
106 Computer

S E C U R I T Y

A n old friend of mine once
observed that he’d never seen
software do much without
some hardware to run it on.
Or he might have said that

he’d never seen computer hardware do
much useful without some software;
the point is the same. 

Computer users tend to think of
computation—even the globally dis-
tributed computation that constitutes
the Internet—in terms of what we see:
the browser user interface, the text edi-
tor, the Gnome or OS X or Windows
desktop. 

Similarly, we computer security folks
tend to think of computer security
problems solely in terms of what users
see: the application software, perhaps
the OS underneath it, or perhaps even
the “end to end” environment from
one application installation to another. 

Although we lament the endless
stream of security problems that
emerge, we limit our playing field to
these upper computation layers.
Computation exists, however, not in
the application alone, but also in the
context of a software stack, the hard-
ware, and the physical environment in
which the hardware resides.

How can we use hardware to change
the security game?

SECURE COPROCESSORS
From a security perspective, the first

idea that comes to mind is to add a

“magic box” to the computer—one
that can hide secrets and computation
even from an adversary with direct
physical access. 

Such magic boxes have a long his-
tory of names—tamper-resistant mod-
ule, secure coprocessor, trusted plat-
form module—to go with the history
of technology both to build them and
to break them (S. Smith, “Fairy Dust,
Secrets, and the Real World,” IEEE
Security and Privacy, Jan./Feb. 2003,
pp. 89-93). The “Further Reading in
Hardware-Based Security” sidebar lists
a few reference papers chronicling
developments in this field. 

Software protection
The main branch of secure coproces-

sor work emerged in the context of
software protection. In the late 1970s,
Robert Best proposed a CPU that
encrypted its address and data buses so
that only it knows the plaintext. 

In his 1980 PhD thesis, Steve Kent
generalized this approach to encrypted
storage: The software vendor ships the

software via an encrypted channel into
a tamper-resistant module, which then
decrypts and executes it inside its pri-
vate space. 

In 1990, Steve White and Liam
Comerford presented their Abyss
secure coprocessor architecture for
software protection. To overcome the
physical space limits of the small
coprocessor, they proposed partitioned
computation: The magic box housed
the critical—and, hopefully, hard-to-
reverse-engineer—portion of the soft-
ware, which interacted with the rest of
the software running on the unpro-
tected host.

Security services
White led a team that further refined

the Abyss architecture into the Citadel
design, which brought two changes
worth noting.

First, it showed a shift in thinking.
Instead of being a place for locking up
proprietary software, Citadel’s magic
box provided security services to the
rest of the host machine.

Second, Citadel matured into a
series of real hardware prototypes,
many of which actually worked.
Bennet Yee and Doug Tygar used some
of these prototypes to build their Dyad
system at Carnegie Mellon University.
The coprocessor now ran a modified
Mach microkernel. The internal space
limitations were mitigated by cryp-
topaging, which provides virtual
memory for the coprocessor’s internal
applications. The coprocessor uses the
host as its backing store and employs
cryptographic hardware and FIFOs 
to encrypt the contents on the way 
out and to decrypt them on the way
back in.

Magic Boxes and
Boots: Security 
in Hardware
Sean Smith, Dartmouth College

Moore’s law helps a long 
history of research to
support hardware-enforced
system security.



Having a trusted magic box use an
untrusted storage area—as in Best’s
design for instructions and Yee and
Tygar’s design for memory pages—
raises some questions. Encryption pro-
tects the plaintext contents from an
adversary, but what about the access
patterns? Oded Goldreich noticed this
vulnerability in 1987, and his obser-
vation led to a series of theoretical
results in oblivious RAM. However,
these techniques were deemed too
impractical to find real-world use.

Yee and Tygar also developed a
series of applications for their Dyad
platform: decentralized electronic cur-
rency, postal meters, secure audit logs,
and electronic contracts. In addition,
they developed the idea of using the
magic box to check the software’s
integrity while participating in the
host’s boot process. Previous host-
integrity-checking approaches, such as
Tripwire, did not have the trusted ver-
ifier that a magic box provided.

A business opportunity
In the mid-1990s, I was doing secu-

rity analyses at Los Alamos National
Laboratory for public-sector entities
that wanted to migrate their services to
the emerging Web environment. 

Intrigued by the potential of using
secure coprocessors to address trust
issues in these new scenarios, I asked
the Citadel group at IBM if they had
any more platforms available. They
said no, but suggested that I come and
do my proposed research there. After I
signed the employee confidentiality
agreement, they explained why.

IBM had found another use for hard-
ware-based security—protecting cryp-
tographic accelerators. Financial institu-
tions constitute a sizable market for
crypto accelerators—one that is quite
comfortable with the idea of armored
boxes. IBM had decided that its next-
generation crypto accelerator product
needed to have the features the secure
coprocessor researchers had been advo-
cating. (Secure personal tokens, such 
as Fortezza cards, represent another
branch—but that’s another story.)

So we were given a budget and free
rein to produce a secure coprocessor
platform, provided we delivered it on
time and in a form that could be turned
into a crypto box supporting IBM’s
application.

The real thing 
doing the right thing

My main goal was to develop a plat-
form that would enable the deployment
of secure coprocessor applications by
all sorts of people, including young

October 2004 107

Further Reading in Hardware-Based Security

Magic box design and use in security applications have a long history. Here
are some representative publications:

• W.A. Arbaugh, D.J. Farber, and J.M. Smith, “A Secure and Reliable Bootstrap
Architecture,” Proc. IEEE Symp. Security and Privacy, IEEE CS Press, 1997,
pp. 65-71.

• D. Asnonov, Querying Databases Privately: A New Approach to Private
Information Retrieval, LNCS 3128, Springer-Verlag, 2004.

• R.M. Best, “Preventing Software Piracy with Crypto-Microprocessors,”
Proc. IEEE Spring Compcon 80, IEEE CS Press, 1980, pp. 466-469.

• P.C. Clark and L.J. Hoffman, “BITS: A Smartcard-Protected Operating
System,” Comm. ACM, Nov. 1994, pp. 66-70.

• O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on
Oblivious RAMs,” J. ACM, vol. 43, no. 3, 1996, pp. 431-473.

• A. Iliev and S.W. Smith, “Private Information Storage with Logarithmic-
Space Secure Hardware,” in Information Security Management, Education,
and Privacy (Proc. i-NetSec 04: SEC2004 Embedded Workshop on Privacy
and Anonymity in Networked and Distributed Systems), Y. Deswarte et al.,
eds., Springer-Verlag, 2004, pp. 201-216.

• N. Itoi and W.A. Arbaugh, “Personal Secure Booting,” Proc. 6th Australasian
Conf. Information Security and Privacy, LNCS 2119, Springer-Verlag, 2001,
pp. 130-141.

• S. Jiang, S.W. Smith, and K. Minami, “Securing Web Servers against Insider
Attack,” Proc. 17th Ann. Computer Security Applications Conf., www.acsac.
org/2001/abstracts/thu-1030-b-jiang.html.

• S.T. Kent, Protecting Externally Supplied Software in Small Computers, doc-
toral dissertation, Laboratory of Computer Science, Massachusetts Inst. of
Technology, 1980.

• R.R. Sailer et al., “Design and Implementation of a TCG-Based Integrity
Measurement Architecture,” Proc. 13th Usenix Security Symp., Usenix,
2004, pp. 223-238.

• S.W. Smith and S. Weingart, “Building a High-Performance, Programmable
Secure Coprocessor,” Computer Networks, special issue on computer net-
work security, Apr. 1999, pp. 831-860.

• J.D. Tygar and B.S. Yee, Dyad: A System for Using Physically Secure
Coprocessors, tech. report CMU-CS-91-140R, School of Computer Science,
Carnegie Mellon Univ., 1991.

• S.R. White et al., Introduction to the Citadel Architecture: Security in
Physically Exposed Environments, research report RC 16672, IBM T.J.
Watson Research Center, 1991.

• S.R. White and L. Comerford, “ABYSS: An Architecture for Software
Protection,” IEEE Trans. Software Eng., June 1990, pp. 619-629.



108 Computer

S e c u r i t y

an evolving series of specifications that
build on this idea. A Trusted Platform
Module participates in the boot pro-
cess to verify integrity, ensure that
TPM-protected secrets are released
only to the appropriate software stack,
and attest various properties to a
remote party.

In some eyes, TCPA—the term that
has come to denote this architecture
and its vision—is intimately tied to
having someone other than the user
control what software a PC runs—a
topic that has roots in Kent’s thesis
(and perhaps earlier) but continues to
raise heated discussions.

TPM chips
Some chip vendors have been pro-

ducing TCPA-compliant TPMs; some
PC vendors have been including them
on commercial platforms. Nothing
stops a researcher from buying such a
platform and experimenting—nothing,
that is, except such obstacles as out-
dated BIOS devices, TPMs that lag
behind the latest specs, TPMs that
don’t quite comply with the documen-
tation, and documentation that is often
vague and puzzling.

I speak from experience here. My
group noticed that the secure boot
approach of a TPM-enhanced PC
might transform it (with a bit of work)
into a box that’s “the real thing doing
the right thing”—specifically, a more
powerful, less physically secure, but
cheaper and potentially far more per-
vasive cousin of the 4758. 

We started a project to make this
possible. We used IBM’s published
device driver to write our own TPM
library, but IBM scooped us by pub-
lishing theirs in summer 2003; we liked
it better, so we switched to it.

As a target application, we consid-

security researchers at Los Alamos. 
One main principle drove the result-

ing architecture: An untampered magic
box should always be able to prove it’s
“the real thing doing the right thing,”
despite a variety of mutually suspicious
software developers and potentially
adversarial code. This work resulted in
the IBM 4758 secure coprocessor plat-
form (and quite a few war stories, but
that’s a different subject). IBM even
released free tools for software devel-
opment, which enabled me to continue
experimenting in application develop-
ment at Dartmouth.

The 4758 architecture persisted in a
follow-on product released recently,
but developers’ tools aren’t available
yet. Consequently, my students spend
too much time trying to fit large objects
in small places.

One example of how secure hard-
ware changes things: Combining the
trusted environment with the 4758’s
fast crypto led to a series of results—
in my group, then over to Dmitri
Asonov at Humboldt Unversity and
IBM, and back to my group again—
that included building real-world
instantiations of oblivious RAM tech-
niques previously deemed impractical.

SECURE BOOTSTRAP
Dyad’s host-integrity checking appli-

cation also started another branch of
work: using special hardware in a
host’s boot process to help ensure its
software’s integrity. 

In 1994, Paul Clark and Lance
Hoffman used a smart card to help in
a host’s boot process. In 1997, Bill
Arbaugh developed and prototyped
Aegis, which used a modified BIOS and
an external PROM board to systemat-
ically verify each software component
cryptographically and replace ones
that failed the check. Nao Itoi later
extended Aegis to use smart cards.

More recently, the multivendor
Trusted Computing Platform Alliance
(TCPA)—now renamed the Trusted
Computing Group (TCG; www.
trustedcomputinggroup.org/), just to
keep you on your toes—has developed

ered the problem of how a Web user
decides to trust a remote server. The
server proves knowledge of a long-
lived private key, but this key is bound
only to the server’s identity, not to the
actual service being provided. 

The WebALPS project was our
attempt to solve this on the 4758. We
moved the key and the application it
attests to into a secure coprocessor
platform, but the small 4758 environ-
ment made using WebALPS awkward,
and it never found uses in the field.

TPM-equipped workstations
What about using a TPM-equipped

workstation instead? 
Solving this trust problem requires

binding the Secure Sockets Layer pri-
vate key to the application. Although
TPM can bind the SSL key to a partic-
ular software stack, this approach does
not address a lifetime mismatch: A
server key pair lives a long time, but
the server software deemed currently
trustworthy changes often, and the
Web pages and CGI scripts that con-
stitute a service may change even more
often than server software.

To work around this, we had the
TPM verify a minimal Linux kernel.
The kernel includes a Tripwire-like
module that verifies the rest of the sys-
tem against a signed configuration file.
If things match, Apache gets its private
key. The SSL certificate authority (CA)
testifies to the server’s identity and the
configuration signer’s continued good
judgment. Potentially, the same busi-
nesses that sign SSL server certificates
might get into this configuration-sign-
ing business as well.

We developed this platform, called
the Bear/Enforcer, which is avail-
able as open source (http://enforcer.
sourceforge.net). Arguably, it might be
the first open-source TCPA/TCG plat-
form, and we’ve had more than 1,000
downloads to date. Consequently,
we’ve achieved our real goal—experi-
mentation is taking root.

In our lab, we’ve extended the plat-
form to use SELinux, which lets users
run a digital rights management (DRM)

Researchers are also
looking at hardware

techniques to combat 
buffer overflow.



application in a platform compartment
that attests to a remote vendor exactly
what’s in the compartment—and noth-
ing else. The vendor can then trust that
the DRM application will run as
intended, and users can trust that the
vendor learns nothing else about the
machine. 

We’re also merging this with
OpenCA—so that the operating party,
and perhaps the sites certifying or
cross-certifying it, can have some
assurance that the CA private key is
released only to a platform that com-
plies with appropriate policy.

In concurrent research, Reiner Sailer
and others at IBM Watson have
extended the TCPA/TCG attestation
process up through the application.

FUTURE ENHANCEMENTS
Of course, using hardware to

change—and hopefully simplify—the
security game need not be confined just
to the secure coprocessor/secure boot-
strap story. Arbaugh’s group is using
hardware coprocessors to check

integrity not just at boot time, but at
regular intervals during runtime. When
prompted, certain graybeards will
preach the virtues of capability-based
systems—and the tagged architectures
that gracefully support them—as tech-
nology that ought to be reconsidered. 

Ongoing academic efforts—such as
the XOM project at Stanford and
Toronto, another project called Aegis
(this one at MIT), and work in Ruby
Lee’s group at Princeton—focus on
building CPUs with additional security
enhancements, such as the ability to
bind an encrypted chunk of code to an
encrypted chunk of data. 

R esearchers are also looking at
hardware techniques to combat
buffer overflow. Half the partici-

pants in the “Software Security” panel
at the NSF Cyber Trust meeting in
August 2004 even suggested using
hardware to help with software secu-
rity issues—such as providing acceler-
ation for type-checking. 

Some colleagues scoff at the idea of
using hardware to secure software. I
respectfully disagree. Looking back,
hardware developments such as ker-
nel-user CPU modes and hardware-
enforced memory management con-
tributed greatly to producing pro-
gramming environments that make it
much easier to produce secure systems. 

Moore’s law is in our favor. I look 
forward to seeing what happens next. �

Sean Smith is an assistant professor of
computer science at Dartmouth Col-
lege and director of the Cyber Security
and Trust Research Center at the Insti-
tute for Security Technology Studies.
His book, Trusted Computing Plat-
forms: Design and Applications
(Kluwer), will appear in January 2005.
Contact him at sws@cs.dartmouth.edu.

Editor: William A. Arbaugh, Dept. of 
Computer Science, University of Maryland
at College Park; waa@cs.umd.edu

I E E E  C O M P U T E R  S O C I E T Y  6 T H  A N N U A L  I N T E R N A T I O N A L  D E S I G N  C O M P E T I T I O N

Be a Part of CSIDC—the Premier Contest
for Computer Engineering Students!

The search is on for teams of undergraduate students from around the world to compete in the sixth annual
IEEE Computer Society International Design Competition.
� Compete with students from all over the world
� Work with a multidisciplinary team to design a computer-based application that solves a problem and

makes the world a better place
� Visit Washington, DC, and compete in the exciting World Finals
� Turn theory into practice and construct a new computer-based product
Teams must design, build, test, and document a working system based on a PC, laptop, or handheld 
computing device to solve a real-world problem. Teams must submit reports documenting the design 
and implementation of their prototype.

The 2005 theme: Going beyond the Boundaries

IMPORTANT DATES
Applications due  . . . . . . . . . . . . . . . . . . . . .1 November 2004
Project title and team list due . . . . . . . . . . . . . .23 January 2005
Interim report due  . . . . . . . . . . . . . . . . . . . . .20 February 2005
Final report due  . . . . . . . . . . . . . . . . . . . . . . . . .23 April 2005
Top ten teams selected  . . . . . . . . . . . . . . . . . . . . .24 May 2005
World Finals in Washington, DC  . . . . . . . . . . . .27-29 June 2005

Primary financial support for CSIDC 2003 provided by Microsoft,
with additional support from ABB. 

For more information 
or to apply online, see

www.computer.
org/csidc/

PRIZES
First place  . . . . . . . . . . . .$15,000
Second place  . . . . . . . . . .$10,000
Third place  . . . . . . . . . . . .$6,000
Honorable mention  . . . . . . . $2,000

Additional CSIDC awards:
� Microsoft Award for Software 

Engineering
� Microsoft Multmedia Award


