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Using a High-Performance, Programmable
Secure Coprocessor

Sean W. Smith, Elaine R. Palmer, and Steve Weingart

Secure Systems and Smart Cards
IBM T.J. Watson Research Center
P.O Box 704, Yorktown Heights NY 10598 USA
{sws, erpalmer, clshw}@us.ibm.com

Abstract. Unsecure computational environments threaten many finan-
cial cryptography implementations, and other sensitive computation.
High-performance secure coprocessors can address these threats. Howe-
ver, using this technology for practical security solutions requires over-
coming numerous technical and business obstacles. These obstacles mo-
tivate building a high-performance secure coprocessor that balances se-
curity with easy third-party programability—but these obstacles also
provide many design challenges. This paper discusses some of issues we
faced when attempting to build such a device.

1 Introduction

Using secure coprocessors to build practical e-commerce applications requires
practical secure coprocessors.

Previous work [6,13,18,20,21] explores the feasibility of building general-
purpose, computationally powerful secure coprocessors that carry out computa-
tion without observation or interference by a well-funded adversary with direct
physical access. Subsequent work {11,14,16,22,23] demonstrates that such hard-
ware could be the foundation for secure applications in electronic commerce—
including nearly every aspect of financial cryptography.

However, bringing any one application vision to reality requires addressing
the problem of building and distributing the hardware. Simultaneously enabling
the practical realization of a broad family of applications by building general-
purpose, customizable hardware introduces the additional trust and security
problems of multiple, mutually suspicious authorities, and the inevitability of
flaws in complex software.

This paper discusses some of our research on these issues, as part of our
efforts to produce such a tool as a mass-produced, commercial product. [10,
15} Sect. 2 discusses the fundamental threat that unsecure and untrusted com-
puting platforms present to financial cryptography implementations, where the
stakes may be considerable but where trust and privacy are also significant is-
sues. Section 3 discusses how high-performance secure coprocessors would com-
prise a near-universal tool for solving these problems. Section 4 discusses the
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practical barriers that must be overcome for such a tool to be widely used. Sec-
tion 5 quickly reviews the design decisions we made in building our architecture.
Section 6 discusses the flexibility this architecture brings to development and
deployment of security solutions.

2 The Threat of Unsecure/Untrusted Environments

2.1 Security

It is probably indisputable that security is critical for many financial and e-
commerce systems. However, an often overlooked aspect of these systems are
the machines and data storage environments themselves. No one would argue
that it is inadvisable to leave a stack of $100 bills lying on a counter while one
walks away to get a deposit form; the time-honored method of storing money in a
mattress is certainly less secure than keeping that money in a vault. In the same
way, an unsecured computer is not a much better place to leave money than is
a counter or a mattress. Data or algorithms can be modified—and control over
the assets may be usurped or lost.

Because of this situation, many computational and storage operations must
take place in an environment that is secure, in the sense that the parties who
need to can trust that the operations satisfy some set of correctness properties,
despite potential malice.

These properties may describe storage of eritical data. For example:

— Has the private key been exposed?
— Did the quantity of stored funds spuriously change?

The properties also include correctness of the operation itself:

— Was the keypair generated randomly—or or was it predictable by an advers-
ary?

— Were the funds transferred transactionally—or did a communication error
result in creation of spurious funds?

Even harder to articulate is the correctness of the invocation of these operations
on this data:

— Did the private key generate only the signatures its owner authorized?

2.2 Threats

However, some of the security threats most difficult to thwart stem from potential
adversaries with access to the hardware or software that carries out a sensitive
computation, and can benefit from modifying it—an exposure which the advent
of e-commerce has only amplified.

This risk can have several manifestations, including physically exposed ma-
chines and circuitry, software flaws, dishonest employees and customers, and
channels for backup and disaster recovery. We visit each in turn,



Using a High-Performance, Programmable Secure Coprocessor 75

Exposed Machines. Physically exposed machines are particularly vulnerable to
attack, either by mischievous vandals or serious attackers. Anyone with access
to a machine can attempt to reboot it, alter its files, load rogue software, or steal
the whole machine to hack away at it in private.

Recent business trends exacerbate this threat. For example, the finance indu-
stry is increasing its deployment of customer self-service systems via telephone,
the Internet, and at physical locations beyond the confines and protection of the
conventional service counter. These remote systems allow the business to expand
service locations, extend service hours, and reduce costs. The remote systems are
more vulnerable to attack than those safely locked within the four walls of the
home office.

Exposed circuitry is also vulnerable to attack (e.g., [2,3]). A physical attacker
can quite quickly and unobtrusively clip diagnostic equipment onto a printed cir-
cuit board to observe and record cryptographic keys as they leave main memory
on the way to an encryption chip. Electrical engineering lab students at the
University of Delft in the Netherlands routinely practice opening, reading, and
reprogramming smart card chips.

Software Flaws. Software flaws, whether inadvertent or intentional, can also offer
an avenue to compromise secure computations and storage.

Consider, for example, a bug in one application of a hypothetical multi-
application smart card. Current smart card processors lack the hardware memory
protection required to protect the memory space of one application from that
of another or the operating system. An errant frequent shopper application on
today’s smart cards can inadvertently destroy (or increment!) the balance of an
electronic purse sharing the same card.

Flaws in operating systems are also a threat. Typically, an operating system
has unlimited privileges and access to the entire memory space of the system.
But what if a bug in the software causes the operating system to overwrite and
thus destroy the rewritable firmware of the machine? The result can be that the
system is unable to boot or reload a new, corrected operating system.

Web connectivity, and shipping functionality with Java, introduce even more
issues.

Another class of threats from software flaws arises from cryptography. Cryp-
tography is at best a panacea if the implementation itself is somehow compro-
mised. Yet in recent years we have seen both practical demonstrations of real
vulnerabilities (e.g., badly chosen random keys in Kerberos [7] and Netscape [9])
as well as theoretical demonstrations of weaknesses in key generation (e.g., [17,
24}) and other aspects of cryptographic mathematics, such as differential fault
analysis (e.g., [4,5]).

Dishonest Employees, Contractors, and Customers. Dishonest employees pose a
rather vexing problem. As employees, they must have access to information and
systems in order to carry out their jobs, but often that access cannot be finely
controlled. For example, a computer system administrator (sysadmin) must have
unrestricted access to a machine in order to perform software updates, system
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backups, add new users, etc. Unfortunately, many systems do not have fine-
grained access. The sysadmin can copy files to tapes either for legitimate backup
purposes or to sell to the competition. Unencrypted financial data can be quite
valuable, and is an easy target for employees who succumb to blackmail or
temptation. Dishonest contractors or temporary employees pose an even greater
threat, since they typically neither go through the vetting nor hold the stake
that regular employees do.

Dishonest customers pose an interesting challenge to a merchant. Merchants
cannot usually distinguish between an honest customer and a dishonest one, but
must nevertheless treat all with courtesy, not suspicion. Furthermore, merchants
exert little or no control over their customers and their customers’ employees,
except to deny a sale or discount (or to litigate). Merchants cannot fire a disho-
nest customer, and the dishonest customer can return again and again to cheat.
New business practices allow customers to have access to product databases,
online catalogues, custom pricing algorithms, and other information potentially
valuable to one’s competitors. How, then, can a merchant prevent a customer’s
disgruntled, overworked, underpaid purchasing agent from selling the merchant’s
confidential price list to the merchant’s competitors?

Backup and Disaster Recovery. The explicit purpose of backup and disaster
recovery service is to replicate mission critical data in sufficiently many places
to recover from any single point of failure. But how does one protect numerous,
widely-distributed copies of critical data from theft, modification, or misuse,
particularly when the backup tapes are stored offsite in facilities managed by
third-party vendors?

2.3 Hostile Environments

We reiterate that financially sensitive computations are piles of money, stacked
in the platforms, networks, and disks involved, and those with access to this
infrastructure have potential access to this money. In many electronic commerce
applications, everyone with access to the infrastructure—including the end user
himself—is potentially an adversary. (Who wouldn’t like to have a bottomless
electronic wallet?) The entire environment must be considered hostile.

3 Secure Coprocessors as a Potential Solution

3.1 The Technology

Section 2 outlined threats from adversaries tampering with computation or data
storage. As a device that carries out computation despite attempts to tamper
with it, a secure coprocessor provides a tool that helps systematically address
these threats—and potentially enable new applications that are otherwise not
feasible.

Figure 1 sketches a generic device. A physically secure boundary protects a
CPU and memory. A subset of the memory is specified as secure. The physical
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External Interface ‘

Fig. 1. A generic secure coprocessor. Tamper zeroizes the secure memory {or somehow
renders il unavailable). As a consequence, with properly designed software, the device
can provide privacy and/or integrity for data and/or operations.

security design aims to ensure that attempts to penetrate or tamper with the
device will result in the contents of the secure memory heing destroyed.

This secure memory enables secure applications. For example, putting a pri-
vate key in this memory allows the device to act as a trusted witness, since a
remote party can trust that a message correctly signed by this key must have
been produced by an untampered device. Such messages might include asserti-
ons about data the device is storing, or about more complex computations it is
carrying out. This foundation can extend to securing the entire on-device appli-
cation; putting an entire program in secure memory might provide even more
advantages. Yee’s work [16,22,23] explores these issues; [14] provides a taxonomy
of potential applications.

The effectiveness of a secure coprocessor as a tool for building secure appli-
cations depends on the effectiveness of its memory protections and the power
of its computational engine. This previous research considered the implications
of a high-end, high-performance device, which provides a general-purpose com-
puting environment that withstands nearly all foreseeable physical and logical
attacks. Such a device requires additional properties: it runs only the programs
it is supposed to; it runs them unmolested; and one must be able to distinguish
between a real program and a clever impersonator, even if the secure coprocessor
is thousands of miles away.

Typically, secure coprocessors incorporate high-performance cryptography,
but they need not be just fast crypto boxes—since computation besides crypto-
graphic operations can go inside them.
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3.2 High-End Secure Coprocessors Counteract Threats

By providing computational horsepower but resisting and responding to physical
attacks, a high-end secure coprocessor is ideally suited for security in hostile
environments:

— The coprocessor, in the hostile environment, can execute the part of the
application that must be protected from adversaries.

— The device is sufficiently powerful for this computation to be fairly complex.

— An attacker who attempts to modify this computation will trigger tamper
response.

— An attackers who disassembles a device will learn no secrets.

With proper software design, such a device provides a trusted witness, wherever
trust is needed. As a result, an easily programmable, high-performance secure
coprocessor is a tool can address the risks of Sect. 2.

Physically Ezposed Machines and Circuitry. High-end secure coprocessors are
designed to be placed in physically exposed environments. Vandals may attack
at will, but will not discern secrets inside the tamper-responding coprocessor.
Nor can they load rogue software into the coprocessor. The device will erase its
secrets and shut itself down on any attempt to penetrate the tamper-responding
enclosure, in order to learn secrets or modify execution.

Software Flaws. High-end secure coprocessors ofter both hardware and software
isolation of applications from each other, and of the operating system from appli-
cations. (Indeed, we found it necessary to protect regions of memory from even
the operating system.) Thus, an application running inside a high-end secure
coprocessor cannot inflict damage on one of its peers inside the coprocessor. Nor
can the operating system damage the highly-critical microcode nor its protected
storage inside the coprocessor. The threat of compromised cryptography can be
addressed by hardware support for basic operations (such as a hardware source
for randomness), and authentication of software configuration. Some approaches
to high-end tamper protection can also shield against differential fault analysis.

Dishonest Employees, Contractors and Customers. High-end secure coproces-
sors can be used to control and audit the access rights of both employees and
customers to sensitive data. Furthermore, because of the programinability of the
coprocessor, access controls can be quite complex, for example, limited to certain
hours of the day, days of the week, etc.

Backup and Disaster Recovery. High-end secure coprocessors enable high speed
encryption (backup) of sensitive data before it is sent off to remote sites for
backup. High speed decryption facilitates recovery of the data. Furthermore, the
keys can be stored in numerous secure coprocessors spread about the world, and
accessed only on appropriate conditions. Employees at the remote backup sites
see only encrypted data; the plaintext emerges only during bona fide recovery.
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3.3 The Family of Secure Coprocessors

Our research interests focus on building and using high-end, programmable se-
cure coprocessors. However, devices meeting the generic pattern of Fig. 1 en-
compass a wide range of capabilities; various devices in the secure coprocessor
family embody various trade-offs between security, computational and crypto-
graphic power, and cost. We review the entire family.

Chip Card, The least powerful member of the secure coprocessor family is the
smart card! (also known as chip card). A typical smart card of today includes
a tiny 8-bit processor, 512 bytes RAM, 8K bytes ROM, 8K bytes EEPROM,
and a hardware accelerator for cryptographic operations. Smart cards must be
programmed at the factory, since their software is permanently burned in mask
ROM when the chips are manufactured—typically in quantities of at least 10,000
units. Because the memory space is so limited, the software inside the smart card
is written in hand-tuned machine code.

Smart cards offer some limited detection of physical attacks. However, the re-
sponse to such attacks depends on whether the device is powered on or not—for
example, the response when inserted into a smart card reader may substanti-
ally differ from the response when lying unpowered on an attacker's workbench.
Without power, the device is unable to erase sensitive data stored in EEPROM.
Fven with power, erasure within a very small time window is unlikely or impos-
sible.

Smeart cards also offer only limited protection against logical attacks. The
processors on current smart cards lack the combination of “supervisor state”
with hardware protection of memory regions (including RAM), the cornerstone
of preventing one application from accessing and modifying the data of another
application on the card. For that reason, most smart card vendors carefully in-
spect and test all code that must co-exist on the same card (although recent
efforts at JavaCard attemnpt to remedy this). Cryptographic throughput is se-
verely limited by the serial interface into and out of the card, with a typical
speed of 9600 bit/second.

Smart cards offer the undeniable advantages of being inexpensive, portable,
and physically robust.

Personal Tokens. The personal token, such as a PCMCIA card or “smart but-
ton,” is usually the next step up in crypto performance and capability. In some
cases, these devices are little more than a repackaged chip card—except the lar-
ger packaging gives the advantages of greater I/O bandwidth and real estate
for more hardware, such as more memory, a battery, or stronger protections. At
the other end of the spectrum, a personal token could theoretically have many
of the features and capabilities of crypto accelerators and/or high-end secure
Processors.

! Unfortunately, the term “smart card” is sometimes used for nearly everything in this
family, and other devices besides.
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Personal tokens are often tamper-resistant and in some cases have reasonable
tamper evident and perhaps tamper-responsive features. (However, tamper evi-
dence is of little value without a well planned audit policy.) The typical token will
be able to perform user functions such as authentication, file encryption (albeit
with low performance), and storage of secrets off of the host system. Most of the
PCMCIA cards available are fixed function devices and are not programmable,
though some offer some programming capabilities if the work is done by, or in
cooperation with the manufacturer. (Again, recent efforts JavaCard attempt to
remedy this for low-end tokens.)

Crypto Accelerators. The next device in the secure coprocessor family is the
cryptographic accelerator. Such devices typically include a small microprocessor
(e.g. the ARMY7), a reasonable amount of memory (e.g. 2 megabytes EEPROM,
512K RAM) and chips to boost cryptographic performance. The primary pur-
pose of these devices (e.g., [1]) is to accelerate cryptographic operations while
offering some degree of physical protection of cryptographic keys. These devices
are often tamper-resistant, but seldom tamper-responding. (For example, their
external cases resist attack because they are difficult to pry open, but they do
not erase sensitive data if they are opened.) They are not widely programmable
by any customer, but are sometimes programmable under special contract by
the manufacturer, given sufficient sales volumes.

High-End Secure Coprocessor. The most sophisticated device in the secure co-
processor fainily is a high-end secure coprocessor, with a powerful microprocessor
{e.g. 486), megabytes of RAM and FLASH memory, chips to boost cryptographic
performance, a time-of-day clock, and a hardware random number generator, all
within a tamper-responding enclosure. Such a device should provide computatio-
nally verifiable untamperedness with a nearly open programming environment,
but immediately erase sensitive data when under attack.

An example of such a high-end coprocessor is the recent IBM 4758, the
product [10] which we explicitly designed to address the issues raised in this
paper.

4 Obstacles to Practical Deployment

The feasibility of high-end secure coprocessors (e.g., [21]) and their application
potential (e.g., {22,23]) had been well-established. However, realizing the vision
of Sect. 3.1 and Sect. 3.2 required overcoming the significant obstacles that
confront an organization wishing to develop and deploy real applications using
this technology.

This section reviews these obstacles. Section 5 and Sect. 6 below discuss how
we designed our coprocessor to try to eliminate them.
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4,1 Hardware
We have repeated allusions to a “high-end secure coprocessor” that provides:

— highly reliable tamper-response
— high-speed cryptographic support
— a powerful, general-purpose computational environment

Until recently, this hardware was not available beyond prototype quantities.

Tamper-Response. Most discussions of secure hardware usually use phrases like
“tamper-proof,” “tamper-resistant,” “tamper-evident” or “tamper-responsive.”
Any realistic assessment recognizes that “tamper-proof” hardware is unattaina-
ble; however, the solutions of Sect. 3.2 all assumed that the secure coprocessor
somehow responded to tamper by zeroizing (or somehow rendering unrecover-
able) some stored information.

But how should this happen?

— Active tamper-response relies on the device itself to detect tamper attempts
and destroy its secrets. Active response can be computational—which requi-
res that during tamper, the processor remain alive long enough to destroy
the secrets—or depend instead on independent special-purpose circuitry that
more quickly crowbars the memory.

— Passive techniques rely on physical or chemical hardness (and sometimes on
explosives).

Passive protection is difficult to carry out effectively (witness the continued
permeation of sinart card technology) and difficult to apply to multi-chip modu-
les. But on the other hand, using active protection requires recognizing that the
device is only as secure as long as the necessary environment exists for the active
protection to function. Minimally, this recognition requires grappling with some
difficult issues:

— The continuous existence of this environment requires a continuous source
of power.

— What exactly do we know about the device after an interval in which this
environment fails to exist?

— Does the device always protect itself, or only between visits by a security
officer?

— What should happen to a device that zeroizes its secrets?

Exactly how the zeroizable secrets should be stored raises additional design
issues. For example, using Static RAM requires considering the émprinting effects
of low-temperature and long-term storage.

Trusted 1/0 Path. Effectively using a trusted device in human-based applications
often requires effective authentication of communications between a human and
their trusted device. [8] A human-usable I/O path on the secure device itself
makes these problems simpler—but although a nice abstraction, such a path
can greatly compromise the physical security.
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Hosts. Almost tautologically, a secure coprocessor requires a host system. Wide
deployment of a secure coprocessor application requires considering the popula-
tion of host machines:

— What physical interface should be used? How does this choice affect ease
of installation, number of potential platforms, and performance of coproces-
sor? (For example, the PCMCIA, chip-card, and PCI-bus interfaces all give
different answers to these questions.)

~ What device drivers and other associated host-side software are required?
How does this software get to the host? What possibilities exist for attacking
the application by attacking the host-side software?

Cost and Durability. For an application to succeed, someone needs to create and
distribute a population of secure coprocessors. This task requires balancing the
cost of the device with its power and protections, as well as considering longer-
term reliability issues. (Indeed, the often-lamented computational restrictions of
chip cards are a consequence of the requirement to keep them highly robust to
physical wear-and-tear.)

Depending on the tamper-protection methods used, additional environmental
factors such as heat and radiation need to be considered.

Exportability. Another challenge facing any practical development and deploy-
ment of cryptographically powerful devices is compliance with the U.S. export
laws.

4.2 Software

Development. A cornerstone of secure coprocessing applications is putting a
substantial portion of application-specific computation into the secure device—
not just using it for basic cryptographic operations. Developing and deploying
secure coprocessing applications thus requires the ability to develop software
for the device. This requirement leads to many challenges, even with current-
generation low-end devices:

— Is development possible on a small scale with small numbers of devices-or
must the application developer first convince a hardware manufacturer of
the business case for thousands or millions of units?

— Is development possible independent of the hardware manufacturer—or must
the application developer work closely and expose plans and code?

— Does a robust programming environment exist for the device, or must code
be hand-tuned? What about debugging and testing?

— If independent development is possible, what prevents malicious or faulty
software from compromising core device keys? Do these protections consist
of verified hardware and software, or depend solely on complex software with
a track record of flaws?
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Installation. How does the deployer ensure that the potentially untrusted user,
in a potentially hostile environment, ends up with an authentic, untampered
device that is programmed with the right software?

Installing the software at the factory forces the application developer to have
a substantial presence in the factory, and the factory to customize their processes
to individual application developers. This approach may complicate small-scale
development.

However, installing the software at any later point raises a number of addi-
tional issues.

— What about the security of the shipping channel? What if the device is
modified between the time it leaves the factory and the time the software is
installed?

— How does the device know what software to accept? (Accepting just anything
opens the possibility of tamper via false software load.)

— Does a device carry a key whose exposure compromises that device, or other
devices?

— Installing the software at the deployer’s site forces the deployer to ship the
hardware to the end-users. .

— Installing the software at the end-user’s site requires the need for security
officers, or for the device itself to exert fairly robust control, authentication,
and confirmation of software loads.

— With general-purpose programmable hardware intended for multiple deploy-
ers, installation after the factory needs to ensure that hardware loaded with
one deployer’s software cannot claim to be executing software from a ditfe-
rent deployer.

The software installation process may also have unpleasant interactions with the
desired security model. For example:

- If the application developer requires that their software itself be secret, but
the hardware only provides a limited amount of tamper-protected storage,
then the installation process must include some way of installing the software
decryption key in that storage.

Most post-factory installation scenarios require that the devices leave the factory
with some type of security/bootstrap code, which raises additional issues.

Software Maintenance. After installation, how does the deployer then proceed
to securely carry out the maintenance and upgrades that such complex software
inevitably requires?

— How does the device authenticate such requests? Must the deployer use an
on-site “security officer,” or can they use remote control? If the latter, how
much interaction is required? Does the deployer have to undergo a lengthy
handshake with each deployed device? Does the deployer need to maintain
a database of device-specific records or secrets?
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— How can participants in an application know for certain that an upgrade
has occurred? (The purpose of the upgrade might be to eliminate a software
vulnerability which an adversary has already used to explore the contents of
privileged memory.)

— What should happen to stored data when software is upgraded? Not sup-
porting “hot updates” is cleaner, but can greatly complicate the difficulty of
performing updates.

— What atomicity does the device provide for software updates? Can failures
(or malice) leave the device in a dangerous or inoperable state? What if the
software that cryptographically verifies updates is itself being updated?

To avoid grappling with these issues, some deployers may choose simply to not
allow updates. However, the decision certainly needs to be balanced against
hardware expense and software complexity (hence likelihood of upgrade).

Multi-Party Issues. The foregoing discussion largely focused on a model where
basic device hardware had one software component that needed to be instal-
led and updated. In reality, this situation may be more complicated. Multiple
software layers may lie beneath the application software:

— The presence of a device operating system (in order to make software de-
velopment easier) raises the questions of when, where, and how the OS is
installed and updated.

— The OS may ¢ome from an independent software developer, like the appli-
cation does.

— The more tasks assigned to the basic bootstrap/configuration, the more likely
this foundational software might also require update.

Multiple layers each controlled by a different authority makes the software in-
stallation and update problem even more interesting. For example, the ability
to perform “hot-updates” potentially gives an OS vendor a backdoor into the
application secrets. .

The simple answer of “not allowing any OS updates” avoids these risks, but
introduces the problem of what to do when a flaw is discovered in security-critical
system software—especially if this software is too complex to have been formally
verified.

Some scenarios may additionally require multiple sibling software compo-
nents, at the same layer (although this flexibility must be balanced against the
risks of potentially malicious sibling applications, the hardware expense and the
sensitivity of the application).

Comparison to PCs. It might be enlightening to compare this situation with
software development for ordinary, exposed machines, such as personal com-
puters. For PCs, software developers do not need to build and distribute the
computers themselves. Software developers never need meet or verify the iden-
tity of the user. Software developers do not need to worry about how or where
the user obtained the machine; whether it is a genuine or modified machine, or
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whether the software or its execution is being somehow modified. Furthermore,
developers of the application software usually do not also have to develop and
maintain the operating system or the ROM BIOS.

5 Building Technology to Overcome These Obstacles

The list of obstacles to deploying secure coprocessor applications naturally leads
to design issues for those hoping to minimize these obstacles by building a high-
end, programmable secure coprocessor. Although Sect. 4 presented a quick enu-
meration, we stress that the design choices often interact in subtle ways. For
just one example, the business decisions to support remote update of potentially
buggy supervisor-level software requires the ability to remotely authenticate that
this repair took place, which in turn may require changing the hardware to pro-
vide a region of secure memory that is private even from a defective supervisor-
level operating system.

Indeed, the issues in Sect. 4 arose from our group’s long-term research into
secure coprocessing technology, and more recent efforts to produce a commerci-
ally available, general-purpose device. OQur design choices for this product were
driven not just by academic analysis, but also by more practical factors such
as expected business case for such devices, and “lessons learned” from previous
IBM experience with similar technology. Some of these factors include:

manufacture and end-user installation is considerable.
— The complexity of manufacturing and maintenance support appears to in-
crease exponentially with each shippable variation of a commercial product.
~ No one wants to trust anyone else more than necessary.
— Expeusive hardware must be repairable.

We decided on building a board-level coprocessor assembled, as much as
possible, from existing commercial technology. For protection, we chose active
tamper response (electrical, not computational). In an attempt to broaden the
family of compatible hosts, we use a PCI interface and are developing host-side
software for several popular operating systems. Our device supports separate
bootstrap, operating system, and application layers, each potentially controlla-
ble by different authorities with minimal involvement by IBM. To simplify the
production process and comply with export laws, all devices are shipped the
same: with only the bootstrap layer. Software installation (and update) can oc-
cur at any point thereafter, including at the end-user site, via broadcast-style
commands from remote authorities.

The device is shipped already initialized with device-generated secrets protec-
ted by the tamper-response circuitry, in order to defend itself. Each untampered
device computationally establishes its untamperedness beginning with its crea-
tion at the factory, and continuing throughout shipment, software installation
and updates—even if some of this software turns out to be defective or malicious.
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Our device is not a portable user token (although we see no substantial
engineering barriers to moving this to PCMCIA format). Because of our choice
of active tamper response, factors such as low temperatures, x-rays, and bungled
battery changes may all trigger zeroization—since otherwise, these are avenues
for undetectable tamper.

A separate report [15] discusses the technical details of our architecture.

6 Usage Scenarios

From our analysis in Sect. 4, we concluded that enabling widespread develop-
ment and deployment secure coprocessing applications required a tool that was
easily programmable. Adding sufficient computational power and physical secu-
rity resulted in a device sufficiently expensive that the ability to update software
became necessary. The fact that our device is more a fixed extension of the host?
than a highly portable user token {due to the large form-factor of a PCl-card)
makes supporting field installation of software a necessity.

Essentially, we converged on the generic PC model discussed in Sect. 4, at-
tempting to maximize independence between the development/distribution of
the hardware, and the development/distribution of the software. As with PCs,
end users can obtain their hardware from anywhere, and install the software on
their own. But unlike PCs, bona fide software installed into an untampered de-
vice can authenticate itself as such-—thus providing the necessary cryptographic
hooks for the solutions of Sect. 3.2.

Designing for this “worst-case” approach—software from multiple parties gets
installed and updated in the hostile field, without security officers—permits a
wide range of development, deployment, and usage scenarios:

Application Development.

— Off-the-shelf Applications A party wishing to deploy an application
may find that suitable software (for example, application-layer code that
transforms the device into a crypto accelerator providing whatever crypto
API and algorithms are currently fashionable) is already available.

— Off-the-shelf Operating Systems A party wishing to deploy a more
customized application may choose an OS that is already available, register
with that vendor, and build on that programming environment.

— Debug and Development Debug and development environments become
just another variation of the operating system—the developer can use an off-
the-shelf device, with a different OS load.

— On the Metal A party wishing complete on-the-metal control of the
device can register with the manufacture, and take control of the OS layer
in new off-the-shelf devices.

2 In fact, some IBM hosts may be shipped with the device already installed.
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— Incremental FIPS Secure field upgradability makes a device not a “FIPS
140-1 Module” per se [12], but rather a partially certified “meta-module.”
If the hardware and bootstrap software have FIPS validation, a developer
need only submit their additional code to obtain a fully validated module
for their application.

Application Deployment.

~ Remote Broadcast A deployer can avoid the hassle of distributing hard-
ware themselves by just registering as a code vendor and publishing a down-
load command on the Web. The end-users can purchase the hardware from
any standard manufacturer channel.

— Remote Handshake If the deployer would like more control, he can use
targeting and authentication features of the device bootstrap to interactively
install software into a particular device, remotely over an open network.

— Local Security Officer The deployer can always eliminate the open
network, and send an authorized security officer with their own trusted device
to perform installation.

~ Direct Shipment A deployer can also follow the traditional model of
obtaining the devices, install the software, and ship them to their users.

Use,

—~ Commerce among people who have never met The ability for devices
to authenticate themselves and their software configurations permits users
of such sccure devices to securely interact with each other remotely, across
an open network—even if these users have met neither each other nor the
application deployer.

7 Conclusions

With the growth of the Internet, electronic commerce is becoming central to the
way business is conducted. However, this great advance for business carries with
it tremendous risks. Specifically, the electronic representations of value can often
be modified or stolen or otherwise fraudulently manipulated more easily than
physical assets—and in many cases this malfeasance is undetectable.

Clearly, cryptography and other computational tools can protect electronic
representations of value. But tamper-protection of the hardware itself is neces-
sary for these tools to be effective—the computation that occurs must be the
computation that was intended to occur, despite physical and logical attack. But
to be useful and acceptable, tamper-protected hardware must fit into the emer-
ging business models. Flexibility and configurability are as necessary as security
and integrity for acceptance.

We offer our research as a step toward meeting these new requirements, and
our resulting techniology as a tool to allow data and computations to be protected
in a way sufficiently flexible and configurable to meet the new needs of business.
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