Synthesis of Reversible Logic Circuits

Vivek V. Shende Aditya K. Prasad Igor L. Markov ~ John P. Hayes
vshende akprasad imarkov jhayes

Advanced Computer Architecture Laborat@umich.edu
University of Michigan, Ann Arbor, Ml 48109-2122

Abstract

Reversible or information-lossless circuits have applications in digital signal processing, com-
munication, computer graphics and cryptography. They are also a fundamental requirement in the
emerging field of quantum computation. We investigate the synthesis of reversible circuits that
employ a minimum number of gates and contain no redundant input-output line-pairs (tempo-
rary storage channels). We prove constructively that every even permutation can be implemented
without temporary storage using NOT, CNOT and TOFFOLI gates. We describe an algorithm
for the synthesis of optimal circuits and study the reversible functions on three wires, reporting
the distribution of circuit sizes. Finally, in an application important to quantum computing, we
synthesize oracle circuits for Grover’s search algorithm, and show a significant improvement over
a previously proposed synthesis algorithm.

*This work was partially supported by the Undergraduate Summer Research Program at the University of Michigan
and by the DARPA QuIST program. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA) or the U.S. Government.

1

1 Introduction

In most computing tasks, the number of output bits is relatively small compared to the number of
input bits. For example, in a decision problem, the output is only one bit (yes or no) and the input
can be as large as desired. However, computational tasks in digital signal processing, communica-
tion, computer graphics, and cryptography require that all of the information encoded in the input
be preserved in the output. Some of those tasks are important enough to justify adding new mi-
croprocessor instructions to the HP PA-RISC (MAX and MAX-2), Sun SPARC (VIS), PowerPC
(AltiVec), IA-32 and 1A-64 (MMX) instruction sets [18, 13]. In particular, new bit-permutation
instructions were shown to vastly improve performance of several standard algorithms, including
matrix transposition and DES, as well as two recent cryptographic algorithms Twofish and Serpent
[13]. Bit permutations are a special caser@fersible functionsthat is, functions that permute

the set of possible input values. For example, the butterfly operétigh — (X+Yy,x—Y) is
reversible but is not a bit permutation. It is a key element of Fast Fourier Transform algorithms
and has been used in application-specific Xtensa processors from Tensilica. One might expect
to get further speed-ups by adding instructions to allow computation of an arbitrary reversible
function. The problem of chaining such instructions together provides one motivation for study-
ing reversible computation and reversible logic circuits, that is, logic circuits composed of gates
computing reversible functions.

Reversible circuits are also interesting because the loss of information associated with irre-
versibility implies energy loss [2]. Younis and Knight [22] showed that some reversible circuits
can be made asymptotically energy-lossless as their delay is allowed to grow arbitrarily large.
Currently, energy losses due to irreversibility are dwarfed by the overall power dissipation, but
this may change if power dissipation improves. In particular, reversibility is important for nan-
otechnologies where switching devices with gain are difficult to build.

Finally, reversible circuits can be viewed as a special case of quantum circuits because quan-
tum evolution must be reversible [14]. Classical (non-quantum) reversible gates are subject to the
same “circuit rules,” whether they operate on classical bits or quantum states. In fact, popular
universal gate libraries for quantum computation often contain as subsets universal gate libraries
for classical reversible computation. While the speed-ups which make quantum computing at-
tractive are not available without purely qguantum gates, logic synthesis for classical reversible
circuits is a first step toward synthesis of quantum circuits. Moreover, algorithms for quantum
communications and cryptography often do not have classical counterparts because they act on
guantum states, even if their action in a given computational basis corresponds to classical re-
versible functions on bit-strings. Another connection between classical and quantum computing
comes from Grover’s quantum search algorithm [6]. Circuits for Grover’s algorithm contain large

parts consisting of NOT, CNOT and TOFFOLI gates only [14].

We review existing work on classical reversible circuits. Toffoli [20] gives constructions for an
arbitrary reversible or irreversible function in terms of a certain gate library. However, his method
makes use of a large number of temporary storage channels, i.e. input-output wire-pairs other
than those on which the function is computed (also knowaredlla bitg. Sasao and Kinoshita
show that any conservative functioh(§) is conservative ik and f (x) always contain the same
number of 1s in their binary expansions) has an implementation with only three temporary storage
channels using a certain fixed library of conservative gates, although no explicit construction is
given [16]. Kerntopf uses exhaustive search methods to examine small-scale synthesis problems
and related theoretical questions about reversible circuit synthesis [9]. There has also been much
recent work on synthesizing reversible circuits that implement non-reversible Boolean functions
on some of their outputs, with the goal of providing the quantum phase shift operators needed by
Grover’s guantum search algorithm [8, 12, 21]. Some work on local optimization of such circuits
via equivalences has also been done [12, 8]. In a different direction, group theory has recently
been employed as a tool to analyze reversible logic gates [19] and investigate generators of the
group of reversible gates [5].

Our work pursues synthesis of optimal reversible circuits which can be implemented without
temporary storage channels. In Section 3, we show by explicit construction that any reversible
function which performs an even permutation on the input values can be synthesized using the
CNTS (CNOT, NOT, TOFFOLI, and SWAP) gate library and no temporary storage. An arbitrary
(possibly odd) permutation requires at most one channel of temporary storage for implementation.
By examining circuit equivalences among generalized CNOT gates, we derive a canonical form
for CNT-circuits. In Section 4 we present synthesis algorithms for implementing any reversible
function by an optimal circuit with gates from an arbitrary gate library. Besides branch-and-
bound, we use a dynamic programming technique that exploits reversibility. While we use gate
count as our cost function throughout, this method allows for many different cost functions to be
used. Applications to quantum computing are examined in Section 5.

2 Background

In conventional (irreversible) circuit synthesis, one typically starts with a universal gate library

and some specification of a Boolean function. The goal is to find a logic circuit that implements
the Boolean function and minimizes a given cost metric, e.g., the number of gates or the circuit
depth. At a high level, reversible circuit synthesis is just a special case in which no fanout is
allowed and all gates must be reversible.

2.1 Reversible Gates and Circuits

Definition 1 A gate is reversible if the (Boolean) function it computes is bijective.

If arbitrary signals are allowed on the inputs, a necessary condition for reversibility is that the
gate have the same number of input and output wires. If ikliggut and output wires, it is called
ak x k gate, or a gate ok wires. We will think of themth input wire and themth output wire
as really being the same wire. Many gates satisfying these conditions have been examined in the
literature [15]. We will consider a specific set defined by Toffoli [20].

Definition 2 A k-CNOT is a(k+ 1) x (k+ 1) gate. It leaves the first k inputs unchanged, and
inverts the last iff all others ar&. The unchanged lines are referred to@mtrol lines

Clearly thek-CNOT gates are all reversible. The first three of these have special names. The 0-
CNQT isjust an inverter or NOT gate, and is denoted by N. It performs the opetafien (x® 1),
where® denotes XOR. The 1-CNOT, which performs the operatipr) — (y,x®Yy) is referred
to as a Controlled-NOT [7], or CNOT (C). The 2-CNOT is normally called a TOFFOLI (T) gate,
and performs the operatiqaz,y,x) — (z,y,x®Yyz). We will also be using another reversible gate,
called the SWAP (S) gate. It is ax22 gate which exchanges the inputs; that(isy) — (y,X).
One reason for choosing these particular gates is that they appear often in the quantum computing
context, where no physical “wires” exist, and swapping two values requires non-trivial effort.
[14]. We will be working with circuits from a given, limited-gate library. Usually, this will be the
CNTS gate library, consisting of the CNOT, NOT, and TOFFOLI, and SWAP gates.

Definition 3 A well-formed reversible logic circuit is an acyclic combinational logic circuit in
which all gates are reversible, and are interconnected without fanout.

As with reversible gates, a reversible circuit has the same number of input and output wires;
again we will call a reversible circuit with inputs ann x n circuit, or a circuit onn wires. We
draw reversible circuits as arrays of horizontal lines representing wires. Gates are represented
by vertically-oriented symbols. For example, in Figure 1, we see a reversible circuit drawn in
the notation introduced by Feynman [7]. Tlesymbols represent inverters and #eymbols

X X
y?ﬁﬁ y’
Z y4

U U

Figure 1: 3x 3 reversible circuit with two T gates and two N gates.

xy z|Xx y Z
0 000 0O
0 0 1/0 0 1
01 0/0 1 1
0110 1 0
1 001 0O
10 1|1 0 1
1101 11
111110

Figure 2: Truth table for the circuit in Figure 1.

represent controls. A vertical line connecting a control to an inverter means that the inverter is
only applied if the wire on which the control is set carries a 1 signal. Thus, the gates used are,
from left to right, TOFFOLI, NOT, TOFFOLI, and NOT.

Since we will be dealing only with bijective functions, i.e., permutations, we represent them
using thecycle notationwhere a permutation is represented by disjoint cycles of variables. For
example, the truth table in Figure 2 is represented2)8) (6, 7) because the corresponding func-
tion swaps 010 (2) and 011 (3), and 110 (6) and 111 (7). The set of all permutatinfsdides
is denoteds,, so the set of bijective functions withbinary inputs isS;». We will call (2,3)(6,7)
CNT-constructiblesince it can be computed by a circuit with gates from the CNT gate library.
More generally:

Definition 4 Let L be a (reversible) gate library. An L-circuit is a circuit composed only of gates
from L. A permutationt e Sy is L-constructible if it can be computed by arxm L-circuit.

Figure & indicates that the circuit in Figureads equivalent to one consisting of a single C
gate. Pairs of circuits computing the same function are very useful, since we can substitute one

R R S S S e

(a) (b)

Figure 3: Reversible circuit equivalences: Tg)-N*-T3,-N1=C3, (b)C3-C3-C3 = $*3; subscripts
identify “control bits” while superscripts identify bits whose values actually change.

5

[n-1 n-1]

Y :) : Y
| k ——— Reversible}——— ¢ |
k-1 — circuit ——k-1]

: K :

X L L f(X)

L 0 0 _]

Figure 4: CircuitC with n—k wiresY of temporary storage.

for the other. On the right, we see similarly that three C gates can be used to replace the S gate
appearing in the middle circuit of Figurd3If allowed by the physical implementation, the S gate
may itself be replaced with a wire swap. This, however, is not possible in some forms of quantum
computation [14]. Figure 3 therefore shows us that the C and S gates in the CNTS gate library
can be removed without losing computational power. We will still use the CNTS gate library in
synthesis to reduce gate counts and potentially speed up synthesis. This is motivated by Figure 3,
which shows how to replace four gates with one C gate, and thus up to 12 gates with one S gate.
Figure 4 illustrates the meaning of “temporary storage” [20]. Thentek lines transfen —k
signals, collectively designated to the corresponding wires on the other side of the circuit. The
signalsY are arbitrary, in the sense that the cirddgitnust assume nothing about them to make its
computation. Therefore, the output on the bottomires must be only a function of their input
valuesX and not of the “ancilla” bitsy, hence the bottom output is denoté@X). While the
signalsY must leave the circuit holding the same values they entered it with, their values may be
changed during the computation as long as they are restored by the end. These wires usually serve
as an essential workspace for computfrif). An example of this can be found in Figura: 3he
C gate on the right needs two wires, but if we simulate it with two N gates and two T gates, we
need a third wire. The signal applied to the top wire emerges unaltered.

Definition 5 Let L be areversible gate library. Then L is universal if for all k and all permutations
Tt € Sx, there exists some | such that some L-constructible circuit computessng | wires of
temporary storage.

The concept of universality differs in the reversible and irreversible cases in two important
ways. First, we do not allow ourselves access to constant signals during the computation, and
second, we synthesize whole permutations rather than just functions with one output bit.

2.2 Prior Work

It is a result of Toffoli’s that the CNT gate library is universal; he also showed that one can bound
the amount of temporary storage required to compute a permutatiSsm ioy n— 3. Indeed,

6

much of the reversible and quantum circuit literature allows the presence of polynomially many
temporary storage bits for circuit synthesis. Given that qubits are a severely limited resource in
current implementation technologies, this may not be a realistic assumption. We are therefore
interested in trying to synthesize permutations using no extra storage. To illustrate the limitations
this puts on the set of computable permutations, suppose we restrict ourselves to the C gate library.
The following results are well-known in the quantum circuits literature [15, 3]. We provide proofs
both for completeness, and to accustom the reader to techniques we will require later.

Definition 6 A function f: {0,1}" — {0,1}Mis linear iff f(x®y) = f(X) ® f(y), where® denotes
bitwise XOR.

This is just the usual definition of linearity where we think{@; 1}" as a vector space over
the two-element fiel@,. In our workn = m because of reversibility. Thug,can be thought of
as a square matrix ové&b. The composition of two linear functions is a linear function.

Lemma 7 [3] Every C-constructible permutation computes an invertible linear transformation.
Moreover, every invertible linear transformation is computable by a C-constructible circuit. No
C-circuit requires more thandgates.

Proof: To show that all C-circuits are linear, it suffices to prove that each C gate computes a
linear transformation. Indee@(x; ® Y1, X2 ®Y2) = (X1 DY1,X1 DY1 DX DVY2) = (X1,X1 D Y1) B

(X2,%2 ®Y2) = C(X1,¥1) ®C(X2,Y2). In the basis 10..0, 01...0, ..., 0...01, a C gate with the
control on thei-th wire and the inverter on thgth applied to an arbitrary vector will add the

i-th entry to thej-th. Thus, the matrices corresponding to individual C gates account for all the
elementary row-addition matrices. Any invertible matrixGi.(IF,) can be written as a product

of these. Thus, any invertible linear transformation can be computed by a C-circuit. Finally, any
matrix overF, may be row-reduced to the identity using fewer timdmow operations. 0

One might ask how inefficient the row reduction algorithm is in synthesizing C-circuits. A
counting argument can be used to find asymptotic lower bounds on the longest circuits [17].

Lemma 8 Let L be a gate library; let I C Sn be the set of L-constructible permutations on n
wires, and let kbe the cardinality of K Then the longest gate-minimal L-circuit on n wires has
more thanogky/logb gates, where b is the number of one-gate circuits on n wirespbly(n),

so for large n, worst-case circuits have lengdlogk,/logn).

Proof: Suppose the longest gate-mininhatircuit hasx — 1 gates. Then every permutationkp

is computed by ah-circuit of at mostx— 1 gates. The number of such circuitssi§ 1 b' =< b*.
Therefore k, < b*, and it follows thaix > logkn/logb.

Tlelfel el 232

Figure 5: Optimal C-circuits for C-constructible permutations on 2 wires.

Finally, let G be a gate ih with the largest number of inputs, say Then, onn wires, there
are atmosh(n—1)...(n— p+1) < nP ways to make a 1-gate circuit using GLlhasq gates in
total, thenb < gnP = poly(n). Hencex > logk,/(plogn+logq) = Q(logk,/logn). 0

We now need to count the number of C-constructible permutations. On two wires, there are
six, corresponding to the six circuits in Figure 5.

Corollary 9 [17] Spn hasﬂ{‘;ol(zn — 2') C-constructible permutations. Therefore, worst-case C-
circuits requireQ(n?/logn) gates.

Proof: A linear mapping is fully defined by its values on basis vectors. There"arel2vays of
mapping the 2-bit string 10..0. Once we have fixed its image, there ate-2 ways of mapping

010..0, and so on. Each basis bit-string cannot map to the subspace spanned by the previous bit-
strings. There are”2-2' choices for thé-th basis bit-string. Once all basis bit-strings are mapped,

the mapping of the rest is specified by linearity. The number of C-constructible permutations on
nwires is greater than”é/ 2. By Lemma 8, worst-case C-circuits requi¢n?/ logn) gates. 0

Let us return to CNT-constructible permutations. A result similar to Lemma 7 requires:

Definition 10 A permutation is called even if it can be written as the product of an even number
of transpositions. The set of even permutations,iis Senoted A

It is well-known that if a permutation can be written as the product of an even number of
transpositions, then it may not be written as the product of an odd number of transpositions.
Moreover, half the permutations & are even fon > 1.

Lemma 11 [20] Any nx n circuit with no nx n gates computes an even permutation.

Proof. It suffices to prove this for a circuit consisting of only one gate, as the product of even
permutations is even. L& be a gate in am x n circuit. By hypothesis is notn x n, so there

must be at least one wire which is unaffected@®y Without loss of generality, let this be the
high-order wire. Then2!® G(k) = G(2"-1@k), andk < 2"t impliesG(k) < 2"~. Thus every

cycle in the cycle decomposition @& appears in duplicate: once with numbers less thart,2

and once with the corresponding numbers with their high order bits set to one. But these cycles
have the same length, and so their product is an even permutation. The@ietbe product of

even permutations, and hence is even. 0

To illustrate this result, consider the following example. & 2 circuit consisting of a single
S gate performs the permutati¢h 2), as the inputs 01 and 10 are interchanged, and the inputs 00
and 11 remain fixed. This permutation consists of one transposition, and is therefore odd. On the
other hand, in a % 3 circuit, one can check that a swap gate on the bottom two wires performs
the permutatior{1, 2)(5,6), which is even.

3 Theoretical Results

Since the CNTS gate library contains no gates of size greater than three, Lemma 11 implies that
every CNTS-constructible (without temporary storage) permutation is evenzfot. The main
result of this section is that the converse is also true.

Theorem 12 Every even permutation is CNT-constructible.

Before beginning the proof, we offer the following two corollaries. These give a way to syn-
thesize circuits computing odd permutations using temporary storage, and also extend Theorem
12 to an arbitrary universal gate library.

Corollary 13 Every permutation, even or odd, may be computed in a CNT-circuit with at most
one wire of temporary storage.

Proof: Suppose we have arx ngate G computingt € Sy, and we place it on the bottomwires

of an(n+ 1) x (n+ 1) reversible circuit; left be the permutation computed by this new circuit.
Then by Lemma 11itis even. By Theorem 14t1is CNT-constructible. Let C be a CNT-circuit
computingit. C computestwith one line of temporary storage. 0

Corollary 14 For any universal gate library L and sufficiently large n, permutations jn ake
L-constructible, and those in,Sare realizable with at most one wire of temporary storage.

Proof: SinceL is universal, there is some numbesuch that we can compute the permutations
corresponding to the NOT, CNOT, and TOFFOLI gates using a totalofes. Letn > k, and let

T E Axn. By Theorem 12, we can find a CNT-circuit C computimgand can replace every N, C,

or T gate with a circuit computing it. The second claim follows similarly from Theorem 12 and
Corollary 13. 0

To prove Theorem 12, we begin by asking which permutations are C-constructible, N-constructible,
and T-constructible. The first of these questions was answered in Section 2. We now summarize
the properties of N-constructible permutations. In what followslenotes bitwise XOR.

Definition 15 Given an integer i, we denote by khe circuit formed by placing an N gate on
every wire corresponding to &in the binary expansion of i.

9

2 JAR\ VA JAR\ JAR\
U U U U

1 : M Jany Jany Jany
: : U U U U

0 M D) D
: U : U U U

N Nt D N NS D Nt N D NE N

Figure 6: CircuitsN' for i < 8. The superscript is interpreted as a binary
number, whose non-zero bits correspond to the location of inverters.

We will useN' to signify both the circuit described above, and the permutation which this
circuit computes. Technically, the latter is not uniquely determined bytheotation, but also
depends on the numbarof wires in the circuit; howevem will always be clear from context.
TheN' notation is illustrated for the case of three wires in Figure 6.

Lemma 16 Letmte Sn be N-constructible. There exists an i such trigt) = x®i. Moreover, the
gate-minimal circuit forrtis N'. There are2” N-constructible permutations inS

Proof: Clearly,N' computes the permutatior{x) = x®i. It now suffices to show that an arbitrary
N-circuit may be reduced to one of thé circuits. Any pair of consecutive N gates on the same
wire may be removed without changing the permutation computed by the circuit. Applying this
transformation until no more gates can be removed must leave a circuit with at most one N gate
per wire; that is, a circuit of the form'. 0

3.1 T-Constructible Permutations

Characterizing the T-constructible permutations is more difficult. We will begin by extending the
N' notation defined above.

Definition 17 Let N" be an N-circuit as defined above. Let k be an integer such that the bitwise
Boolean product hk= 0. Let there be p 1s in the binary expansion of h, and g in the binary
expansion of k. Definelﬂ\to be the reversible circuit composed of p g-CNOT gates, with control
bits on the wires specified by the binary expansion of k, and inverters as specified by the binary
expansion of h. lperforms N iff the wires specified by k have the vallie

In a 3x 3 circuit, there are 3 possible T gates, nanéfy N2, andN3. They compute the per-
mutations(6,7), (5,7), (3,7) respectively. By composing these three transpositions in all possible
ways, we may form all 24 permutations af536, 7. These are precisely the non-negative integers
less than 8 which are not of the form 0 dr Zlearly, no T gate can affect an input with fewer
than two 1s in its binary expansion.

10

Lemma 18 Every T-circuit fixe® and2' for all i.

Fork x k T-circuits, k > 3, there is an added restriction. As T gates axe33 there can be no
k x k gates in the circuit, so by Lemma 11, the circuit must compute an even permutation. On the
other hand, we will show that these are the only restrictions on T-constructible permutations. We
will do this by choosing an arbitrary even permutation, and then giving an explicit construction
of a circuit which computes it using no temporary storage. The first step is to decompose the
permutation into a product of pairs of disjoint transpositions.

Lemma 19 For n> 4, any even permutation in,$nay be written as the product of pairs of dis-
joint transpositions. If a permutationt moves k indices, it may be decomposed into no more than
% pairs of transpositions.
Proof: By a pair of disjoint transpositions, we mean something of the ftarb)(c,d) where
a,b,c,d are distinct. Fork > 3, (Xo,X1,...,X) = (X0,X1) (Xk—1,X%k) (X0, X2, X3, ..., Xk—1). NoOw
(%0,X1) (X1, X«) are disjoint, iteratively applying this decomposition process will convert an arbi-
trary cycle into a product of pairs of disjoint transpositions possibly followed by a single transpo-
sition, a 3-cycle or both.

Consider an arbitrary permutatiam= coC;...Cx, Wherecy...cx are the disjoint cycles in
its cycle decomposition. As shown above, we may rewrite thig &sK1...KmT1...Tp01...0g,
where the; are pairs of disjoint transpositions, tiheare transpositions, and tlog are 3-cycles.
As thet; come from pairwise disjoint cycles, they must in turn be pairwise disjoint. Moreover,
there must be an even number of themmasas assumed to be even, and theandg; are all
even. Pairing up thg arbitrarily leaves an expression of the forq. .. Kmy 201...0q. Again, the
o; are pairwise disjoint. Note thaa,b,c)(d,e, f) = [(a,b)(d,e)][(a,c)(d, f)]; we may therefore
rewrite any pair of disjoint 3-cycles as two pairs of disjoint transpositions. Iterating this process
leaves at most one 3-cycléx,y,z). Since we are working i, for n > 4, there are at least two
other indicesy,w. Using these, we havg,y, z) = [(X,Y) (v, W)][(v,W)(X,2)].

A careful count of transposition pairs gives the boé@él in the statement of the lemma. This
bound is tight in the case of a permutation consisting of a singke 3cycle. 0

By Lemma 19, it suffices to show that we may construct a circuit for an arbitrary disjoint
transposition pair. We begin with an important special casen @ires, aN%kf 4, gate computes
the permutatiorkg = (2" — 4,2" — 3)(2" — 2,2" — 1), which may be implemented by(8—5) T
gates [1, Corollary 7.4].

Lemma 20 On n wires, the permutatiokg = (2" —4,2" — 3)(2" — 2,2" — 1) is T-constructible.

Consider now an arbitrary disjoint transposition pait- (a,b)(c,d). Given a permutatiom
with the property(a) = 2" — 4, i(b) = 2" — 3, 1(c) = 2" — 2, 11(d) = 2" — 1, we havex = TKoTT *,

11

wherekg is the permutation in Lemma 20. We have a circuit which compkgessiven a circuit
that computest, we may obtain a circuit computing~! by reversing it. We now construct a
circuit computingrt

Lemma 21 Suppose n- 3, and0 < a,b,c,d < 2". Further suppose that none oflac,d is0, or
of the form2'. Then there exists a T-constructible permutatiowith the propertyr(a) = 2" — 1,
m(b) = 2" — 2, (c) = 2" — 3, 1(d) = 2" — 4, computable by a circuit of no more th&mn—2 T
gates.

Proof: To simplify notation, seM = 2"-1 andm = n— 1. Now, we constructtin five stages.
First, we build a permutatior, such thatt,(a) = M +4. Then, we buildt, such that, o 1y, (b) =
M+ 1, andmy(M +4) = M + 4. Similarly, 1 will fix M + 1 andM + 4, while T o T, 0 TR (C) =
M + 2, andmy will fix M+1,M+2,M +4 while Ty o T o T, 0 T (d) = M + 7. Finally, we build
acircuitthat map +4—2M -4 M+1—2M-3,M+2—2M -2, andM + 7 +— 2M — 1.

By hypothesisa is not 0 or of the form 2 This means thad has at least two 1s in its binary
expansion, say in positiortg, andk,. Apply T gates with controls on positiorg, andk, to set
the second andith bits. More precisely, let, = 2" + 2%, apply aN¥ iff ahas a 0 in thg¢n— 1)st
bit and Nja iff a has a 0 in the 2nd bit. Now, apply T gates with the controls omiteand 2nd
bits to set the remaining bits to 0. Lef be the permutation computed by the circuit given above.

1,(b) must again have two nonzero bits in its binary expansion; dinée implies i, (b) #
Ty(a), some nonzero bit afi(b) lies on neither thenth nor the 2nd wire. Controlling by this and
another bit, use the techniques of the previous paragraph to build a circuit teklg— M + 1.
By construction, this fixeM + 4; let the permutation computed by this circuitie

Consider now the nonzero bitsdf= 1,0, (C). Again, sincea, b # ¢, we haveM +4,M + 1 #

c'. Therefore, there must be at least one bit in wdctiffers fromM + 4. This bit could be the
mth or the second bit, and could have a zero in this position. However, @&ss guaranteed
to have at least 2 non-zero bits, there must be some other bit which ig'laimd 0 inM + 4.
Similarly, there must be some bit which is 1¢hand 0 inM + 1. Controlling by these two bits
(or, if they are the same bit, by this bit and any other bit which is &)inwe may use the above
method to set’ — M + 2.

Next, consider the nonzero bits df = T o T, 0 T (d). First, suppose there are two which
are not on themth wire. Controlling by these can také — M + 7 without affecting any of the
other values, as none df +1,M +2,M + 4 have 1s in both these positions. If there are no two
1s in the binary expansion of which both lie off themth wire, there can be at most two 1s in
the binary expansion, one of which lies on thi wire. Sincea, b, c # d, the second must lie on
some wire which is not the Oth, 1st, or 2nd; in this case we may again control by these two bits to
taked’ — M + 7 without affecting other values.

12

Finally, applyN,(‘,|+1 and N,mz gates, and then I‘d,[‘,l";f circuit. The reader may verify that this
completes stage 5. Each of the first 4 stages takes atmogiates, as we flip at mostbits in
each. The final stage uses exacth 2 T gates. 0

We now have a key result to prove.

Theorem 22 Every T-constructible permutation im=Sixes0 and 2 for all i, and is even if n>

3. Conversely, every permutation of this form is T-constructible. A T-constructible permutation
which moves s indices requires at m8&s+ 1)(3n—7) T gates. There aré(zn —n—-1! T-
constructible permutations ing

Proof: We have already dealt with the case- 3; hence suppose > 3. The first statement
follows directly from Lemmas 11 and 18. Now lee Sy» be an arbitrary even permutation fixing

0, 2. Use the method of Lemma 19 to decompasiato pairs of disjoint transpositions which

fix 0, 2. We are justified in using Lemma 19 because,rfof 3, there are at least five numbers
between 0 and™2! which are not of the form 0 or'2 Finally, using the circuits implied by
Lemmas 20 and 21, we may construct circuits for each of these transposition pairs. Chaining
these circuits together gives a circuit for the permutatiorCollecting the length bounds of the
various lemmas cited gives the length bound in the theorem. The final claim then follows;

3.2 Circuit Equivalences

Given a (possibly long) reversible circuit to perform a specified task, one approach to reducing
the circuit size is to perform local optimizations using circuit equivalences. The idea is to find
subcircuits amenable to reduction. This direction is pursued in a paper by lwama et al. [8], which
examines circuit transformation rules for generalized-CNOT circuits which only alter one bit of
the circuit. In their scenario, other bits may be altered during computation, so long as they are
returned to their initial state by the end of the computation. We present a more general framework
for deriving equivalences, from which many of the equivalences from [8] follow as special cases.
First, let us introduce notation to better deal with control bits.

Definition 23 Let G be a reversible gate that only affects wires corresponding talthi the
binary expansion of i (as in an'Nyjate). Let the bitwise Boolean productji= 0. Then define
Vi (G') as the gate which compute$ i the wires specified by j all carry &.

In particular,V;(N') = NI, andWV;(G') = Vi j(G'). Addition, multiplication, etc., of lower
indices will always be taken to be bitwise Boolean, with., @ representing OR, AND, and XOR
respectively. We denote the bitwise complement ax.

13

Lemma 24 Let K be an nx n reversible circuit such that ¢0x; ...X,-1) = (0X1...X,-1), and let

f : B"1 — B! be the function defined by(&Kx; ...x,_1) = (1f(X1...X_1)). Then f is a well-
defined permutation in,S1, and if F is a circuit computing f, them¥fF) = K.

Proof: K, by hypothesis, permutes the inputs with a leading 0 amongst themselves. By reversibil-
ity, it must permute inputs with a leading 1 amongst themselves as well. 0

Definition 25 Thecommutatorf permutations P and Q, denoté@d Q], is PQP1Q 1.

The commutator concept is useful for moving gates past each other BQee [P, Q|QP.
Moreover, it has reasonable properties with respect to control bits as the following result indicates.

Corollary 26 [Vh(G'),Vk(H1)] =V, 4 7757 (Vi (G), Vi (H)])

Proof: The corollary provides a circuit equivalent to the commutator of two given gates with
arbitrary control bits. Namely, such a circuit can be constructed in two steps. First, identify wires
which act as control for one gate but are not touched by the other gate. Second, connect the latter
gate to every such wire so that the wire controls the gate.

By induction, it suffices to show that this procedure can be done to one such wire. Without loss
of generality, suppose control bits and only control bits appear on the first wire. Then the input
to this wire goes through the circuit unchanged. At least one of the two gates whose commutator
is being computed must, by hypothesis, be controlled by the first wire. Therefore, on an input of
zero to the first wire, this gate (and therefore its inverse) leaves all signals unchanged. Since the
other gate appears along with its inverse, the whole circuit leaves the input unchanged. Our result

now follows from Lemma 24. n

If we are computing the commutator of generalized CNOT gates, then we ma@pldk to
be single inverter®!, N/ with i, j having only a single 1 apiece in their binary expansions. Then
we must havén- j =0 or j, andk-i = 0 ori. The four cases are accounted for as follows:
Lemma 27 Let i, j have only a singlel apiece in their binary expansions. Th{st,Nij] =N/,
INi,NJ] =N, [N',N/] = 1, and[Ni,N/] = N/.
Proof. As these equivalences all involve only 2-bit circuits, we may check themn=Zd, j = 1
by evaluating both sides of each equivalence on each of 4 inputs. 0

3.3 CT|N and C|T Constructible Permutations

While an arbitrary CNT-circuit may have the C, N, and T gates interspersed arbitrarily, we first
consider circuits in which these gates are segregated by type.

Definition 28 For any gate libraries L...Lg, a Ly|...|Lk-Circuit is an Lj-circuit followed by
an Ly-circuit, ..., followed by an j-circuit. A permutation computed by an|L..|Lk-circuit is
L4|...|Lk-constructible.

14

Soan]

-1

N

e

N

D
4
I
€
&
Ll

4]

vateld
|
&

—ty Tl

N T\

D
S
S
D

(a) (b)

Figure 7: Equivalences between reversible circuits used in our constructions.

A CNT-circuit with all N gates appearing at the right end is called a\Cdircuit.

Theorem 29 Letrtbe CNT-constructible. Themis also CTN-constructible. Moreovertuniquely
determines the permutatiomgt and 1y computed by the CT and N sub-circuits, respectively.

Proof: We move all the N gates toward the outputs of the circuit. Each box in Figurelicates

away of replacing an |CT circuit with a CTN circuit. The equivalences in this figure come from
Corollary 26. Moreover, every possible way for an N gate to appear to the immediate left of a
C or a T is accounted for, up to permuting the input and output wires. Now, nhumber the non-N
gates in the circuit in a reverse topological order starting from the outputs. In particular, if two
gates appear at the same level in a circuit diagram, they must be independent, and one can order
them arbitrarily. Letd be the number of the highest-numbered gate with an N gate to its imme-
diate left. All N gates past thd-th gateG can be reordered with th& gate without introducing

new N gates on the other side @f and without introducing new gates between the N gates and
the outputs. In any event, as there are no remaining N gates to the Bftdbfiecreases. This
process terminates with all the N gates are clustered together at the circuit outputs. If we always
cancel redundant pairs of N gates, then no more than two new gates will be introduced for each
non-inverter originally in the circuit; additionally, there will be at modtl gates when the process

is complete. Thus if the original circuit hddyates, then the new circuit has at moft-31) +n

gates. Note that C and T gates (and hence CT-circuits) fix 0. Tf@)s= 1y (0), soTyy = N0,

andricr = TN™O. O

Thus, if we want a CNT-circuit computing a permutatimnwe can quickly computey and
then simplify the problem to that of finding a CT-circuit fory. By Theorem 29, we know that
a minimal-gate circuit of this form has roughly three times as many gates as the gate-minimal
circuit computingrt

The next natural question is whether an arbitrary CT-circuit is equivalent to sg@neirtuit.
The equivalences in FigurdoBuggest that the answer is yes. However, the proof of Theorem 29
requires that many N gates be able to simultaneously move past a C or T gate, while Figure 7 only
shows how to move a single C gate past a single T gate.

15

Lemma 30 The permutatiort computed by a [C-circuit determines the permutatioms and

Tc computed by the sub-circuits. An even permutation is TC-constructible iff it(fiaes the
images of inputs of the for@ are linearly independent ovét,.

Proof: Let tbe an arbitrary permutation. tfis T|C-constructible, then images of the inputs

2 are unaffected by the T subcircuit; by Lemma 7 they must be mapped to linearly independent
values by the C subcircuit. This mapping of basis vectors completely specifies the permutation
T computed by the C subcircuit, and therefore also the permutatien g 1 computed by

the T subcircuit. Conversely, suppords even and fixes 0, and the images bfage linearly
independent. Then there is some C-circuit taking the valli¢s their images under. Let it
compute the permutatiory; thenTot ! fixes the values 0 and By construction. Theorem 22
therefore guarantees thag ! is T-constructible. 0

We will later use this result to show the existence of CT-constructible permutations which are
not T|C constructible.

3.4 T|C|T|N-Constructible Permutations

We are now ready to prove Theorem 12. According to Lemma 30, zero-fixing even permutations
are T|C-constructible if they map inputs of the formi@ a certain way. This suggests thaCF
circuits account for a relatively large fraction of such permutations.

Theorem 31 Every zero-fixing permutation in,Sand every zero-fixing even permutation i S
for n > 4 is T|C|T-constructible, and hence is CT-constructible. None requires more th&h n
gates and3(2"+n+1)(3n—7) T gates.
Proof: Letthe any zero-fixing permutation. Note that if the images'afrtlerrtwere linearly
independent, Lemma 30 would imply thatvas T/C constructible. So, we will build a permuta-
tion T with the property that the images of @nderrugr are linearly independent, ensuring that
T is T|C-constructible. Given a[C-circuit for Tugr and a T-circuit forrer, we can reverse the
circuit for ey and append it to the end of théd-circuit for Tuer to give at TC|T-circuit for 1. All
that remains is to show we can build one smgh

The basis vectors' 2ust be mapped either to themselves, to other basis vectors, or to vectors
with at least two 1s. Let; .. .ix be the indices of basis vectors which are not the images of other
basis vectors, and gt ... jx be the indices of basis vectors whose images have at least two 1s.
Letiy...in_x andj1... jn_« be the indices which are not in thg and j, respectively. Consider
the matrix My in which theith column is the binary expansion of2'). We take the entries
of My to be elements oF,. Our indexing system divide®!;; into four submatricesM(i, j),
Mun(i,), Mn(i, j), andMg(i, j). By constructionMx(i, j) andMy(i, j) are squareMq(i, j) is a

permutation matrix, an®(i, j) is a zero matrix. Therefore, det; = detMx(i, j), andMy is

16

invertible iff M(i, j) is. Moreover, there is an invertible linear transformation, computable by
column-reduction, which zeroes out the matvix(i, j) without affectingMy(i, j) or M(i, j). As

this transformatiorL is invertible, it corresponds to a permutatiog and the matrixML is the
matrix of images of 2under the permutatiorgrt In particular, the columns ¢ML); must all be
different, which implies that the columns bf(i, j) must all be different. Moreovery is linear,

and therefore zero-fixing; hendér(i, j) can have no zero columns. Taken together, these facts
imply that fork = 1,2, My(i, j) is invertible, hence so Bl thusttis T|C-constructible.

Suppose& > 3, and consider the family of matricégp) defined as followsA(p) isapx p
matrix with 1s on the diagonal, 1s in the first row, and 1s in the first column, except possibly in
the (1,1) entry, which is 1 iffp is odd. Row-reducing th#; to lower triangular matrices quickly
shows that they; are invertible for alli. Moreover, fori > 3, there is at least two 1s in every
column. Therefore, there is a T-constructible permutatipsuch thaM, (i, j) = Ac. ThusTut
is T|C-constructible, andtis T|C|T constructible.

Finally, we know from Corollary 9 that no more thaR gates are necessary to compuge
At most 2 indices need be moved hy, and no more than"2-n— 1 can be moved by the
T-constructible part oft. Thus by Theorem 22, we need no more thé2n3-1)(3n— 7) gates for
T and no more than(2" — n)(3n— 7) gates forrt. Adding these gives the gate-count estimate
above. 0

Corollary 32 There exist TC|T-constructible permutations which are ndCFconstructible.
Proof: The permutatiormt= (2,6)(4,7) fixes 0 and is even, hence i$Q[T-constructible inSy
for all n > 3 by Theorem 31. Howevery(1l) ®(2) = 166 = 7 = 11(4), hence by Lemma 3071

is not T|C-constructible. 0

Theorem 33 Every permutation in$ for n=1,2,3 and every even permutation ism$or n > 3
is T|C|T|N-constructible, and hence CNT-constructible. None requires more th@gates, n N
gates, and(2"+n+1)(3n—7) T gates.

Proof: LetTtbe any permutation; them = riN™© fixes 0. Fom = 1, ¥ must be the identity; for
n= 2 1 permutes 12,3, any such permutation is linear, hermtas C-constructible. Fon = 3,
T is T|C|T-constructible; fom > 3, 17 is T|C|T-constructible iff it is even, which happens iffis
even. Thus in all cases there is iCJT-circuit, M’ computingrt; then’N™% is a T|C|T|N-circuit

computingrt 0

We note that the size of a truth table for a circuit witinputs andh outputs isn2" bits. The

synthesis procedure used in the theorems above clearly runs in time proportional to the number of

17

gates in the final circuit. This i©(n2"), hence the synthesis procedure detailed in the theorems
has linear runtime in the input size.

Just as in Corollary 9, we may ask how far from optimal the foregoing construction is for long
circuits. There are™/2 even permutations iB», and these are all CNT-constructible. Using

Stirling’s approximation, logk!) ~ klogk, and Lemma 8 gives:
Corollary 34 Worst case CNT-circuits on n wires requiién2"/logn) gates.

So, for long CNT-circuits, the algorithm implied by Theorem 33 is asymptotically suboptimal
by, at worst, a logarithmic factor, as it produces circuits of ler@th2"). This is remarkably
similar to the result of Corollary 9, in which we found that using row reduction to build C-circuits
is asymptotically suboptimal by a logarithmic factor in the case of long C-circuits. However, even
a constant improvement in size is very desirable, and circuits for practical applications are almost

never of the worst-case type considered in Corollaries 9 and 34.

18

4 Optimal Synthesis

We will now switch focus, and seeabptimal realizations for permutations we know to be CNT-
constructible. A circuit is optimal if no equivalent circuit has smaller cost; in our case, the cost
function will be the number of gates in the circuit.

Lemma 35 (Property of Optimality) If B is a sub-circuit of an optimal circuit A, then B is optimal.

Proof: Suppose not. Then I& be a circuit with fewer gates thaB, but computing the same
function. If we replaceB by B', we get another circu’ which computes the same functionfas

But since we have only modified8, A’ must be as much smaller thamasB' is smaller tharB. A

was assumed to be optimal, hence this is a contradiction. (Note that equivalent, optimal circuits
can have the same number of gates.) 0

The algorithm detailed in this section relies entirely on the property of optimality for its cor-
rectness. Therefore, any cost function for which this property holds may, in principle, be used
instead of gate count.

Lemma 35 allows us to build a library of small optimal circuits by dynamic programming
because the firsh gates of an optimglm+ 1)-gate circuit form an optimal subcircuit. Therefore,
to examine all optima({m+ 1)-gate circuits, we iterate through optinratgate circuits and add
single gates at the end in all possible ways. We then check the resulting circuits against the library,
and eliminate any which are equivalent to a smaller circuit. In fact, instead of storing a library
of all optimal circuits, we store one optimal circuit per synthesized permutation and also store
optimal circuits of a given size together.

One way to find an optimal circuit for a given permutatinis to generate all optimad-gate
circuits for increasing values &funtil a circuit computingrtis found. This procedure requires
©(2") memory in the worst case {s the number of wires) and may require more memory than
is available. Therefore, we stop growing the circuit librarynagate circuits, when hardware
limitations become an issue. The second stage of the algorithm uses the computed library of
optimal circuits and, in our implementation, starts by reading the library from a file. Since little
additional memory is available, we trade off runtime for memory.

We use a technique known depth-first search with iterative deepeni(@FID) [10]. After
a given permutation is checked against the circuit library, we seek circuitsjwitm+ 1 gates
that implement this permutation. If none are found, we seek circuits jithm+ 2 gates, etc.

This algorithm, in general, needs an additional termination condition to prevent infinite looping
for inputs which cannot be synthesized with a given gate library. For ¢awle consider all
permutations optimally synthesizable imgates. For each such permutatipnwe multiply 1t

19

CIRCUIT find _circ(COST, PERM)
/[assumes circuit library stored in LIB

if (COST < k)
/['If PERM can be computed by a circuit with k gates,

// such a circuit must be in the library
return LIB[DEPTH].find(PERM)

else

/I Try building the goal circuit from<k-gate circuits
for each C in LIBIK]

// Divide PERM by permutation computed by C
PERM2+« PERM * INVERSE(C.perm)

/[and try to synthesize the result
TEMRCCT <« find _circ(depth-k,PERM2)
if (TEMP _CCT != NIL) return TEMP _CCT * C

/Il Finally, if no circuit of the desired depth can be found
return NIL

Figure 8: Finding a circuit of cosKCOST that computes permutation PERM
(NIL returned if no such circuit exists). TEMECT and records in LIB represent
circuits, and include a field “perm” storing the permutation computed. The * char-
acter means both multiplication of permutations and concatenation of circuits, and
NIL* <anything>=NIL.
by p~! and recursively try to synthesize the result using m gates. Whenj — m < m, this
can be done by checking against the existing library. Otherwise, the recursion depth increases.
Pseudocode for this stage of our algorithm is given in Figure 8.

20

Size| N C| T| NC| CT NT | CNT | CNTS
121 0 0| O 0 0 a7 0 0
11| 0 0| O 0 0| 1690 0 0
10| O 0| O 0 0| 8363 0 0

910 0| O 0 0 | 12237 0 0
8|0 0| O 0 6| 9339 577 32
710 0| O 14| 386| 5097 | 10253| 6817
6|0 2| 0] 215|1688| 2262 | 17049| 17531
5|/ 0| 24| 0| 474| 1784 870 | 8921| 11194
41 0| 60| 5| 393| 845 296 | 2780| 3752
3|1 51|, 9| 187| 261 88 625 844
23| 24| 6 51 60 24 102 134
1|3 6| 3 9 9 6 12 15
0|1 1] 1 1 1 1 1 1
Total | 8 | 168 | 24 | 1344 | 5040 | 40320 | 40320 | 40320
Time | 1 1] 1 30| 215 97 40 15

Table 1: Number of permutations computable in an optimaircuit using a given num-
ber of gates.L C CNTS Runtimes are in seconds for a 2GHz Pentium-4 Xeon CPU.

In addition to being more memory-efficient than straightforward dynamic programming, our
algorithm is faster than branching over all possible circuits. To quantify these improvements,
consider a library of circuits of sizen or less, containingd, circuits of sizem. We analyze the
efficiency of the algorithms discussed by simulating them on an input permutation d&f cdst
algorithm requireéan(k_l)/mJ references to the circuit library. Simple branching is no better than

k=1/M times more than

our algorithm withm = 1, and thus takes at ledtsteps, which i$X/I
our algorithm. A speed-up can be expected becéyse I, but specific numerical values of

that expression depend on the numbers of suboptimal and redundant optimal circuits of length
m. Indeed, Table 1 lists values &, for various subsets of the CNTS gate library and= 3.

For example, for the NT gate librark = 12, | (k—1)/m| = 3, | = 6 andl,, = 88. Therefore

the performance ratio it /1< /™

= 62/88% ~ 31942. Yet, this comparison is incomplete
because it does not account for time spent building circuit libraries. We point out that this charge
is amortized over multiple synthesis operations. In our experiments, generating a circuit library

on three wires of up to three gates £ 3) from the CNTS gate library takes less than a minute

21

on a 2-GHz Pentium-4 Xeon. Using such libraries, all of Table 1 can be generated in minutes,
but it cannot be generated even in several hours using branching.

Let us now see what additional information we can glean from Table 1. Adding the C gate to
the NT library appears to significantly reduce circuit size, but further adding the S gate does not
help as much. To illustrate this, we show sample worst-case circuits on three wires for the NT,
CNT, and CNTS gate libraries in Figure 9.

The totals in Table 1 can be independently determined by the following arguments. Every
reversible function on three wires can be synthesized using the CNT gate library [20], and there
are 8!= 40,320 of these. All can be synthesized with the NT library because the C gate is
redundant in the CNT library; see Figura.30n the other hand, adding the S gate to the library
cannot decrease the number of synthesizable functions. Therefore, the totals in the NT and CNTS
columns must be 4320 as well. On the other side of the table, the number of possible N circuits is
just 22 = 8 since there are three wires, and there can be at most one N gate per wire in an optimal
circuit (else we can cancel redundant pairs.) By Theorem 29, the number of CN-constructible
permutations should be the product of the number of N-constructible permutations and the number
of C constructible permutations, since any CN-constructible permutation can be written uniquely
as a product of an N-constructible and a C-constructible permutation. So the total in the CN
column should be the product of the totals in the C and N columns, which itis. Similarly, the total
in the CNT column should be the product of the totals in the CT and N columns; this allows one
to deduce the total number of CT-constructible permutations from values we know. Finally, we
showed that there were 24 T-constructible permutations on 3 wires in Section 3, and Corollary 9
states that the number of permutations implementable wites with C gates i§]"=5 (2" — 2').

Forn = 3 this yields 168 and agrees with Table 1.

We can also add to the discussion dCTconstructible circuits we began in Section 3. By
Lemma 30, the number of |C-constructible permutations can be computed as the product of
the numbers of T-constructible and C-constructible permutations. Table 1 mentions 24 T-circuits
and 168 C-circuits on three wires. The product, 4032, is less than 5040, the number of CT
constructible permutations on three wires, as we would expect from Corollary 32.

Finally, the longest C-circuits we observed on 3, 4 and 5 wires merely permute the wires. Such
wire-permutations on wires never require more tharir8— 1) gates. However, from Corollary 9
we know that for largen, worst-case C-circuits requi®(n?/log(n)) gates. ldentifying specific
worst-case circuits and describing families with worst-case asymptotics remains a challenge.

1Although complete statistics for all 16! 4-wire functions are beyond our reach, average synthesis times are less than
one second when the input function can be implemented with eight gates or fewer. Functions requiring nine or more gates
tend to take more than 1.5 hours to synthesize. In this case, memory constraints limit our circuit library to 4-gate circuits,
and the large jump in runtime after the 8-gate mark is due to an extra level of recursion.

22

Figure 9: Worst-cask-circuits wherel is NT, CNT and CNTS.

Finally, we note that while the exact runtime complexity of this algorithm is dependant on
characteristics of the gate library chosen, for a complete gate library it is obviously exponential in
the number of input wires to the circuit (this is guaranteed by Corollary 34), and in fact must be at
least doubly-exponential in the number of input wires (that is, exponential in the size of the truth
table). Scalability issues, therefore, restrict this approach to small problems. On the other hand,
given that the state of the art in quantum computing is largely limited by ten qubits, such small
circuits are of interest to physicists building quantum computing devices.

5 Quantum Search Applications

Quantum computation is necessarily reversible, and quantum circuits generalize their reversible
counterparts in the classical domain [14]. Instead of wires, information is storgalits whose
states we write a9) and|1) instead of 0 and 1. There is an added complexity — a qubit can be in
asuperposition statéhat combines0) and|1). Specifically,|0) and|1) are thought of as vectors
of thecomputational basjsand the value of a qubit can be any unit vector in the space they span.
The scenario is similar when considering many qubits at once: the possible configurations of the
corresponding classical system (bit-strings) are now the computational basis, and any unit vector
in the linear space they span is a valid configuration of the quantum system. Just as the classical
configurations of the circuit persist as basis vectors of the space of quantum configurations, so
too classical reversible gates persist in the quantum context. Non-classical gates are allowed, in
fact, any (invertible) norm-preserving linear operator is allowed as a quantum gate. However,
guantum gate libraries often have very few non-classical gates [14]. An important example of a
non-classical gate (and the only one used in this paper) is the Hadamaid .glteperates on
one qubit, and is defined as followst|0) = %UO} +|1)), andH|1) = \%(|O> —11)). Note that
becauseH is linear, giving the images of the computational basis elements defines it completely.
During the course of a computation, the quantum state can be any unit vector in the linear space
spanned by the computational basis. However, a serious limitation is imposed by quantum mea-
surement, performed after a quantum circuit is executed. A measurement non-deterministically
collapses the state onto some vector in a basis corresponding to the measurement being performed.
The probabilities of outcomes depend on the measured state — basis vectors [nearly] orthogonal

23

Initialization: Grover Operator Measurement
Iteratively

Form balanced Detect and
transform the

0) —p| superposition | g . || outputthe
0 of search 'ri‘g;’é Ztsegetﬁéo indexes of the

index states . target states
amplitude of
the target states

Workspace Oracle
qubits ™ | 1s f(x) = 12 -
A

Search criteria

Figure 10: A high-level schematic of Grover’s search algorithm.

to the measured state are least likely to appear as outcomes of measurerkiédt.were mea-
sured in the computational basis, it would be seej®ghalf the time, andl) the other half.

Despite this limitation, quantum circuits have significantly more computational power than
classical circuits. In this work, we consider Grover’s search algorithm, which is faster than any
known non-quantum algorithm for the same problem [6]. Figure 10 outlines a possible implemen-
tation of Grover’s algorithm. It begins by creating a balanced superpositioh fcibit states
which correspond to the indexes of the items being searched. These index states are then repeat-
edly transformed using &rover operatorcircuit, which incorporates the search criteria in the
form of a search-specific predicatéx). This circuit systematically amplifies the search indexes
that satisfyf (x) = 1 until a final measurement identifies them with high probabliity.

A key component of the Grover operator is a so-called “oracle” circuit that implements a
search-specific predicat&(x). This circuit transforms an arbitrary basis statg to the state
(—1)f™x). The oracle is followed by (i) several Hadamard gates, (ii) a subcircuit which flips the
sign on all computational basis states other tftanand (iii) more Hadamard gates. A sample
Grover-operator circuit for a search on 2 qubits is shown in Figure 11 and uses one qubit of
temporary storage [14]. The search space hef@,$,2,3}, and the desired indices are 0 and
3. The oracle circuit is highlighted by a dashed line. While the portion following the oracle
is fixed, the oracle may vary depending on the search criterion. Unfortunately, most works on
Grover's algorithm do not address the synthesis of oracle circuits and their complexity. According
to Bettelli et al. [4], this is a major obstacle for automatic compilation of high-level quantum
programs, and little help is available.

Lemma 36 [14] With one temporary storage qubit, the problem of synthesizing a quantum circuit

24

Figure 11: A Grover-operator circuit with oracle highlighted.

that transforms computational basis statgsto (—1)7®|x) can be reduced to a problem in the
synthesis of classical reversible circuits.

Proof: Define the permutatiom; by 11t (X,y) = (X,y® f(X)), and define a unitary operator

Ut by letting it permute the states of the computational basis accordimg.td he additional

qubit is initialized to|—) = H|1) so thatUs|x,—) = (—=1)f®|x,—). If we now ignore the value

of the last qubit, the system is in the stdte1) ™|x), which is exactly the state needed for
Grover’s algorithm. Since a quantum operator is completely determined by its behavior on a
given computational basis, any circuit implementmgimplementdJ;. As reversible gates may

be implemented with quantum technology, we can synthésizas a reversible logic circuit. o

Quantum computers implemented so far are severely limited by the number of simultaneously
available qubits. Whil& qubits are necessary for Grover’s algorithm, one should try to minimize
the number of additional temporary storage qubits. One such qubit is required by Lemma 36 to
allow classical reversible circuits to alter the phase of quantum states.

Corollary 37 For permutationsrt; (x,y) = (x,y® f(x)), such that{x: f(x) = 1} has even car-
dinality, no more temporary storage is necessary. For the remainmingve need an additional
qubit of temporary storage.

Proof: The permutation; swaps(x,y) with (x,y® f(x)), and therefore performs one trans-
position for each element dix: f(x) = 1}. It is therefore even exactly when this set has even
cardinality. The lemma follows from Corollary 13. 0

GivenTt;, we can use the algorithm of Section 4 to construct an optimal circuit for it. Table
2 gives the optimal circuit sizes of functiomg corresponding to 3-input 1-output functioris
(“3+1 oracles”) which can be synthesized on four wires. These circuits are significantly smaller
than many optimal circuits on four wires. This is not surprising, as they perform less computation.
In Grover oracle circuits, the main input lines preserve their input values and only the tem-
porary storage lines can change their values. Therefore, Travaglione et al. [21] studied circuits
where some lines cannot be changed even at intermediate stages of computation. In their termi-
nology, a circuit withk lines that we are allowed to modify and an arbitrary number of read-only

25

CircuitSize ||0|1| 2| 3| 4| 5 |6|7] Total
No. ofcircuits|| 1 | 7121 |35|35|24|4| 1| 128

Table 2: Optimal 3+1 oracle circuits for Grover’s search.

lines is called &-bit ROM-based circuit They show how to compute permutation arising

from a Boolean functiorf using a 1-bit quantum ROM-based circuit, and prove that if only clas-
sical gates are allowed, two writable bits are necessary. Two bits are sufficient if the CNT gate
library is used. The synthesis algorithms of Travaglione et al. [21] rely on XOR sum-of-products
decompositions of . We outline their method in a proof of the following result.

Lemma 38 [21] There exists a reversible 2-bit ROM-based CNT-circuit compufig,b) —
(x,a,ba® f(x)), where x is a k-bit input. If a function’s XOR decomposition consists of only one
term, let k be the number of literals appearing (without complementation)> Bthen3-2k-1—2
gates are required.

Proof: Assume we are given an XOR sum-of-products decompositioin dthen it suffices to
know how to transfornfx, a,b) — (x,a,b@® p) for an arbitrary product of uncomplemented literals

p, because then we can add the terms in an XOR decomposition term by term. So, without loss
of generality, letp = X3 ... Xn. Denote byT (a,b;c) a T gate with controls oa,b and inverter on

c. Similarly, denote byC(a;b) a C gate with control o and inverter orb. Number the ROM
wires 1...k, and the non-ROM wirek+ 1 andk+ 2. Let us first suppose that there is at least
one uncomplemented literal, and putél;k+ 2) on the circuit; note that(1;k+ 2) applied to

the input(x,a,b) gives(x,a,b® x1). We will write this asC(1;k+2) : (x,a,b) = (x,a,b®x1),

and denote this operation BY;. Then, we define the circuit}; as the sequence of gafeé&2,k +
2;k+1)WoT (2,k+2;k+ 1)Wp, and one can check thég : (x,a,b) — (x,a® x1x2,b). We define

W, by exchanging the wirek+ 1 andk + 2; clearlyW, : (x,a,b) — (x,a,b® x1x2). In general,
given a circuitM : (x,a,b®x1...x-1) = (X, a®X1...X), we defineWI’Jrl =T(+1k+2;k+
DWT (I + 1,k +2;k+ 1)W; one can check thad{’, , : (x,a,b) — (x,a®x1...x1,b). Define
W1 by exchanging the wirds+ 1 andk+ 2; then clearlyM 1 : (x,a,b) = (X, a,b® X1 ... X141).

By induction, we can get as many uncomplemented literals in this product as we like.

The heuristic presented above has the property that none of its gates has more than one control
bit on a ROM bit. Indeed, Travaglione et al. [21] had restricted their attention to circuits with
precisely this property. However, they note [21] that their results do not depend on this restriction.

We applied the construction of Lemma 38 to all 256 functions implementable in 2-bit ROM-
based circuits with 3 bits of ROM. The circuit size distribution is given in the line labeled XOR
in Table 3. In comparing with circuits lengths resulting from our synthesis algorithm of Section

26

Size 0|1 3 5 |6 |7 9 |10]11|12] 13
XOR 14 12118126 |12|19| 16| 10
OPTT| 1|4 4 |4 |12|21|24|29|33|44|46| 22
OPT 1/7121135{36(28|28|36(35|21|7 |1 |O

Size 14115161718 (1920|2122 |23|24|25| 26
XOR 10(16|19|12|6 |12| 18| 12
OPTT
OPT 0

Table 3: Circuit size distribution of 3+2 ROM-based circuits synthesized using various algorithms.

4, we consider two cases. First, in the OPT T line, we only look at circuits satisfying the restric-
tion mentioned above. Then, in the OPT line, we relax this restriction and give the circuit size
distribution for optimal circuits.

Most functions computable by a 2-bit ROM-based circuit actually require two writeable bits
[21]. Whether or not a given function can be computed by a 1-bit ROM-based CNT-circuit, can
be determined by the following constructive procedure. Observe that gates in 1-bit ROM circuits
can be reordered arbitrarily, as no gate affects the control bits of any other gate. Thus, whether
or not a C or T gate flips the controlled bit, depends only on the circuit inputs. Furthermore,
multiple copies of the same gate on the same wires cancel out, and we can assume that at most
one is present in an optimal circuit. A synthesis procedure can then check which gates are present
by applying the permutation on every possible input combination with zero, one, or two 1s in its
binary expansion. (Again, we have relaxed the restriction that only 1 control may be on a ROM
wire). If the value of the function is 1, the circuit needs an N, C or T gate controlled by those bits.

Observe that adding the S gate to the gate library dukingl ROM synthesis will never
decrease circuit sizes — no two wires can be swapped since at least one of them is a ROM wire.
In the case ok + 2 ROM synthesis, only the two non-ROM wires can be swapped, and one of
them must be returned to its initial value by the end of the computation. We ran an experiment
comparing circuit lengths in the 3+2 ROM-based case and found no improvement in circuit sizes
upon adding the S gate, but we have been unable to prove this in the general case.

2Using a circuit library with< 6 gates (191Mb file, 1.5 min to generate), the OPT line takes 5 min to generate. The
use of a 5-gate library improved the runtimes by at least 2x if we do not synthesize the only circuit of size 11. For the OPT
T line, we first find the 250 optimal circuits of sizé 12 (15 min) using a 6-gate library (61Mb, 5min). The remaining 6
functions were synthesized in 5 min with a 7-gate library (376Mb, 10 min). This required more than 1Gb of RAM.

27

6 Conclusions

We have explored a number of promising techniques for synthesizing optimal and near-optimal
reversible circuits that require little or no temporary storage. In particular, we have proven that ev-
ery even permutation function can be synthesized without temporary storage using the CNT gate
library. Similarly, any permutation, even or odd, can be synthesized with up to one bit of tem-
porary storage. We have recently discovered that A. DeVos has independently demonstrated this
result, however, his proof relies on non-trivial group-theoretic notions and resorts to a computer
algebra package for a special case. [5] We give a much more elementary analysis, and moreover
our proof techniques are sufficiently constructive to be interpreted as a synthesis heuristic. We
have also derived various equivalences among CNT-circuits that are useful for synthesis purposes,
and given a decomposition of a CNT-circuit into gCJT|N-circuit.

To further investigate the structure of reversible circuits, we developed a method for syn-
thesizing optimal reversible circuits. While this algorithm scales better than its counterparts for
irreversible computation [11], its runtime is still exponential. Nonetheless, it can be used to study
small problems in detail, which may be of interest to physicists building quantum computing de-
vices because the current state of the art is largely limited by 10 qubits. One might think that an
exhaustive search procedure would suffice for small problems, but in fact, even for three-input
circuits, an exhaustive search is nowhere near finished after 15 hours; our procedure terminates in
minutes. Our experimental data abailltoptimal reversible circuits on three wires using various
subsets of the CNTS library reveal some interesting characteristics of optimal reversible circuits.
Such statistics, extrapolated to larger circuits, can be used in the future to guide heuristics, and
may suggest new theorems about reversible circuits.

Finally, we have applied our optimal synthesis tool to the design of oracle circuits for a key
guantum computing application, Grover’s search algorithm, and obtained much smaller circuits
than previous methods. Ultimately, we aim to extend the proposed methods to handle larger and
more general circuits, with the eventual goal of synthesizing quantum circuits containing dozens
of qubits.

28

References

[1] A. Barenco et al., “Elementary Gates For Quantum ComputatiBhysical Review A52,
1995, pp. 3457-3467.

[2] C.Bennett, “Logical Reversibility of ComputationlBM J. of R.& D, 17, ‘73, pp. 525-532.

[3] T.Bethand M. Riteler, "Quantum Algorithms: Applicable Algebra and Quantum Physics,”
Springer Tracts in Modern Physick?3 2001, pp. 96-50.

[4] S. Bettelli, L. Serafini and T. Calarco, “Toward an Architecture for Quantum Programming,”
Nov. 2001 http://arxiv.org/abs/cs.PL/0103009

[5] A. De Vos et al., "Generating the Group of Reversible Logic Gatésiirnal of Physics A:
Mathematical and GeneraB5, 2002, pp. 7063-7078.

[6] L. K. Grover, “A Framework For Fast Quantum Mechanical AlgorithmBrbc. Symp. on
Theory of Computingl998.

[7] R. Feynman, "Quantum Mechanical Computef3fitics Newsl11, 1985, pp. 11-20.

[8] K. lwama et al., "Transformation Rules For Designing CNOT-based Quantum Circuits,”
Proc. DAC 2002, pp. 419-425.

[9] P. Kerntopf, “A Comparison of Logical Efficiency of Reversible and Conventional Gates,”
IWLS 2000 pp. 261-269.

[10] R.Korf, “Artificial Intelligence Search Algorithms”Algorithms and Theory of Computation
Handbook CRC Press, 1999.

[11] E.Lawler, “An Approach to Multilevel Boolean MinimizationJACM, 11, ‘64, pp. 283-295.

[12] J. Lee et al., "A Practical Method of Constructing Quantum Combinational Logic Circuits,”
http://arxiv.org/abs/cs.PL/9911053

[13] J. P. McGregor and R. B. Lee, “Architectural Enhancements for Fast Subword Permutations
with Repetitions in Cryptographic ApplicationdCCD, 2001, pp. 453-461.

[14] M. Nielsen and I. ChuangQuantum Computation and Quantum Informati@ambridge
Univ. Press, 2000.

[15] M. Perkowski et al., “A General Decomposition For Reversible Lodgrged-Muller Work-
shop Aug. 2001.

[16] T. Sasao and K. Kinoshita, “Conservative Logic Elements and Their UniversdiE
Trans. on Computer28, 1979, pp. 682-685.

[17] T. Silke, “PROBLEM: register swap,” December 1995,
http://www.mathematik.uni-bielefeld.de/"silke/PROBLEMS/bit swap

[18] Z. Shiand R. Lee, “Bit Permutation Instructions for Accelerating Software Cryptography,”
IEEE Intl. Conf. on App.-specific Systems, Architectures, and Proce2683, pp. 138-148.

29

[19] L. Storme et al., "Group Theoretical Aspects of Reversible Logic Galesinal of Univer-
sal Computer Sciengé, 1999, pp. 307-321.

[20] T. Toffoli, “Reversible Computing,Tech. Memo MIT/LCS/TM-15MIT Lab for CS, ‘80.

[21] B. Travaglione et al. “"ROM-based computation: Quantum Versus Classical,” 2001.
http://arxiv.org/abs/quant-ph/0109016

[22] S. Younis and T. Knight, “Asymptotically Zero Energy Split-Level Charge Recovery Logic,”
Workshop on Low Power Desigh994.

30

