
Paracel Algorithms 1 October 2, 2001

The Biologist’s Guide
to

Paracel’s Similarity Search Algorithms

Introduction
Many biological questions require the comparison of one or more sequences to each
other. The nature of those comparisons depends on the question being asked, the time
allowed to answer the question, the manner in which the answers will be used in
subsequent analyses, the required accuracy of the answer, and so on.

Fundamentally, the purpose of all similarity searches is to measure the “distance”
between sequences. However, the meaning of “distance” changes depending on the
investigation of interest. For example, a question in which protein hydrophobicity is the
basis for comparison will use different metrics and a different algorithm than one in
which the presence or absence of a specific binding domain is in question.
Understanding when and why a certain algorithm is needed is essential to properly
producing the scientific evidence needed for an investigation.

Algorithm selection also requires considering time and accuracy of the result. In some
situations a fast but possibly less precise result is more important than a very precise
answer that takes far longer. Algorithm precision is measured by two parameters:
sensitivity and specificity. Sensitivity is the percentage of true positives found, i.e., the
number of correctly identified matches relative to the total number of true matches.
Specificity is the number of true matches found relative to the total number of matches
reported. Sensitivity and specificity often conflict with each other because higher
sensitivity also means that more unrelated sequences are reported.

Lastly, investigations often require independent confirmation from multiple
computational or wet lab experiments. As a consequence, algorithm selection may be
influenced by the availability and quality of confirming data. A typical example is to
compare available EST, cDNA, or protein data with the results of gene prediction
studies to confirm the reasonableness of those studies.

What is similarity comparison?
Similarity comparisons evaluate the “closeness” of sequences to each other by
computing a metric that reflects a reward for “allowed” differences and a penalty for
“disallowed” differences. An “objective function” determines what rewards and penalties
are important and how to combine these into the closeness metric.

Consider an example in which a message is received from a spacecraft parked in the
red zone around a distant planet. The message traveled millions of miles and was likely

Paracel Algorithms 2 October 2, 2001

corrupted in the transmission. Our job at the receiver is to determine which message
was most likely sent. Suppose that the spacecraft sends only one of four messages:

1. WEATHER IS BEAUTIFUL, WISH YOU WERE HERE

2. WEATHER IS HERE, WISH YOU WERE BEAUTIFUL

3. WISH THERE WAS BEAUTIFUL WEATHER HERE

4. ENTERING SAFEMODE NEED HELP

At each position in the received message, a character may be correct, deleted relative
to the original message, or a substitution for another character. We might also know
that the chance that a character is dropped is higher than characters being substituted
and that multiple, sequential, character losses are common.

The message ETESEDEDEED arrives at the receiver and needs to be matched to one
of the four candidate messages. We need to determine the correspondence between
the received message and the candidate messages that maximizes the chance of
properly identifying the message. Want to evaluate is the similarity of the received
message to the candidate messages. Our assumption is that the candidate message
with the most similarity to our received message is most likely to be the message sent.

One way to evaluate similarity is to consider all possible alignments of the received
message and the candidate messages. By using a system that rewards matches and
penalizes mismatches and gaps, we can assign a score to each alignment. Using the
highest of those alignment scores, we find the maximum likelihood that the received
message is related to each of the candidate messages. The highest of all the alignment
scores tells us which message is the most likely one sent. This method has a very good
chance of finding the best candidate message, but is computationally expensive
because all possible alignments need to be evaluated.

Another way to evaluate find most likely message sent is to assume that the received
message must have some set of characters that identically match a set of characters in
the original message. The remainder of the received message should match to the
source message by applying substitutions and gaps as needed. In our example, notice
that received message ends in “EED.” There is one place in fourth message that EED
matches exactly. There are no double or triple character strings in the received
message that exactly match any position in the first three candidate messages.
Ignoring spaces, if we align “EED” in the received message to the fourth message we
get an alignment that is easily explained by applying the error set:

ENTERINGSAFEMODENEEDHELP
E-TE----S—E---DEdEED----

where the lower case “d” in the received message indicates a substitution error and the
“-“ indicates a character loss. This second method is much faster and computationally
cheaper than the first but also less sensitive because it is possible that a message

Paracel Algorithms 3 October 2, 2001

arrives that does not have two or more consecutive characters that match identically to
any candidate messages.

Still another means for evaluating similarity is to compute the frequency of certain
character patterns in each candidate message and then compare those frequencies to
the patterns in the received message. For example, the pattern “EE” occurs once in the
fourth message but not at all in the first three. “EE” also occurs once in the received
message. This method is computationally inexpensive, but lacks sensitivity to the
context of the characters.

This simple example makes two key points. First, there are often multiple ways to
perform a similarity evaluation. Each method has advantages and disadvantages in
terms of accuracy and computational cost. Second, it is not possible to know with 100%
certainty whether any single method will find the right match. In some cases, a
combination of methods will give us higher confidence in an answer than any individual
method. Similarity comparisons provide evidence of sequence closeness only.
Ultimately, investigators need to review the results and make final decisions based on
their domain knowledge.

Similarity and Biology
Like messages from space, biological sequences undergo transformations that alter
structure and meaning. Transformations may be the result of evolutionary processes
such as species-specific variations of a protein or may be the result of errors introduced
in preparing or reading the composition of sequences. Most biological similarity
searches assume a simple error model. In this model, independent processes may
result in the insertion, deletion, or substitution of characters in the text string that
represents the residues of a peptide or nucleotide molecule.

Evolutionary mutation processes are strongly regulated by natural selection since
unfavorable alterations eventually disappear. Evolutionary mutations are limited in
scope and occur at a predictable rate. Like the limited set of spacecraft messages and
transmission errors, restrictions on the form and rate of evolutionary mutations may be
exploited in similarity comparison algorithms.

Conversely, the transformation processes associated with preparing and reading
sequences tend to be random along most of the sequence length. In some situations,
the transformation rate is higher at the sequence ends than in the middle of the
sequence, but the nature of the transformations does not change. This knowledge too
may be exploited in similarity comparison algorithms.

Why do biological similarity comparisons?
Corresponding to the modes of biology sequence variation, there are two types of
sequence assessment: homology evaluation and contextual analysis. Although these
evaluations have much in common, they are fundamentally asking different questions.

Paracel Algorithms 4 October 2, 2001

Homology evaluation looks for evidence that biological sequences are related but have
been altered relative to each other by evolution. Orthologs are related molecules that
have been changed due to speciation while paralogs are replicated molecules in the
same organism that have been altered through generations of independent mutation.
Homology analyses require predetermine notions of which mutations are allowed and
the rate at which they can be expected to occur. These analyses therefore depend on a
prior analysis of related sequences.

Contextual analyses look for the common features among sequences without concern
for whether the sequences have a common ancestor. These comparisons determine
whether sequences overlap or are contained within another sequences, for example.
Contextual analyses are commonly part of the processing needed to join together many,
small sequences into fewer, long, sequences. Contextual comparison is also used to
find vector contamination in sequences, evaluate primer candidates, do biochip design,
and so forth. These evaluations need to model relevant sequencing instrumentation
and chemistry.

In both types of analyses, an objective function is defined that endeavors to determine
the best alignment of the sequences in question. Consider two sequences:
SEQUENCESEARCH and SEQUENCER. A simple evaluation of these sequences
assigns one sequence to the rows of a matrix and the other sequence to the columns.
Placing an asterisk in each cell for which the row and column characters match and a
blank where they do not creates a diagonal of asterisks as shown in Figure 1. The
longest diagonal in Figure 1 is the best alignment of the two sequences.

 S E Q U E N C E R
S *
E * * *
Q *
U *
E * * *
N *
C *
E * * *
S *
E * * *
A
R *
C *
H

Figure 1: Comparison of Two Sequences

Paracel Algorithms 5 October 2, 2001

The simple method of Figure 1 is the basis for a powerful similarity tool called a dot plot.
Dot plots provide visual evidence of similarity and may be used for comparing very large
sequences. It is common to use more complex similarity comparisons because these
enable computing statistical parameters associated with the probability that the
sequences in question are not related. Still, these more complex methods are
fundamentally creating strings of aligned sequence just as the dot plot does.

We next look into the details of homology and contextual similarity searches. We also
discuss complicating factors that are important in the proper selection of algorithms and
the penalty/reward systems used for a particular investigation.

Homology and similarity
Evidence of homology is sought by using a similarity objective function and set of
rewards and penalties that model evolution. A comparison algorithm scores sequence
similarity using the evolutionary model and also determines the likelihood that the score
achieved resulted from randomly related sequences. Evolutionary models used in
sequence analyses are fairly simple and based on collections of sequences that are
related to each other in function and years of separation.

Consider creating an evolutionary model for transmembrane proteins that could be used
to evaluate newly found proteins. A common feature in these proteins is at least one
transmembrane region comprising an α-helix stretch of between 21 and 26 hydrophobic
amino acid residues. While several organizations of these transmembrane regions
occur, a common organization comprises seven regions connected in a serpentine.
Human, mouse, rat, chicken, and bovine seven transmembrane (7TM) proteins have
been found and sequenced. These orthologous sequences are separated in time by no
more than the point in history that these species diverged from a common ancestor. To
create a suitable evolutionary model for 7TM proteins, it suffices to create a multiple
sequence alignment such that it is possible to determine what substitutions and gaps
occur. A portion of one such alignment is shown in Figure 2.

5H1A_HUMAN/53-400 GNACVVAAIALERSLQ....NVANYLIGSLAVTDLMVSVLVLPMAALYQVL

5H1B_HUMAN/66-369 SNAFVIATVYRTRKLH....TPANYLIASLAVTDLLVSILVMPISTMYTVT

5H7_HUMAN/98-384 GNCLVVISVCFVKKLR....QPSNYLIVSLALADLSVAVAVMPFVSVTDLIG

5HT1_DROME/179-507 GNVLVCIAVCMVRKLR....RPCNYLLVSLALSDLCVALLVMPMALLYEVL

B1AR_HUMAN/75-377 GNVLVIVAIAKTPRLQ....TLTNLFIMSLASADLVMGLLVVPFGATIVVW

DADR_HUMAN/40-331 GNTLVCAAVIRFRHLR...SKVTNFFVISLAVSDLLVAVLVMPWKAVAEIAG

A1AD_HUMAN/113-402 GNLLVILSVACNRHLQ....TVTNYFIVNLAVADLLLSATVLPFSATMEVLG

D2DR_BOVIN/51-427 GNVLVCMAVSREKALQ....TTTNYLIVSLAVADLLVATLVMPWVVYLEVVG

HH2R_CANFA/35-288 GNVVVCLAVGLNRRLR....SLTNCFIVSLAITDLLLGLLVLPFSAFYQLS

5H6_RAT/43-320 ANSLLIVLICTQPALR....NTSNFFLVSLFTSDLMVGLVVMPPAMLNALYG

Figure 2: A portion of the multiple sequence alignment for 10 7TM proteins

Paracel Algorithms 6 October 2, 2001

Notice that the first residue is almost always a “G” but can be either an “S” or an “A.”
The second character is always an “N,” and the next character can be “A,” “C,” “V,” or
“L.” The dots in the alignment indicate positions in which gaps are needed to properly
align the sequences.

There are several parameters that can be derived from the alignment in Figure 2. One
parameter is percent identity which is the number of residues that identically match in
an alignment divided by the total number of residues in the alignment. Since mutations
occur at more or less a fixed rate, then any protein compared to a 7TM protein should
have roughly the same percent identity as the sequences in Figure 2 have to each
other.

Other parameters that can be determined from Figure 2 are the frequency of
substituting given characters for each other. It is possible to derive an overall view of
those frequencies and relate those to the frequencies of random substitutions. This is
the approach taken in the creation of the well-known scoring matrices such as BLOSUM
and PAM. It is also possible to evaluate position-dependent substitution frequencies
and relate those to random substitutions. This is the approach taken in hidden Markov
models and profiles.

Lastly, another parameter derived from Figure 2 is frequency and size of gaps. This
information may be used to create simple affine gap models (e.g., gap open and gap
extension penalties) or more specific position-dependent gap models.

Interestingly, percent identity might be higher in ortholgous sequences than in
paralogous sequences. For example, human and mouse diverged around 35 million
years ago meaning that orthologous human and mouse proteins may differ only by the
number of successful mutations that could occur in that time period. Human and mouse
orthologs therefore have approximately 90% identity to each other. Conversely, there
are paralogous human proteins that have orthologs in worm. It is possible therefore
that these human paralogs diverged as much as 600 million years ago. Clearly these
sequences will likely be less similar to each other than mouse and human orthologs.
For this reason, it is often safer to use the most sensitive similarity algorithms when
looking for paralogs than for ortholog investigations because it isn’t always possible to
know the evolutionary distance of orthologs.

When searching more distant homologs it is also advantageous to consider as many
examples of the gene or protein as possible. This allows for more leniency in the
rewards and penalties where diversity isn’t important and more stringency where
diversity must be restricted. Techniques such as hidden Markov models and profiles,
for example, are ideally suited for high sensitivity and specificity searches involving
divergent homologies.

A caution about similarity searching and homology to remember: high degrees of
similarity do not assure homology but only provide one clue which when combined with
other clues might suffice to confidently declare homology. It is easy to show, for
example, that small nucleotide strings such as promoter regions can have high degrees

Paracel Algorithms 7 October 2, 2001

of similarity to unrelated sequences. Most similarity search tools include post-search
analyses that use sequence length and other factors to correct scores for known
statistical biases.

Random transformations and similarity
Investigations requiring tolerance of random transformations generally involve nucleic
acid sequences. Some investigations necessitate near-identity matching of relatively
few residues, others require tolerance of moderate to high error rates over longer
stretches. Near-identity similarity searching is adequately performed with lower
sensitivity algorithms. In fact, in some situations regular expression searches are
sufficiently accurate and fast. More sensitive and potentially more computationally
intensive algorithms are needed to tolerate complex error models.

Each investigation has it’s own, unique error model that is unrelated to the species
involved or evolution. It is usual to define scoring systems that produce positive scores
when two sequences share a minimum percent identity. The minimum percent identity
required to achieve a positive match score is calculated from the match and mismatch
scores:

+
−=

mismatchmatch
matchID 1*100%

Table 1 lists representative match and mismatch scores and the associated minimum
percent identity.

Table 1: Match/Mismatch
Scores & Minimum

Percent Identity
Match
Score

Mismatch
Score

%
Identity

1 -1 50.0
1 -2 66.7
1 -3 75.0
1 -10 90.9
1 -15 93.8
1 -20 95.2

To illustrate computing a similarity score based on percent identity, we use the +1/-1
matrix to score the alignment:

A A C C T T G G G A G A C C G A T
A A T C C C G G G A G A C C T A T
+ + - + - - + + + + + + + + - + + = 13 – 4 = 9

Paracel Algorithms 8 October 2, 2001

Gap penalties are usually selected relative to the match/mismatch scores. It is common
to set the gap open penalty between 0.5 and 5 times the match score and the gap
extension penalty to be between 0.1 and 1 times the gap open penalty.

Local and global similarity
Sequence similarity may be evaluated globally or locally depending on the needs of an
investigation. Global similarity requires consideration of the total lengths of the
sequences under study while local similarity may consider only portions of sequences
that have the best matches. Global alignments are used to find conserved regions of
sequences that are already known to be homologous, for example. Local similarity is
typically used in contextual investigations and in determining whether unannotated
sequences might be homologous to annotated sequences.

Paracel’s Similarity Search Algorithms
Authors have traditionally classified algorithms on the basis of the type of inputs used,
the manner in which rewards and penalties are accessed, algorithm rigor, complexity,
and so forth. We take a no less controversial, but different approach by classifying
algorithms based on their utility in biological similarity searching. Detailed discussions
of each algorithm are provided in the next section.

Figure 3 is a conceptual representation of the similarity search space based on the
expected percent identity of the sequences being compared and the type of search
being performed. The y axis in Figure 3 is a search type continuum starting with
contextual analysis at the bottom and moving upward to closely related homology
searching and distantly related homology searching. Equivalently, the x axis in Figure 3
is a continuum starting with highly similar sequences on the left and more dissimilar
sequences on the right. Algorithms shown toward the bottom, left in Figure 3 tend to be
simpler and faster than algorithms shown toward the upper right. The BLAST and
Smith Waterman variants overlap each other and span a wide range of applicability.
Profile variants tend to be best used in low identity, homology applications while regular
expression searches are best used in high identity, contextual evaluations. BLAST and
Smith Waterman are similar in that these both use position-independent residue
substitution rewards and penalties. Conversely, profiles can have different rewards and
penalties at each character position as a function of conserved and non-conserved
residues.

Paracel Algorithms 9 October 2, 2001

High % ID Low % ID

BLAST
Variants

Smith Waterman
Variants

Profile
Variants

Distantly
Related

Homologs

Closely
Related

Homologs

Contextual

Regular
Expressions

Figure 3: Search domain classification for various algorithms.

Although there are far too many applications for similarity searching than can be listed,
Table 2 provides guidance on the percent identity and similarity type typical of a few
common similarity investigations.

Table 2: Parameterization of Common Similarity Investigations
Investigation % ID Type Comments

Gene finding using
ESTs High Contextual and

homology

Gene structure
prediction using

cDNA or proteins
High Contextual and

homology
Intron tolerance

required

Annotation High to low Homology

Primer design High Contextual
Generally want

exact matches, no
gaps.

Overlap detection High Contextual
Generally want
nearly identical

matches

Vector
contamination High Contextual

Generally want
nearly identical

matches

Paracel Algorithms 10 October 2, 2001

Table 2: Parameterization of Common Similarity Investigations
Investigation % ID Type Comments
Simple repeats Moderate to high Contextual
Ancient repeats Moderate to low Homology

Paracel accelerates BLAST, Smith Waterman, and profile similarity search variants.
Tables 3-5 enumerate these variants and summarizes their usage. Referring back to
Figure 3, regular expression searches are performed by PHI-BLAST which is listed in
Table 3 as one of the BLAST variants. It is also possible to create profiles from regular
expressions and search these using a profile search variant. In some cases, regular
expression searches are efficiently performed by Perl or similar scripts.

Table 3: BLAST Algorithms
Algorithm Query Type Database Type Purpose

BLASTN Nucleotide Nucleotide

Moderate
sensitivity, high

specificity homology
and contextual

searching

BLASTP Peptide Peptide

Moderate
sensitivity, high

specificity homology
searching

BLASTX Nucleotide Peptide

Moderate
sensitivity, high

specificity homology
searching; six frame
translation of query

sequences

TBLASTN Peptide Nucleotide

Moderate
sensitivity, high

specificity homology
searching; six frame

translation of
database

sequences

TBLASTX Nucleotide Nucleotide

Moderate
sensitivity, high

specificity homology
searching; six frame

each search of
query and database

PSI-BLAST Peptide Peptide Moderate to high

Paracel Algorithms 11 October 2, 2001

Table 3: BLAST Algorithms
Algorithm Query Type Database Type Purpose

sensitivity, high
specificity homology

searching

PHI-BLAST Regular Expression
& Peptide Peptide

Low to moderate
sensitivity and

specificity homology
searching

MEGABLAST Nucleotide Nucleotide

Low to moderate
sensitivity and

specificity
contextual
searching

Table 4: Smith Waterman Algorithms
Algorithm Query Type Database Type Purpose

Smith Waterman
Nucleotide (linear

gap penalties)
Nucleotide Nucleotide

High sensitivity and
specificity
contextual
searching.

Smith Waterman
Nucleotide (affine

gap penalties)
Nucleotide Nucleotide

High sensitivity and
specificity homology

searching.

Smith Waterman
Nucleotide (double

affine gap penalties)

Coding DNA or
RNA Genomic DNA

High sensitivity and
specificity homology

searching with
intron tolerance.

Smith Waterman
Peptide (affine gap

penalties)
Peptide Peptide

High sensitivity and
specificity homology

searching.

Smith Waterman
Peptide (double

affine gap penalties)
Peptide Peptide

High sensitivity and
specificity homology
searching with long

gap tolerance.

Smith Waterman
frame search (affine

gap)
Nucleotide Peptide

High sensitivity and
specificity homology

searching;
frameshift tolerant.

Smith Waterman
reverse frame

search (affine gap)
Peptide Nucleotide

High sensitivity and
specificity homology
searching of coding
regions; frameshift

tolerant.

Paracel Algorithms 12 October 2, 2001

Table 4: Smith Waterman Algorithms
Algorithm Query Type Database Type Purpose

Smith Waterman
reverse frame
search (double

affine gap)

Peptide Genomic DNA

High sensitivity and
specificity homology
searching of coding
regions; frameshift
and intron tolerant.

Table 5: Profile Algorithms
Algorithm Query Type Database Type Purpose

Gribskov profile
search Protein profile Peptide

High sensitivity,
specificity distant

homology
searching.

Gribskov profile
search Nucleotide profile Nucleotide

High sensitivity,
specificity distant

homology
searching.

Gribskov profile
frame search Protein profile Nucleotide

High sensitivity,
specificity distant

homology searching
of coding regions.

Hidden Markov
Model Protein profile Peptide

High sensitivity,
specificity distant

homology
searching.

Hidden Markov
Model Nucleotide profile Nucleotide

High sensitivity,
specificity distant

homology
searching.

Hidden Markov
Frame search Protein profile Nucleotide

High sensitivity,
specificity distant

homology searching
of coding regions,
frameshift tolerant.

Hidden Markov
Frame search

(double affine gap)
Protein profile Genomic DNA

High sensitivity,
specificity distant

homology searching
of coding regions,

frameshift and
intron tolerant.

Paracel Algorithms 13 October 2, 2001

Table 5: Profile Algorithms
Algorithm Query Type Database Type Purpose

GeneWise Protein profile or
peptide Genomic DNA

High sensitivity,
specificity distant

homology searching
of coding regions,

frameshift and
intron tolerant.

BLAST variants
Description
Basic Local Alignment Search Tool (BLAST) nucleotide, peptide and frame algorithms
find multiple high scoring local similarities among sequences having moderate to high
similarity. Underlying the BLAST heuristic is the idea that all true matches will consist of
short stretches of identical or near-identical matches. BLAST initially extends these
seed matches outward as far as possible without introducing gaps. The ungapped
alignments are then combined using dynamic programming to form the final, gapped
alignments. BLAST’s dependence on finding short, near identity matches however,
reduces it’s sensitivity when many short gaps occur.

Usage
BLAST is a fast, general purpose similarity search tool that may be used in contextual
and homology analyses. BLAST characteristically has good sensitivity and very good
specificity meaning that it almost always finds true matches and virtually always does
not report false positives. An important feature of BLAST is it’s ability to report multiple
local alignments between sequences. This feature allows an investigator to look for
repetitive elements, domain ordering, evidence of gene transposition, and so forth.

BLASTN
BLASTN compares nucleic acid sequences to each other. BLASTN uses one match
score and one mismatch score for all characters as well as an affine gap model. The
default seed word size is 11 characters so sequences under investigation must be fairly
similar in order for BLASTN to report any hits.

BLASTP
BLASTP is the protein equivalent of BLASTN. BLASTP permits the use of a limited
number of evolution-based scoring matrices such as PAM and BLOSUM along with a
limited set affine gap parameters. The default seed word size is 3 for BLASTP which
means that BLASTP searches will run slower than BLASTN but have the advantage of
allowing more diversity in the sequences under study.

Paracel Algorithms 14 October 2, 2001

BLASTX
BLASTX compares nucleic acid coding sequences to protein databases. The algorithm
begins by translating the queries into six proteins corresponding to a three-frame
forward translation and a three-frame reverse-compliment translation. The six proteins
are then searched against the protein data using the BLASTP algorithm. Results are
linked to the frame but there is no frame-to-frame linkage.

TBLASTN
TBLASTN compares protein queries to nucleic acid genomic or coding data. Nucleic
acid data are converted into six proteins as described for BLASTX and then BLASTP is
executed. As with BLASTX comparisons, TBLASTN reports results linked to the protein
frame.

TBLASTX
TBLASTX compares nucleic acid coding sequences to other nucleic acid coding
sequences through translated proteins. The query and data sequences are each
converted into six protein frames which are then searched using BLASTP and the
results are linked to the query and database frames. This search is particularly useful
when nucleic acid sequences are too divergent for BLASTN to report hits even though
those sequences code for similar proteins.

PSI-BLAST
Position specific iterative BLAST (PSI-BLAST) initially creates a profile from the results
of a BLASTP search. Results above a threshold are aligned to each other and the
residue substitution frequencies are calculated at each character position. Highly
conserved positions contribute to higher match rewards and mismatch penalties than
weakly conserved positions. The profile is used as the input to the next iteration and
the returned results above a threshold are again multiply aligned and another profile
computed. PSI-BLAST increases search sensitivity but care must be taken when
selecting search results at each iteration to prevent specificity degradation. PSI-BLAST
is useful in low to moderate homology evaluations.

PHI-BLAST
PHI-BLAST (Pattern-Hit Initiated BLAST) finds sequences that contain an occurrence of
a regular expression that are also homologous to another sequence in the region(s)
near the regular expression. In many cases, protein domains, for example, can be
represented by regular expressions. The advantage of doing regular expression
searches is that they are computationally inexpensive and easy to implement. The
disadvantage of regular expression searches is that by themselves are not usually
sufficiently specific to remove random matches. PHI-BLAST improves the specificity of
regular expression searches.

MEGABLAST
MEGABLAST is used for evaluations of highly similar, large nucleotide sequence sets.
MEGABLAST will combine smaller queries internally to reduce execution time, however,

Paracel Algorithms 15 October 2, 2001

the results obtained by combining queries is different than if the queries were not
combined.

Smith Waterman variants
Usage
The Smith Waterman evaluation finds an optimal, local alignment of nucleotide or
peptide sequences and is typically used when low to moderate sequence identity is
expected. Alignments are optimal because the Smith Waterman algorithm considers all
possible ways that two sequences can be matched up and reports the one having the
best score. Paracel supports three gap penalty models corresponding to randomly
introduced gaps, evolution-induced gaps, and introns. Additionally, like BLAST,
Paracel’s implementation of Smith Waterman permits reporting multiple high scoring
segments of an alignment.

Sensitivity
Although the BLAST algorithms are similar to Smith Waterman, there are three
significant differences that make Paracel’s Smith Waterman more sensitive:

1. The BLAST algorithm begins by finding short regions of exact match between
pairs of sequences. These seed regions are then extended, without gaps until
the extension causes the score to drop below a threshold. Extended regions are
then joined with gaps through a dynamic program. The effectiveness of a BLAST
search is heavily dependent on the size of the initial seed region. Smaller
regions produce better results because they are less likely to miss a true
alignment but the computations are very expensive. On the other hand, longer
initial word sizes make for faster searches but the results are not as good. The
more evolutionary distance there is between two sequences, the greater the
chance that BLAST will miss a real hit. Smith Waterman, by contrast, examines
all alignments and reports an alignment having the highest score. This assures
that an optimal alignment (there may be more than one) is always reported.

2. In seed processing, BLAST randomly substitutes one of the nucleic acids for “N”
in DNA sequence searches. Many sequences such as genomic scaffolds or
sequences masked by low-complexity filtering, can contain long strings of “N.”
By randomly substituting nucleic acids for “N,” BLAST may fail to create a seed
and therefore miss a hit. Paracel’s Smith Waterman algorithm does not need to
make this substitution because it uses explicitly specified scoring matrices. The
reward for matches with “N” may be explicitly specified to represent the biology,
chemistry, or quality of the sequences involved.

3. In DNA searches, BLAST provides a match and mismatch score parameter that
is applied to all nucleic acids. This model is appropriate for evaluating
differences due to sequencing error in which all modifications are equally likely,
i.e., in contextual evaluations. Evaluating mismatches due to evolution requires
more complicated scoring models that take into account actual differences

Paracel Algorithms 16 October 2, 2001

between related sequences. This leads to matrices that may penalize certain
substitutions differently than others, and additionally, may be asymmetric to
penalize changes in one direction more heavily than another. Because Paracel’s
Smith Waterman implementation uses explicitly specified substitution matrices
for both DNA and protein searches, users can select the scoring matrix that best
models the situation.

Gap options
Paracel’s Smith Waterman algorithms support three gap penalty options:

1. Linear: the penalty for starting a gap is the same as the per character penalty for
extending a gap. Linear gap penalties are most appropriate when modeling
sequence variations due to random processes rather than evolutionary
processes.

2. Affine: it is assumed that starting a gap is a more important event than extending
a gap. In an affine gap model the open penalty is higher than the extension
penalty. Affine gap penalties are typically used to model evolutionary variations.

3. Double affine: it is assumed that sequencing errors or minor biological variations
can only reasonably account for gaps of a certain size. Gaps longer than this
size tend to represent major alterations such as the introns that separate coding
regions of a gene or extensions of unessential structures such as loops in some
proteins. A double affine gap model enables penalizing short gaps at a different
rate than longer gaps.

Double affine consists of two sets of gap open (go) and gap extension (ge)
penalties and at any gap length, the algorithm chooses the smaller of the
penalties. This means that the line defined by the first gap open and first gap

extension must intersect the line defined by the second gap open and second
gap extension:

A typical cross-over length for DNA sequences is 3 to 6 nucleic acids while 2 or 3
amino acids is typical for proteins.

The power of double affine is shown in the partial alignment below. The
alignment compares a cDNA sequence from Unigene to genomic data. Notice
the long gap starts with a GT at the 5’ end and terminates in CAG at the 3’ end
which defines the classical intron donor and acceptor sites. A BLAST search
might find the two pieces of this alignment if these had sufficiently high score but
would be unable to correctly show the gene structure.

)1()1(
2211

−∗+=−∗+ ll gggg eoeo

Paracel Algorithms 17 October 2, 2001

Query: 3 ATGGCGGCTGGAGGCGATCATGGTTCGCCCGACAGCTACCGCTCACCTCTTGCCTCCCGC 62
 ||
Sbjct: 48787 ATGGCGGCTGGAGGCGATCATGGTTCGCCCGACAGCTACCGCTCACCTCTTGCCTCCCGC 48846

Query: 63 TATGCCAGCCCGGAGATGTGCTTCGTGTTTAGCGACAGGTATAAATTCCGGACATGGCGG 122
 ||
Sbjct: 48847 TATGCCAGCCCGGAGATGTGCTTCGTGTTTAGCGACAGGTATAAATTCCGGACATGGCGG 48906

Query: 123 CAGCTGTGGCTGTGGCTGGCGGAGGCCGAGCAG--------------------------- 156
 |||||||||||||||||||||||||||||||||
Sbjct: 48907 CAGCTGTGGCTGTGGCTGGCGGAGGCCGAGCAGGTAACGGATCCCGGGCTGAGGGGCTGG 48966

Query: 156 -- 156
Sbjct: 48967 GCCGGGAGGGACGGGCCCGCCCCAGCACGTGCCGGGCTCTGTTCCGGGCTGGGCTTAGCC 49026

Query: 156 -- 156

Query: 156 -- 156

Sbjct: 51967 TGCTAACATGAATCAGTTTTTTTTCCTTGGTGTCACTTCATTCAAATAACTGTGACACTG 52026

Query: 156 ---------------------------------ACATTGGGTTTGCCTATCACAGATGAA 182
 |||||||||||||||||||||||||||
Sbjct: 52027 AGACTATTTTATTTTATTTTGCCTATTCTGCAGACATTGGGTTTGCCTATCACAGATGAA 52086

Query: 183 CAAATCCAGGAGATGAAATCAAACCTGGAGAACATA-GACTTCAAGATGGCAGCTGAGGA 241
 ||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||
Sbjct: 52087 CAAATCCAGGAGATGAAATCAAACCTGGAGAACAT-CGACTTCAAGATGGCAGCTGAGGA 52145

Query: 242 AGAGAAACGTTTACGACATGATGTGATGGCTCACGTGCACACATTTGGCCACTGCTGTCC 301
 ||
Sbjct: 52146 AGAGAAACGTTTACGACATGATGTGATGGCTCACGTGCACACATTTGGCCACTGCTGTCC 52205

Query: 302 AAAAGCTGCAGGCATTATTCACCTTGGTGCTACTTCTTGCTATGTTGGAGACAATACTG- 361
 |||
Sbjct: 52206 AAAAGCTGCAGGCATTATTCACCTTGGTGCTACTTCTTGCTATGTTGGAGACAATACTGT 52265

Smith Waterman nucleotide and peptide variants
SWN
Smith Waterman nucleotide (SWN) compares nucleic acid sequences. Paracel’s
implementation allows the user to specify an arbitrary match/mismatch matrix so that
SWN may be used for both contextual and evolutionary comparisons. The matrix need
not be symmetric to permit modeling directional substitutions.

SWP
Smith Waterman peptide (SWP) compares peptide sequences. Generally SWP is used
for homology analysis and one of the evolutionary matrices, e.g., BLOSUM, is used.
Unlike BLASTP, SWP does not restrict the value of permitted gap penalties.

Smith Waterman frame variants
Paracel accelerates three per-character, frameshift-tolerant, Smith Waterman style
algorithms. In each of these algorithms, at each character position the score is
determined by evaluating whether to stay in the current reading frame and accepting a

Paracel Algorithms 18 October 2, 2001

match/mismatch score or an amino acid insertion/deletion (indel) or to jump to another
reading frame and incur a frameshift penalty along with a match/mismatch score. This
contrasts to the equivalent BLAST search types in which six static protein translations
corresponding to three forward frames and three reverse frames are used in the
comparison. Paracel’s frame search variants tolerate frameshifts that are most often
the result of sequencing errors and produce longer meaningful alignments then can be
produced by BLAST.

SWX
Paracel’s frame search compares nucleic acid query sequences to protein data. This
search is used to find putative homologous proteins for newly sequenced ESTs, RNAs,
and cDNAs. An independently adjustable frameshift penalty may be set to reflect the
overall quality of the nucleic acid sequences. Additionally, this algorithm uses protein
scoring matrices that can be chosen to reflect the evolutionary distance between the
nucleic acid sequences and the organisms represented in the protein database. An
affine gap penalty is generally used to model evolutionary variations.

TSWN
Searching a peptide sequence against nucleic acid coding regions is performed with
Paracel’s reverse frame algorithm. This comparison allows a user to annotate unknown
peptide sequences by comparing them to databases of nucleic acid coding regions or to
locate putative genes with known proteins. An independently adjustable frameshift
penalty is available to model the possibility that a sequencing error in the nucleic acid
data has occurred. Protein scoring matrices are used along with affine gap penalties to
model evolutionary variations. Double affine gap penalties may be used to evaluate
gene structure.

TSWX
Lastly, Paracel offers a double frame nucleic acid to nucleic acid comparison at the
protein level. This search allows for frameshifts at each character of both nucleic acid
sequences. This search is useful for comparing homologous coding regions that are
sufficiently separated by evolution to have differing codon usage.

Profile variants
A profile is a mathematical summary of the alignment of multiple, related nucleic acid or
protein sequences. A profile is built by scanning down each column of the multiple
sequence alignment to determine the frequency of each character in the column. These
position-dependent character frequencies are normalized by the frequency of each
character in the multiple alignment to produce an odds ratio for the substitution of one
character for another.

Profile searches enable a comparison of database sequences with the family
represented by the profile. The position-specific nature of these searches facilitate a
comparison of the critical features characteristic of the family. For example, a multiple
alignment of a protein or nucleotide family will have highly conserved regions

Paracel Algorithms 19 October 2, 2001

interspersed with non-conserved regions. The profile gives high scores to matches of a
query within the conserved areas and correspondingly very low scores for mismatches.
In non-conserved regions match and mismatch scores have lower positive or negative
impact to reflect the reduced contribution of those regions to the function or structure of
the protein or nucleic acid sequence.

Gribskov profile and profile frame
Paracel’s profile function is implemented in the GeneMatcher as a position-specific
Smith Waterman. This means that each position of a query will have it’s own set of
scoring parameters as determined by the content of the profile. Paracel’s profile search
takes protein or nucleic acid profile inputs in GCG format and compares these to a
protein or nucleic acid databases respectively. Results may be reported either as a
search of database entries by the profiles or as a search of profiles by the database
entries.

The profile frame search variant enables searching protein profiles against nucleic acid
coding regions using a per-character frameshift tolerant algorithm. This algorithm is
essentially a position-specific version of Paracel’s TSWN algorithm discussed
previously.

Hidden Markov Model and Hidden Markov Model Frame Searches
A hidden Markov Model (HMM) is a profile trained from a multiple sequence alignment
in a manner analogous to the profile discussed above. While profiles assume a
relatively simple model of evolution, HMMs allow for more options which often enhances
the sensitivity searches. In particular, at each position in an alignment, HMMs have an
explicitly computed probability associated with starting or continuing a gap. Additionally,
at each insertions point, an HMM explicitly models the probabilities associated with
adding specific amino acids. HMMs are best used for homology searching of
evolutionary distant sequences.

Paracel’s HMM search currently accepts PFAM, Bucher’s Generalized Profile, and SAM
input formats. Nucleic acid models and protein models may be used to search
respectively against nucleic acid or protein databases.

Paracel’s HMM frame algorithm is analogous to the profile frame algorithm in that it
allows a search of nucleic acid sequences by protein HMMs. This search also uses a
per-character frameshift tolerant algorithm. HMM frame searches are used to search
coding nucleotides or by using a double affine option, genomic data.

GeneWise
GeneWise is an intron and frameshift tolerant search of genomic data by proteins or
protein HMMs. GeneWise facilitates determination of gene structures by expanding the
HMM concept to include transitions to and from intron states. This means that during
the search process, the algorithm evaluates whether the best score is achieved by
staying in a given reading frame and accepting a match/mismatch score, changing

Paracel Algorithms 20 October 2, 2001

reading frames and incur a frameshift penalty, accepting an amino acid indel, starting
an intron if one hasn’t been started, or by exiting and intron if one has been started.

Paracel’s genewise search uses a GU (GT) pattern at the 5’ end to signal the possible
beginning of an intron and an AG pattern at the 3’ end to signal the possible end of an
intron. These patterns do not force intron start and end but rather enable the algorithm
to consider whether a start or end produces the best score result.

GeneWise is similar to Paracel’s HMM frame search with the additional benefit of
tolerating long introns. It is also similar to Paracel’s double affine Smith Waterman
search with the additional benefit of using protein HMMs to better model the important
features of a protein family.

