
metric because it has a useful real interpretation: on a 1
GHz processor, the same value is the rate in megabytes/sec
that the microarchitecture would be able to encrypt data.
For each algorithm, we show the performance in instruc-
tions per byte encrypted (the 1 CPI machine), performance

1Because of the symmetry between the encryption and decryption algo-
rithms, performance was comparable for these codes for all experiments.
For the sake of brevity we only present encryption performance numbers.

296.48 192.69

0

10

20

30

40

50

60

70

80

90

100

Blow
fis

h

3D
ES

ID
EA

M
ar

s
RC4

RC6

Rijn
da

el

Twof
ish

E
n

cr
yp

ti
o

n
 R

at
e

(b
yt

es
/1

00
0

cy
cl

es
)

CPI=1 (Insts)
Alpha 21264
4W
DF

Figure 4. Cipher Encryption Performance.

on a real 600Mhz Alpha 21264 workstation, performance
on the modeled baseline microarchitecture (4W), and the
upper bound dataflow performance of the algorithm (DF).
Dataflow performance was measured on the performance
simulator using perfect branch prediction, infinite window
size, unlimited fetch bandwidth, perfect memory address
disambiguation (e.g., loads never wait for unrelated stores
even if their addresses have not yet been computed), and un-
limited functional unit resources. The dataflow experiments
represent the maximum performance that could be attained
on any machine short of speeding up individual operation
or employing value speculation [19].

We felt it was important to validate the performance
of the baseline SimpleScalar model so we ran the identi-
cal code on a 600 Mhz Alpha 21264 workstation (running
Tru64 Unix) with a 1GB main memory. We loosely based
our simulator baseline on the Alpha 21264 microprocessor,
setting the resource configuration and their latencies to val-
ues published by Compaq [17]. The correlation in absolute
performance was quite close, all except Mars and Twofish
were within 10% of the actual machine tests. Mars was 11%
faster, Twofish was 15% faster. It’s difficult to assess why
these discrepancies exists as many of the details of the Al-
pha 21264 microarchitecture have not been disclosed. We
feel they are likely due to the 21264’s clustered microar-
chitecture, which was not modeled by SimpleScalar. The
clustered microarchitecture has slightly higher forwarding
latency for some instructions; this would account for the
slightly better performance of the algorithms when running
on the simulator. However, performance trends were indeed
captured, thus we are fairly confident that our performance
models are representative of real hardware.

As shown in Figure 4, the baseline 4-wide superscalar
processor model performance (4W) varied dramatically.
The worst performance was given by 3DES. 3DES is com-
putationally very complex, and it contains operations (e.g.,
general permutation) that do not map well to a general-

purpose microprocessor. It’s interesting to note that a 1
GHz processor running the 3DES kernel (a common en-
cryption mode for secure web transports) would produce
a maximum throughput of 7.32 MBytes/s, not even enough
throughput to saturate a trailing edge 100 Mbs Ethernet link,
and barely enough to saturate a low-cost T3 communication
line. IDEA also turned in a poor performance, the primary
bottleneck in this cipher is numerous 7-cycle multiplies.

The AES standard candidates have much better perfor-
mance with Rijndael leading the pack at 48.51 bytes/1000
cycles. The best performance overall was delivered by RC4
at 88.16 bytes/1000 cycles, more than 10 times the perfor-
mance of 3DES. RC4 benefits from significantly more par-
allelism than the other algorithms. The algorithm is essen-
tially a key-based random number generator that XOR’s a
random sequence onto the input stream. The iterations of
the random number generator are (mostly) independent, al-
lowing its execution to fully saturate a wide machine, re-
sulting in very high-bandwidth encryption.

The last experiment (DF) shows the scalability of cipher
kernel performance. In these experiments, the original code
is executed on a dataflow machine. This machine has infi-
nite fetch, decode, execute, and retirement bandwidth. In
addition, it is never slowed by branch misprediction, cache
misses or ambiguous store address dependencies. This con-
figuration gives the absolute top performance that the code
could achieve (short of reducing instruction latencies or ap-
plying value speculation to break data dependencies). We
found these results quite surprising, Blowfish, IDEA, and
RC6 are running within 10% of dataflow machine perfor-
mance. There is slightly more headroom for 3DES, Mars
and Twofish, with potential speedups of 12%, 13%, and
32%, respectively. RC4 and Rijndael are the outliers, these
codes have ample parallelism and could be sped up signifi-
cantly.

4.2 Bottleneck Analysis
Figure 5 analyzes the bottlenecks in the cipher algo-

rithms. Results are only shown for the algorithms that
were not running at dataflow performance in Figure 4. For
each cipher, the impact of various stall conditions is shown.
Performance for each bar is shown relative to the perfor-
mance of the dataflow machine running the cipher kernel.
In each experiment, a single bottleneck (e.g., branch mis-
predictions) is re-inserted into the processor model, and the
resulting performance impact indicates the extent to which
that bottleneck is fully exposed in execution (independent
of all other bottlenecks). Note that if a bottleneck affects
the dataflow machine, it may not help the performance of
the baseline machine if it is removed. All of the exposed
bottlenecks may have to be removed before performance
improvements are seen in the baseline machine. The most
important aspect of these analyses is that bottlenecks that do
not affect the dataflow machine will not (and cannot) affect
the performance of the baseline machine.

Six bottlenecks are analyzed. The Alias bar shows the
impact of stalling loads in the pipeline until all earlier
store addresses have been resolved (i.e., no address aliases).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3DES Mars RC4 Rijndael Twofish

P
er

fo
rm

an
ce

 N
o

rm
al

iz
ed

 t
o

 D
at

af
lo

w
 S

p
ee

d

Alias
Branch
Issue
Mem
Res
Window
All

Figure 5. Analysis of Bottlenecks in Cipher Kernels.

Branch shows the effects of mispredictions, Issue shows the
impact of reducing issue width. Mem shows the impact of
introducing a realistic memory system, and Res gives the
impact of limited functional unit resources. Window shows
the impact of a limited-size instruction window, and All
shows performance of the machine with all bottlenecks en-
abled.

It’s interesting to note that branch mispredictions and
data memory performance do not impair the performance
of any ciphers. This observation is in stark contrast to other
benchmarks commonly studied in the computer architec-
ture literature. Branch mispredictions are not a problem for
these codes as branches are quite predictable, usually found
in kernel loops. Cache misses rarely occur as the algorithms
read one memory value and then compute with it for often
100’s of cycles. In addition, our memory system has a next-
line prefetch capability which eliminates virtually all data
cache misses in the cipher kernel.

A limited window size also has little affect on any of
the codes, except RC4. RC4 has significant parallelism be-
tween rounds of the kernel cipher. The other algorithms
do not, especially when configured in chaining block mode
(as they were for these experiments). While there is some
parallelism, it is fairly local for all the algorithms except
RC4. A similar trend can be seen for address aliases. All
the algorithms (except RC4) only access memory to up-
date intermediate vectors and read input data, as a result,
all loads are dependent on the previous stores. Having per-
fect alias detection does little for these codes as they still
end up waiting on all previous stores. This is not the case
for RC4, however, as this code performs many stores to an
internal table used for key-based random number genera-
tion. Depending on the input stream, stores in the previ-
ous round of the algorithm could be dependent, however,
the probability of this is 1=256 (assuming good diffusion).
In the dynamically scheduled microarchitecture, these un-
known (and mostly independent) stores stall later loads and

0

10

20

30

40

50

60

70

80

90

100

16 64 256 1k 4k 16k 64k 256k 1M

Session Length (in bytes)

P
er

ce
n

t
T

im
e

S
p

en
t

in
 C

ip
h

er
 S

et
u

p

Blowfish
3DES
IDEA
Mars
RC4
RC6
Rijndael
Twofish

Figure 6. Setup Cost as a Function of Session Length.

reduce the overall throughput of the algorithm. As shown in
Figure 5, introducing these stalls has a significant affect on
dataflow machine performance. The common bottlenecks
across all ciphers are resource supply and issue width, with
Rijndael and RC4 having the largest impacts.

When attacking a bottleneck, it is important to accurately
discern what part of the code is creating the bottleneck. We
can best spend optimization resources by focusing on this
part of the algorithm. Each of the ciphers is composed of
three major components: setup, encryption kernel, and de-
cryption kernel. The setup code processes the key to create
various SBox’s and key-based permutations required by the
cipher kernel. In addition, many of the algorithms precom-
pute lookup tables (based on the key) that speed processing
in the cipher kernel. The encryption and decryption kernels
process one block of data.

Figure 6 shows the relative cost of cipher setup com-
pared to the encryption kernels. (The decryption kernels
were omitted as their cost is identical to encryption). Costs
are measured in run time for varied session lengths. Since
setup code is called only once per session, longer sessions
better amortize setup cost. As shown in the figure, setup
costs for 3DES and IDEA are quite small, even for 16 byte
sessions. 3DES’s setup times are small due to its costly en-
cryption kernel. IDEA, on the other hand, is designed to
have very low-cost startup. The next group, Mars, RC4,
RC6, Rijndael, and Twofish all have moderately sized setup
costs, with overheads dropping well below 10% at session
lengths of 4k or greater. The clear outlier is Blowfish which
only sees setup costs below 10% for sessions longer than
64k bytes. Blowfish runs the encryption kernel on the 128-
bit key 520 times before commencing encryption of the in-
put data! This amounts to the cost of encrypting 8k bytes
of input data, requiring much longer sessions to amortize
setup.

Given the dominance of cipher kernels in overall perfor-
mance (even for Blowfish), we focused our attention on the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Blow
fis

h

3D
ES

ID
EA

M
ar

s
RC4

RC6

Rijn
da

el

Twof
ish

R
el

at
iv

e
C

o
n

tr
ib

u
ti

o
n

 t
o

 D
yn

am
ic

 In
st

ru
ct

io
n

s

Branch
Mov
Ld/St
Xbox
Sbox
Mult
Rotates
Logical
Arith

Figure 7. Characterization of Cipher Kernel Operations.

cipher kernels for the remainder of our analyses. For all
remaining experiments, we use a session length of 4k bytes.

4.3 Cipher Kernel Characterization

The results of the previous section suggest two ways to
improve cipher kernel performance: add more resources for
kernel processing, or reduce the latency of cipher kernel op-
erations.

Figure 7 details the operations executed in each cipher
kernel. We classified each of the instructions in the cipher
(by hand) into categories that describe their kernel opera-
tion. We then ran the ciphers and counted the number of
dynamic occurrences of each instruction. Each portion of
the stacked bars in the graph represents the fraction of all
dynamic instructions contributing to that category. The op-
erations were broken down into the following categories:

Arithmetic : Primarily addition used to implement encryp-
tion operations and address arithmetic.

Logic : Primarily XOR operations used in ciphers.

Rotates : Rotates are used in nearly all of kernels.

Multiplies : Integer multiplies used in a few of the kernels.

Substitutions : Table-based substitutions (called S-boxes)
used to create reversible key-parameterized general
functions within cipher kernels.

Permutes : Reversible general bit permutations used within
a few of the cipher kernels.

Loads/Stores : Memory operations (minus those used for
substitutions).

Control : Branches and jumps.

As shown in Figure 7, the algorithms can be broadly di-
vided into two categories: those that rely on arithmetic com-
putation, and those that rely on substitutions. IDEA and
RC6 are computational algorithms relying heavily on mul-
tiplies to diffuse input data bits. Blowfish, 3DES, Rijndael
and Twofish, on the other hand, rely heavily on SBox’s to
translate input data to ciphertext. The former groups will
benefit from more computing resources (especially multi-
plies) and from faster operations (e.g., rotates). The latter
group will benefit from increased memory bandwidth and
faster memory accesses for SBox translations.

Besides improving the efficiency of kernel operations,
it is possible to speed up an algorithm using value predic-
tion. Value predictors produce values that break dependen-
cies between instructions. As dependencies are removed,
instruction level parallelism and program performance in-
creases. For example, if a value predictor could predict the
input values to the cipher kernel rounds, it would be pos-
sible for kernel rounds to execute in parallel, resulting in
significantly more cipher throughput. To test this possibil-
ity, we instrumented our microarchitecture model with an
infinite-sized last value predictor [19] and used it to pre-
dict the results of all instructions in each cipher kernel. The
most predictable dependence edge in any of the cipher ker-
nels was predicted correctly only 6.3% of the time! Clearly,
diffusion works to transform data in unpredictable ways,
eliminating the possibility that value speculation might be
useful in improving cipher performance.

5 Architectural Extensions

Figure 8 lists the additions we made to the instruction set
to support fast execution of symmetric private key ciphers.
A number of important considerations drove the design of
these instructions. First, all instructions are limited to two
register input operands and one register output. While hav-
ing three register inputs would provide significantly more
opportunity to combine low-latency operations, we felt the
resulting impact of a third input operand was too great to
consider for a simple instruction set enhancement. Adding
a third register operand would increase the number of read
ports on the register file by 50%, which would subsequently
increase its cycle time. In addition, more bandwidth would
be required from the register renamer as well; slowing the
renamer down could potentially slow the entire pipeline.

Second, we carefully considered the impact on cycle
time each new instruction could potentially create. Base-
line functional units and modified functional units were
specified in structural Verilog, synthesized using Cascade
EPOCH synthesis tools, and timing analyses were per-
formed using SPICE for a 0.25u MOSIS TSMC process.
Finally, we worked to develop a small set of canonical op-
erations that could be broadly applied to many cipher algo-
rithms.

Figure 8 lists the additions we made to the Alpha instruc-
tion set to support fast execution of symmetric private key
ciphers. Rotates (ROL and ROR) are fully supported, for 64
and 32-bit data types. The Alpha architecture does not sup-

SBOXSYNC.<tt>

MULMOD <srca>,<srcb>,<dest>

RORX <src>,#<rot>,<dest>

REG[<dest>] <− (REG(<src>) <<< #<rot>) ^ REG[<dest>]

REG[<dest>] <− (REG(<src>) >>> #<rot>) ^ REG[<dest>]

ROL <srca>,<srcb>,<dest>

ROR <srca>,<srcb>,<dest>

REG[<dest>] <− REG[<srca>] <<< (REG[<srcb>] & 0x3f)

REG[<dest>] <− REG[<srca>] >>> (REG[<srcb>] & 0x3f)

ROLX <src>,#<rot>,<dest>

REG[<dest>] <− (REG(<srca>) * REG[<srcb>]) % 0x10001

SBOX.#<tt>.#<bb>.<aliased> <table>, <index>, <dest>

The XBOX instruction performs a partial general permutation of
register <srca>, given the bit permutation map in register <srcb>.
The result of the permutation is placed in register <dest>.

REG[<dest>] <− MEM32[(REG[<table>]&~0x3ff)
 | (((REG[<index>]>><bb>*8)&0xff)<<2)]

The SBOX instruction extracts byte #<bb> (0..3) from register
<index> and concatenates the resulting 8−bit value with register
<table> to produce a 32−bit aligned Sbox address. The 32−bit
value at the Sbox address is loaded (zero−extended) into <dest>.

NOTE: stores are not visible within the Sbox until an SBOXSYNC
instruction is executed, unless the <aliased> flag is indicated.
The table designator (#<tt>) may be any value, however,
performance of the SBOX instruction may be improved if each
Sbox table has associated with it a different table (#<tt>) value.

Sbox #<tt> is synchronized with memory. Once this instruction is
executed, stores to the Sbox memory since the last SBOXSYNC
will become visible to later SBOX instructions.

REG[<dest>] = 0
for (i=#<bbb>*8, j=0; i < #<bbb>+8; i++, j++)
 REG[<dest>].bit[i] <− (REG[<srca>] >> (REG[<srcb>] >> j*6)) & 1

XBOX.#<bbb> <srca>,<srcb>,<dest>

Figure 8. Architectural Support for Symmetric Ciphers.

port rotate instructions, as a result, the addition of rotates
saves 4 instructions (and 3 execution cycles). Nearly all the
ciphers (except IDEA and Rijndael) have a fairly frequent
usage of rotates.

The ROLX and RORX instructions support a constant
rotate of a register input, followed by an XOR with another
register input, and the result replaces the second register
input. This was the only consistent opportunity we found
to combine operations; all other combinable operations re-
quired at least three input operands. While this instruction
does require three inputs, the third is a constant (within the
instruction), as a result, there is no impact to the register
files or renamers. The ROLX and RORX instructions are
useful in speeding up Mars and RC6. Timing analyses indi-
cated that rotates easily fit in the cycle time of a same-sized
ALU.

The MULMOD computes the modular multiplication of
two register values modulo the value 0x10001. This is a
fairly fast operation, we use the algorithm detailed in [18].
The implementation requires a 16-bit multiply, followed
by two 16-bit (parallel) additions and then two levels of

0816
opcode

00

Table Address Table Index

don’t
care

SBox Value

4:1 8bit MUX

SBOX
Address

0 2410

Byte
Number

SBOX Table

Table Tag

Table Data

SBox Hit?=

Figure 9. SBOX Instruction Semantics.

MUX’ing. Timing analyses indicate the operation can com-
plete in just over three cycles, we conservatively estimate
that the operation can complete in 4 ALU cycles.

The SBOX instruction speeds the accessing of substitu-
tion tables. The instruction restricts SBOX’s to 256-entry
tables with 32-bit contents. As shown in Figure 9, an SBox
is accessed by concatenating the upper bits of the table vir-
tual address with eight bits extracted from the index regis-
ter. The access returns from memory a 32-bit table value.
The cipher algorithms studied all use 256 entry SBox’s,
with either 32 or 8 bit entries. We implemented 8 bit en-
tries by zeroing the upper 24 bits of each SBox table entry.
Other SBox table orientations could be efficiently imple-
mented with these instructions as well. Smaller SBOX’s
could replicate SBox entries, thereby creating a don’t care
bit in SBox byte index. Larger SBoxes could be imple-
mented by striping the table across multiple architectural
tables and selecting the correct value based on the upper
bits of the larger table index.

As shown in Figure 9, the SBOX instruction eliminates
address generation (which takes a full cycle on the baseline
machine). This is accomplished by restricting that all SBox
tables be aligned to a 1k byte boundary. SBox address cal-
culation then simplifies to zero-latency bit concatenation.
To speed most SBOX operations, stores to SBox storage are
not visible by later SBOX instructions until an SBOXSYNC
instruction is executed. This optimization eliminates the
need for SBOX instructions to snoop on store values in the
processor core. Moreover, SBox implementations are possi-
ble that have separate storage that need not be kept coherent
with cache memory. It was fairly straightforward to identify
the locations to place SBOXSYNC instructions - always at
the end of key setup routines which generated the key-based

4W 4W+ 8W+ DF
Fetch Speed 1 block/cycle 2 blocks/cycle inf

Window Size 128 256 inf

Issue Width 4 8 inf

IALU resources 4 (1 cycle) 8 inf

IMULT/MULTMOD 1-64 (7 cycles)/2-32 (4 cycles) 2-64/4-32 inf

D-Cache Ports 2 (2 cycles) 4 inf

SBox Caches 0 4 single port (1 cycle) 4 dual ported inf

Rotator/XBOX 2 (1 cycle) 4 8 inf

Table 2. Microarchitecture Models.

SBox entries. Notably, RC4 stores into its SBox table. To
support this algorithm, we added an alias bit to the SBOX
instruction, which if set allows later SBOX instructions to
observe earlier store values. We implemented this form of
the SBOX instruction by treating it as a load with optimized
address generation.

We explored two SBox implementations: a simple
cache-based implementation and a dedicated SBox cache.
The simple implementation produces the SBox storage ad-
dress and then sends the memory request to a data cache
memory port. If the SBOX aliased bit is not set, SBOX
instructions may execute in any order. As a result, these
SBOX instructions need not enter the memory ordering
buffer (the device that implements out-of-order load/store
execution). The SBOX instructions simply enter the cache
pipeline when a free port is available. With this implemen-
tation, SBOX instructions complete in 2 cycles, much faster
than the 4 cycles required to implement SBox accesses with
load instructions.

Our more aggressive SBox implementation adds four
SBox caches to the microarchitecture. SBox caches have a
single tag (the table base address), making them a one line
sector cache [13]. Each SBox cache sector is 32-bytes in
length (one data cache line). As shown in Figure 9, SBOX
addresses are sent to the specified SBOX cache. The table
indicator in the SBOX instruction allows the programmer to
“schedule” the SBOX caches, specifying which cache con-
tains a particular table. As a result, the underlying imple-
mentation need not implement a 4-ported 4k byte cache,
but rather four faster single-ported 1k byte SBox caches.
The instruction scheduler directs SBOX instructions to the
correct SBOX cache based on the instruction opcode table
specifier. The SBOX cache is virtually tagged, thus TLB
resources are only required on misses. When the virtual
tag does not match, the SBOX cache is flushed and the
touched sector is fetched from the data cache. When the
SBOXSYNC instruction is executed, all sector valid bits are
cleared forcing subsequent SBOX instructions to re-fetch
SBOX data from the data cache. On a task switch, the SBox
cache is flushed by invalidating its tag. No writeback is nec-
essary as SBox caches are read-only.

The XBOX instruction implements a portion of a full 64-
bit permutation. The operation takes two input registers.
One register is the operand to permute; the other register is
a permutation map that describes where each input operand
bit is written in the destination. The permutation map con-

tains eight 6-bit indices, each indicates which bit from the
input operand will be written in the output. The XBOX in-
struction opcode indicates which of the eight bytes in the
destination register are permuted. The 32-bit permutations
in the 3DES algorithm can be completed in 7 instructions
(and executed in 3 cycles), a significant improvement over
the baseline code which requires 39 instructions.

6 Performance Analysis

We hand coded optimized versions of each cipher ker-
nel, and then examined their performance on four microar-
chitectures, ranging in cost and performance. Table 2 lists
the four microarchitectures studied. The 4W microarchitec-
ture is a typical high-performance four-issue microarchitec-
ture with moderately sized memory system and resources.
It is roughly modeled after the Alpha 21264 microarchi-
tecture. In the 4W model, there are four ALUs, two data
cache ports, and two Rotate/XBOX units that implement
rotates and general permutations. SBOX instructions ac-
cess the cache memory, thus they must compete with loads
and stores for cache access ports. The 4W model also sup-
ports optimized multiplication. Word-sized (32-bit) multi-
plies have an early out after 4 cycles. In addition, modu-
lar 16-bit multiplies (modulo 0x10001) are implemented in
hardware in 4 cycles. The 4W model can initiate one 64-
bit multiply, two 32-bit multiplies, or two 16-bit modular
multiplies per cycle. This resource configuration could be
implemented inexpensively by mapping the shorter multi-
pliers onto the 64-bit multiplier hardware. For example, a
Wallace tree based multiplier can be converted to multiple
shorter precision multipliers by simply isolating portions of
the Wallace tree with MUXes.

The 4W+ microarchitecture improves the performance
of SBOX instructions, reducing their latency and provid-
ing more bandwidth to SBox values without interfering with
cache memory accesses. We added four SBox caches, each
a 1k single-line sector cache. This configuration support
four simultaneous accesses to four different SBox tables in
a single cycle (four times the bandwidth of the 4W config-
uration). When a reference is made to an SBOX the tag is
checked to see if it contains the referenced table, and then
the valid bit of the sector is checked. If the sector is valid,
the 32-bit referenced value is returned, otherwise, the SBox
sector data (one data cache line) is demand fetched from
the data cache. SBox storage does not observe stores to

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Blow
fis

h

3D
ES

ID
EA

M
ar

s
RC4

RC6

Rijn
da

el

Twof
ish

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

 o
ve

r
B

as
el

in
e

C
o

d
e

Orig/4W
Opt/4W
Opt/4W+
Opt/8W+
Opt/DF

Figure 10. Relative Performance of the Optimized Kernels.

the data cache until an SBOXSYNC instruction is executed
(which invalidates the SBOX tag). The 4W+ configuration
also adds two more Rotate/XBOX units, thereby doubling
the number of rotates and XBOX instructions that can be
executed in a single cycle.

The 8W+ model provides approximately twice the ex-
ecution bandwidth of the 4W+ model. This model dou-
bles the issue width to eight, doubles the number of exe-
cution resources, and adds two more data cache ports. To
accommodate the additional execution resources, the front-
end performance is scaled to fetch two blocks per cycle, and
the instruction window size is doubled to 256 instructions
to expose more ILP. We don’t claim that it would be wise
to construct such a machine, we examine this configuration
simply to demonstrate the headroom in performance if more
resources were made available for cipher kernel execution.
Finally, model DF is our dataflow model, described in the
previous section. The maximum achievable performance of
the re-coded kernels is given by these experiments.

Figure 10 shows the performance of the optimized codes
running on the four processor models. All performance
measurements are shown as speedups (in total cycles to pro-
cess a 4k session) normalized to the performance of the
original code with rotates running on the baseline microar-
chitecture with rotate instructions. Many architectures have
fast rotates, so we felt that normalizing to this target was a
more fair assessment of our instruction set extensions. For
machines without rotate instructions, e.g., Alpha-based pro-
cessors, speedups are even more impressive!

The first bar, labeled Orig/4W, shows the performance
of the original code (without rotate instructions) compared
to the performance of the cipher kernels with rotate instruc-
tions. This experiment shows the impact on performance
that an architecture will experience if it does not support ro-
tates. Without a rotate instruction, rotates are synthesized
using three instructions for a rotate by a constant amount

(2 cycles to execute), and four instructions for a rotate by
a variable amount (3 cycles to execute). The algorithms
that most heavily use rotates, namely Mars and RC6, saw
significant slowdowns of 40% and 24%, respectively. The
“lowest hanging fruit” for architects to gather here are ro-
tates. These simple instructions have little impact on the
cost or cycle time of a machine and provide good speedups
on three of the ciphers. Intel processors based on the P6
microarchitecture (PII, PIII) have good rotate performance.
Measurements on a PIII found that the machine could sus-
tain one rotate per cycle continuously. However, Intel re-
cently announced that shifts and rotates on the Willamette
microarchitecture would be at least twice as expensive as
addition [32].

The second bar in Figure 10, labeled Opt/4W, give the
performance improvement of the fully optimized (hand
coded) cipher kernels running on the 4W model. Even
on the less expensive microarchitecture, speedups for these
new kernels is quite impressive. The kernels saw an average
performance improvement of 59%, with IDEA seeing the
best overall improvement of 159%. IDEA benefited from
the faster and higher bandwidth modular multiplication sup-
port, an operation it uses frequently. Rijndael also saw very
good speedups, with performance almost doubling. Rijn-
dael benefited mostly from reduced latency for SBox ac-
cesses. With SBox support in hardware, these accesses re-
duce from three instructions to one, and speedup from five
cycles to two.

Blowfish, 3DES, RC4, and Twofish all saw speedups
near 50%. Like Rijndael, Blowfish, RC4 and Twofish ben-
efited mostly from improved SBox access latency. 3DES
saw benefits from improved SBox access latency and fast
XBOX permutations. The outlier in these experiments was
RC6. RC6 received most of its benefits with rotates; on
the 4W microarchitecture it does benefit from fast modular
multiplication, but only slightly.

The third bar in Figure 10, labeled Opt/4W+, gives
the performance improvements with additional SBOX re-
sources and rotator/XBOX units. Earlier results suggested
that Rijndael and Twofish could benefit from more rotator
and SBox resources, however, in these experiments they
have both saturated the machine issue resources and thus
cannot leverage more resources. Both ciphers are running
at nearly 4 IPC in the 4W machine, additional resources are
only useful if the microarchitecture can issue more than 4
instruction per cycle.

Finally, the fourth (Opt/8W+) and fifth (Opt/DF) bars
show the optimized program performance with double the
execution resources and infinite resources. As with the orig-
inal code experiments, many of the cipher kernels are run-
ning near dataflow speed. Blowfish, 3DES, Mars, RC6
could not be sped up any more without reducing the la-
tency of the individual operations. IDEA could benefit only
marginally from addition resources. RC4, Rijndael, and
Twofish have plenty of ILP to exploit, more resources im-
proved their performance. In all cases except RC4, doubling
the execution bandwidth exposes all available parallelism,
permitting the ciphers to run at dataflow speed. RC4, on the

other hand, still has a large supply of untapped ILP.

6.1 Discussion

Optimizing the architecture and software kernels has a
powerful effect on the performance of the kernels, most
are more than 50% faster after optimization. An important
question to consider in light of these speedups is whether
or not these optimizations affect the strength of the ciphers.
The strength of an algorithm is defined as its resistance to
attacks. There are two primary approaches to attacking a
cipher, brute-force attacks and cryptanalytic attacks.

Brute-force attacks try all different key values until an
intelligible message is found. Our optimizations certainly
make this less costly for a given machine. Using the
proposed optimizations, a single processor can now test
roughly 50% or more keys in a given period of time. This
performance improvement does not, however, make the al-
gorithm more susceptible to attack since an attacker could
just as easily use more machines to speed up an attack. Ci-
phers can be hardened to brute-force attacks by using longer
keys, all the algorithms studied in this paper use at least
128-bit keys which are widely regarded as unsearchable key
spaces for modern computing systems.

Cryptanalytic attacks apply a mix of logic, higher math-
ematics, linguistics, and brute-force attacks to essentially
“derive” the input given information that is extracted from
the ciphertext. This process is an attack on the cipher algo-
rithm itself - a successful attack can compromise a cipher
algorithm, rendering it useless. Since we do not modify the
function of the cipher algorithms in any way, we do not af-
fect their susceptibility to cryptanalytic attacks.

7 Related Work

Most published work on cryptographic hardware has fo-
cused on public key ciphers. The most expensive compo-
nent of these algorithms is modular multiplication of multi-
precision (1024-bits or more) operands. Most high perfor-
mance algorithms are based on the Montgomery method
[21]. There have been a number of proposals on how to
speed this computation in hardware [31, 15, 30, 4], and In-
tel has demonstrated that the Merced iA64 processor has
particularly good performance for this algorithm [22].

A number of algorithm-specific hardware implementa-
tions that have been described. IBM’s original DES pro-
posal described a hardware implementation [11]. Shiva
[28], IBM [16], Chrysalis-ITS [7], and Hi/FN [14] all of-
fer high speed hardware implementations of the DES and
3DES algorithms. Published performance numbers for
3DES on these designs range from 8 MB/s to 58 MB/s. Our
3DES algorithm on a 1 GHz processor would achieve a per-
formance of 12 MB/s - clearly there remains value in a hard-
ware design for a specific algorithm. The details published
on the IBM implementations [33, 34] are particularly inter-
esting as they highlight other challenges that arise when de-
veloping a cryptographic processor including random num-
ber generation and key protection.

Hardware implementations have also been described for
IDEA [18], Twofish [26], and Blowfish [24]. The FPGA
research community has also shown that public key cipher
algorithm performance can be improved using FPGA-based
implementations [20]. While our approach cannot attain the
peak performance that algorithm-specific hardware imple-
mentations can attain, our approach does provides the ad-
vantage of both performance and flexibility. Using a canon-
ical set of symmetric cipher operations we speed the pro-
cessing of many algorithms, possibly offering performance
improvements for yet-to-be-developed algorithms. Given
the wide variety of algorithms in use today, and the need
for servers and clients to support different ciphers for dif-
ferent applications (or even connections), we feel there are
benefits to providing instruction set support.

We are aware of only one previous proposal to add in-
struction set support for private key symmetric cryptogra-
phy. Shi and Lee proposed adding an instruction (GRP)
that supports efficient software implementations of general
bit permutations [27]. Their approach is more efficient than
our proposal. For a 32-bit operand they can perform any
permutation in 5 instructions, our approach requires 7 in-
structions. Their approach also scales more favorably to
larger operands. We are currently enhancing our tools to
use Shi and Lee’s GRP instruction, however, we expect the
performance impacts of this change to be small as none of
our cipher algorithms have general permutation within their
kernel loops. 3DES is the only algorithm that uses general
permutations (for the initial and final permutations).

8 Conclusions and Future Work

As the Internet moves to the forefront as a trusted
medium for commerce and communication, cryptography
has become a integral part of modern information systems.
We showed that even on very high-end microprocessors,
common cryptographic algorithms (such as 3DES) cannot
produce the throughput necessary to fully saturate a single
T3 communication line - large web sites will often service
many of these lines simultaneously. Furthermore, as the
Internet and its applications move toward more security in
communication, cryptographic bottlenecks will continue to
grow.

We present detailed analyses of eight popular private
key symmetric ciphers. We find that their performance and
setup times vary widely. Analysis of their bottlenecks re-
veals that many of the algorithms run at near dataflow speed,
those that do not simply require more resources for ad-
ditional performance. Given these analyses, we proposed
new instructions that speed the common operations of sym-
metric ciphers. Instruction set support is added for substi-
tutions, permutations, rotates, and modular multiplication.
We then examine their performance on microarchitecture
models of varying cost and performance. Performance anal-
ysis of the optimized benchmarks revealed an 59% speedup
over machines with rotate instructions, and a 74% speedup
over machines without rotates.

Our analyses of the original and optimized algorithms

suggest that there is more opportunity to improve the per-
formance of cryptographic processing. Currently, we are
exploring other optimizations for the eight kernels pre-
sented in this paper, including optimization of their setup
routines and faster permutations. Looking further out, we
are also exploring the possibility of hardware-cipher co-
designs. Are there efficient functions that could be mapped
to a processor pipeline what would at the same time be fast
and have good diffusion properties? If so, it would make
the case for a hardware-cipher co-design.

In this paper, we proposed techniques to add fast cryp-
tography support to a general purpose processor. We are
now exploring the implications of a design where the pri-
mary purpose of processor is cryptographic processing.
Cryptographic processors would have to deliver orders of
magnitude more performance to meet the bandwidth de-
mands of secure servers and virtual private network (VPN)
routers. This is quite an interesting design space: the pro-
cessor must have general capabilities so that it can support
a wide array of (possibly yet-to-be-invented) cryptographic
ciphers, but it need not support the generality of all pro-
grams. SPEC performance is irrelevant for these proces-
sors, they need only execute cipher kernels quickly (both
private and public key algorithms). Optimizations we are
considering include fine-grained multi-threaded microar-
chitectures to extract inter-session parallelism, four operand
instructions to permit increased operation combining, and
microarchitecture-based loop optimizations. We are cur-
rently exploring these designs in depth and will report on
their design and evaluation in a future paper.

Acknowledgements
We are grateful to Phil Yeh and the anonymous referees

for their comments on earlier versions of this work.

References
[1] Advanced Encryption Standard (AES) Development Effort. US Gov-

ernment, http://csrc.nist.gov/encryption/aes/.

[2] M. Arlitt and C. Williamson. Web server workload characterization:
The search for invariants. Proceedings of the ACM SIGMETRICS ’96
Conference, April 1996.

[3] R. Atkinson. Security architecture for the internet protocol. IETF
Draft Architecture ipsec-arch-sec00, 1996.

[4] T. Blum and C. Paar. Montgomery modular exponentiation on recon-
figurable hardware. Proceedings. 14th IEEE Symposium on Com-
puter Arithmetic, pages 70–77, 1999.

[5] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madi-
son, June 1997.

[6] C. Burnwick and et al. The Mars Encryption Algorithm. IBM,
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/MARS, 1999.

[7] Chrysalis-ITS Corporation. http://www.chrysalis-its.com.

[8] Counterpane Systems. http://www.counterpane.com.

[9] CryptSoft Technologies. http://www.cryptsoft.com, 2000.

[10] J. Daemen and V. Rijmen. AES Proposal: Rijndael.
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Rijndael,
1999.

[11] D.W. Davies and W.L. Price. Security for Computer Networks. Wi-
ley, 1989.

[12] P. Ferguson and G. Huston. What is a VPN.
http://www.employees.org/ ferguson/vpn.pdf, 1998.

[13] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Palo Alto, Calif.: Morgan Kaufmann, 1990.

[14] Hi/Fn Corporation. http://www.hifn.com.

[15] J.-H. Hong and C.-W. Wu. Radix-4 modular multiplication and ex-
ponentiation algorithms for the rsa public-key cryptosystem. Design
Automation Conference (ASP-DAC 2000), pages 565–570, 2000.

[16] S/390 and OS/390 Cryptography.
http://www.s390.ibm.com/security/cryptography.html.

[17] J. Keller. A superscalar alpha processor with out-of-order execution.
9th Annual Microprocessor Forum, 1996.

[18] Xuejia Lai. On the Design and Security of Block Ciphers. Hartung-
Gorre Verlag, 1992.

[19] M.H. Lipasti and J.P. Shen. Exceeding the dataflow limit via value
prediction. In 29th International Symposium on Microarchitecture,
December 1996.

[20] U. Meyer-Base and R. Watzel. A comparison of DES and LFSR
based FPGA implementable cryptography algorithms. 3rd Inter-
national Symposium on Communication Theory and Applications,
pages 291–298, 1995.

[21] P. L. Montgomery. Modular Multiplication Without Trial Division.
Mathematics of Computation, 44(170):519–521, April 1985.

[22] Stephen Moore. Enhancing Security Performance
Through IA-64 Architecture. Intel Corporation,
http://developer.intel.com/design/security/rsa2000/itanium.pdf,
1999.

[23] An Introduction to Cryptography. Network Associates, Inc.,
http://www.pgpi.org/doc/pgpintro/, 1999.

[24] R. L. Rivest and et al. The RC6 Block Cipher. RSA Security,
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6.

[25] RSA Security. http://www.rsa.com.

[26] B. Schneier and et al. Twofish: A 128-
Bit Block Cipher. Counterpane Systems,
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Twofish, 1998.

[27] Z. Shi and R. B. Lee. Bit permutation instructions for accelerating
software cryptography. Proc. of the IEEE International Conference
on Application-specific Systems, Architectures and Processors, pages
138–148, 2000.

[28] Shiva Corporation. http://www.shiva.com.

[29] The SSL Protocol, version 3.0. Netscape, Inc.,
http://home.netscape.com/eng/ssl3/draft302.txt, 1999.

[30] C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu. An improved
montgomery’s algorithm for high-speed rsa public-key cryptosys-
tem. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 7(2):280–284, June 1999.

[31] W.-C. Tsai, C.B. Shung, and S.-J. Wang. Two systolic architectures
for modular multiplication. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 8(1):103–107, February 2000.

[32] Optimizing Software for the Willamette Architecture.
http://developer.intel.com.

[33] P. C. Yeh and R. M. Smith Sr. ESA/390 integrated cryptographic
facility: An overview. IBM Systems Journal, 30(2), 1991.

[34] P. C. Yeh and R. M. Smith Sr. S/390 CMOS cryptographic coproces-
sor architecture: Overview and design considerations. IBM Journal
of Research and Development, 43(5/6), September 1999.

