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The Biologist’s Guide 
to 

Paracel’s Similarity Search Algorithms 
 

Introduction 
Many biological questions require the comparison of one or more sequences to each 
other.  The nature of those comparisons depends on the question being asked, the time 
allowed to answer the question, the manner in which the answers will be used in 
subsequent analyses, the required accuracy of the answer, and so on. 

Fundamentally, the purpose of all similarity searches is to measure the “distance” 
between sequences.  However, the meaning of “distance” changes depending on the 
investigation of interest.  For example, a question in which protein hydrophobicity is the 
basis for comparison will use different metrics and a different algorithm than one in 
which the presence or absence of a specific binding domain is in question.  
Understanding when and why a certain algorithm is needed is essential to properly 
producing the scientific evidence needed for an investigation. 

Algorithm selection also requires considering time and accuracy of the result.  In some 
situations a fast but possibly less precise result is more important than a very precise 
answer that takes far longer.  Algorithm precision is measured by two parameters: 
sensitivity and specificity.  Sensitivity is the percentage of true positives found, i.e., the 
number of correctly identified matches relative to the total number of true matches.  
Specificity is the number of true matches found relative to the total number of matches 
reported.  Sensitivity and specificity often conflict with each other because higher 
sensitivity also means that more unrelated sequences are reported.   

Lastly, investigations often require independent confirmation from multiple 
computational or wet lab experiments.  As a consequence, algorithm selection may be 
influenced by the availability and quality of confirming data.  A typical example is to 
compare available EST, cDNA, or protein data with the results of gene prediction 
studies to confirm the reasonableness of those studies.  

What is similarity comparison? 
Similarity comparisons evaluate the “closeness” of sequences to each other by 
computing a metric that reflects a reward for “allowed” differences and a penalty for 
“disallowed” differences.  An “objective function” determines what rewards and penalties 
are important and how to combine these into the closeness metric.   

Consider an example in which a message is received from a spacecraft parked in the 
red zone around a distant planet.  The message traveled millions of miles and was likely 
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corrupted in the transmission.  Our job at the receiver is to determine which message 
was most likely sent.  Suppose that the spacecraft sends only one of four messages: 

1. WEATHER IS BEAUTIFUL, WISH YOU WERE HERE 

2. WEATHER IS HERE, WISH YOU WERE BEAUTIFUL 

3. WISH THERE WAS BEAUTIFUL WEATHER HERE 

4. ENTERING SAFEMODE NEED HELP 

At each position in the received message, a character may be correct, deleted relative 
to the original message, or a substitution for another character.  We might also know 
that the chance that a character is dropped is higher than characters being substituted 
and that multiple, sequential, character losses are common. 

The message ETESEDEDEED arrives at the receiver and needs to be matched to one 
of the four candidate messages.  We need to determine the correspondence between 
the received message and the candidate messages that maximizes the chance of 
properly identifying the message.  Want to evaluate is the similarity of the received 
message to the candidate messages.  Our assumption is that the candidate message 
with the most similarity to our received message is most likely to be the message sent.  

One way to evaluate similarity is to consider all possible alignments of the received 
message and the candidate messages.  By using a system that rewards matches and 
penalizes mismatches and gaps, we can assign a score to each alignment.  Using the 
highest of those alignment scores, we find the maximum likelihood that the received 
message is related to each of the candidate messages.  The highest of all the alignment 
scores tells us which message is the most likely one sent.  This method has a very good 
chance of finding the best candidate message, but is computationally expensive 
because all possible alignments need to be evaluated.   

Another way to evaluate find most likely message sent is to assume that the received 
message must have some set of characters that identically match a set of characters in 
the original message.   The remainder of the received message should match to the 
source message by applying substitutions and gaps as needed.  In our example, notice 
that received message ends in “EED.”  There is one place in fourth message that EED 
matches exactly.  There are no double or triple character strings in the received 
message that exactly match any position in the first three candidate messages.  
Ignoring spaces, if we align “EED” in the received message to the fourth message we 
get an alignment that is easily explained by applying the error set: 

ENTERINGSAFEMODENEEDHELP 
E-TE----S—E---DEdEED---- 

where the lower case “d” in the received message indicates a substitution error and the 
“-“ indicates a character loss.  This second method is much faster and computationally 
cheaper than the first but also less sensitive because it is possible that a message 
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arrives that does not have two or more consecutive characters that match identically to 
any candidate messages.   

Still another means for evaluating similarity is to compute the frequency of certain 
character patterns in each candidate message and then compare those frequencies to 
the patterns in the received message.  For example, the pattern “EE” occurs once in the 
fourth message but not at all in the first three.  “EE” also occurs once in the received 
message.  This method is computationally inexpensive, but lacks sensitivity to the 
context of the characters.  

This simple example makes two key points.  First, there are often multiple ways to 
perform a similarity evaluation.  Each method has advantages and disadvantages in 
terms of accuracy and computational cost.  Second, it is not possible to know with 100% 
certainty whether any single method will find the right match.  In some cases, a 
combination of methods will give us higher confidence in an answer than any individual 
method.  Similarity comparisons provide evidence of sequence closeness only.  
Ultimately, investigators need to review the results and make final decisions based on 
their domain knowledge.   

Similarity and Biology 
Like messages from space, biological sequences undergo transformations that alter 
structure and meaning.  Transformations may be the result of evolutionary processes 
such as species-specific variations of a protein or may be the result of errors introduced 
in preparing or reading the composition of sequences.  Most biological similarity 
searches assume a simple error model.  In this model, independent processes may 
result in the insertion, deletion, or substitution of characters in the text string that 
represents the residues of a peptide or nucleotide molecule. 

Evolutionary mutation processes are strongly regulated by natural selection since 
unfavorable alterations eventually disappear.  Evolutionary mutations are limited in 
scope and occur at a predictable rate.  Like the limited set of spacecraft messages and 
transmission errors, restrictions on the form and rate of evolutionary mutations may be 
exploited in similarity comparison algorithms.   

Conversely, the transformation processes associated with preparing and reading 
sequences tend to be random along most of the sequence length.  In some situations, 
the transformation rate is higher at the sequence ends than in the middle of the 
sequence, but the nature of the transformations does not change.  This knowledge too 
may be exploited in similarity comparison algorithms. 

Why do biological similarity comparisons? 
Corresponding to the modes of biology sequence variation, there are two types of 
sequence assessment: homology evaluation and contextual analysis.  Although these 
evaluations have much in common, they are fundamentally asking different questions.   
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Homology evaluation looks for evidence that biological sequences are related but have 
been altered relative to each other by evolution.  Orthologs are related molecules that 
have been changed due to speciation while paralogs are replicated molecules in the 
same organism that have been altered through generations of independent mutation.  
Homology analyses require predetermine notions of which mutations are allowed and 
the rate at which they can be expected to occur.  These analyses therefore depend on a 
prior analysis of related sequences.  

Contextual analyses look for the common features among sequences without concern 
for whether the sequences have a common ancestor.  These comparisons determine 
whether sequences overlap or are contained within another sequences, for example.  
Contextual analyses are commonly part of the processing needed to join together many, 
small sequences into fewer, long, sequences.  Contextual comparison is also used to 
find vector contamination in sequences, evaluate primer candidates, do biochip design, 
and so forth.  These evaluations need to model relevant sequencing instrumentation 
and chemistry. 

In both types of analyses, an objective function is defined that endeavors to determine 
the best alignment of the sequences in question.  Consider two sequences: 
SEQUENCESEARCH and SEQUENCER.  A simple evaluation of these sequences 
assigns one sequence to the rows of a matrix and the other sequence to the columns.  
Placing an asterisk in each cell for which the row and column characters match and a 
blank where they do not creates a diagonal of asterisks as shown in Figure 1.   The 
longest diagonal in Figure 1 is the best alignment of the two sequences. 

 

 S E Q U E N C E R 
S *         
E  *   *   *  
Q   *       
U    *      
E  *   *   *  
N      *    
C       *   
E  *   *   *  
S *         
E  *   *   *  
A          
R         * 
C       *   
H          

Figure 1: Comparison of Two Sequences 
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The simple method of Figure 1 is the basis for a powerful similarity tool called a dot plot.  
Dot plots provide visual evidence of similarity and may be used for comparing very large 
sequences.  It is common to use more complex similarity comparisons because these 
enable computing statistical parameters associated with the probability that the 
sequences in question are not related.  Still, these more complex methods are 
fundamentally creating strings of aligned sequence just as the dot plot does.   

We next look into the details of homology and contextual similarity searches.  We also 
discuss complicating factors that are important in the proper selection of algorithms and 
the penalty/reward systems used for a particular investigation. 

Homology and similarity 
Evidence of homology is sought by using a similarity objective function and set of 
rewards and penalties that model evolution.  A comparison algorithm scores sequence 
similarity using the evolutionary model and also determines the likelihood that the score 
achieved resulted from randomly related sequences.   Evolutionary models used in 
sequence analyses are fairly simple and based on collections of sequences that are 
related to each other in function and years of separation.   

Consider creating an evolutionary model for transmembrane proteins that could be used 
to evaluate newly found proteins.  A common feature in these proteins is at least one 
transmembrane region comprising an α-helix stretch of between 21 and 26 hydrophobic 
amino acid residues.  While several organizations of these transmembrane regions 
occur, a common organization comprises seven regions connected in a serpentine.  
Human, mouse, rat, chicken, and bovine seven transmembrane (7TM) proteins have 
been found and sequenced.  These orthologous sequences are separated in time by no 
more than the point in history that these species diverged from a common ancestor.  To 
create a suitable evolutionary model for 7TM proteins, it suffices to create a multiple 
sequence alignment such that it is possible to determine what substitutions and gaps 
occur.   A portion of one such alignment is shown in Figure 2. 

5H1A_HUMAN/53-400  GNACVVAAIALERSLQ....NVANYLIGSLAVTDLMVSVLVLPMAALYQVL 

5H1B_HUMAN/66-369  SNAFVIATVYRTRKLH....TPANYLIASLAVTDLLVSILVMPISTMYTVT 

5H7_HUMAN/98-384   GNCLVVISVCFVKKLR....QPSNYLIVSLALADLSVAVAVMPFVSVTDLIG 

5HT1_DROME/179-507 GNVLVCIAVCMVRKLR....RPCNYLLVSLALSDLCVALLVMPMALLYEVL 

B1AR_HUMAN/75-377  GNVLVIVAIAKTPRLQ....TLTNLFIMSLASADLVMGLLVVPFGATIVVW 

DADR_HUMAN/40-331  GNTLVCAAVIRFRHLR...SKVTNFFVISLAVSDLLVAVLVMPWKAVAEIAG 

A1AD_HUMAN/113-402 GNLLVILSVACNRHLQ....TVTNYFIVNLAVADLLLSATVLPFSATMEVLG 

D2DR_BOVIN/51-427  GNVLVCMAVSREKALQ....TTTNYLIVSLAVADLLVATLVMPWVVYLEVVG 

HH2R_CANFA/35-288  GNVVVCLAVGLNRRLR....SLTNCFIVSLAITDLLLGLLVLPFSAFYQLS 

5H6_RAT/43-320     ANSLLIVLICTQPALR....NTSNFFLVSLFTSDLMVGLVVMPPAMLNALYG 

Figure 2: A portion of the multiple sequence alignment for 10 7TM proteins 
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Notice that the first residue is almost always a “G” but can be either an “S” or an “A.”   
The second character is always an “N,” and the next character can be “A,” “C,” “V,” or 
“L.”  The dots in the alignment indicate positions in which gaps are needed to properly 
align the sequences.  

There are several parameters that can be derived from the alignment in Figure 2.  One 
parameter is percent identity which is the number of residues that identically match in 
an alignment divided by the total number of residues in the alignment.  Since mutations 
occur at more or less a fixed rate, then any protein compared to a 7TM protein should 
have roughly the same percent identity as the sequences in Figure 2 have to each 
other.   

Other parameters that can be determined from Figure 2 are the frequency of 
substituting given characters for each other.  It is possible to derive an overall view of 
those frequencies and relate those to the frequencies of random substitutions.  This is 
the approach taken in the creation of the well-known scoring matrices such as BLOSUM 
and PAM.  It is also possible to evaluate position-dependent substitution frequencies 
and relate those to random substitutions.  This is the approach taken in hidden Markov 
models and profiles.   

Lastly, another parameter derived from Figure 2 is frequency and size of gaps.  This 
information may be used to create simple affine gap models (e.g., gap open and gap 
extension penalties) or more specific position-dependent gap models.   

Interestingly, percent identity might be higher in ortholgous sequences than in 
paralogous sequences.  For example, human and mouse diverged around 35 million 
years ago meaning that orthologous human and mouse proteins may differ only by the 
number of successful mutations that could occur in that time period.  Human and mouse 
orthologs therefore have approximately 90% identity to each other.  Conversely, there 
are paralogous human proteins that have orthologs in worm.   It is possible therefore 
that these human paralogs diverged as much as 600 million years ago.  Clearly these 
sequences will likely be less similar to each other than mouse and human orthologs.  
For this reason, it is often safer to use the most sensitive similarity algorithms when 
looking for paralogs than for ortholog investigations because it isn’t always possible to 
know the evolutionary distance of orthologs.   

When searching more distant homologs it is also advantageous to consider as many 
examples of the gene or protein as possible.  This allows for more leniency in the 
rewards and penalties where diversity isn’t important and more stringency where 
diversity must be restricted.  Techniques such as hidden Markov models and profiles, 
for example, are ideally suited for high sensitivity and specificity searches involving 
divergent homologies.  

A caution about similarity searching and homology to remember: high degrees of 
similarity do not assure homology but only provide one clue which when combined with 
other clues might suffice to confidently declare homology.  It is easy to show, for 
example, that small nucleotide strings such as promoter regions can have high degrees 
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of similarity to unrelated sequences.  Most similarity search tools include post-search 
analyses that use sequence length and other factors to correct scores for known 
statistical biases.  

Random transformations and similarity 
Investigations requiring tolerance of random transformations generally involve nucleic 
acid sequences.  Some investigations necessitate near-identity matching of relatively 
few residues, others require tolerance of moderate to high error rates over longer 
stretches.  Near-identity similarity searching is adequately performed with lower 
sensitivity algorithms.  In fact, in some situations regular expression searches are 
sufficiently accurate and fast.   More sensitive and potentially more computationally 
intensive algorithms are needed to tolerate complex error models. 

Each investigation has it’s own, unique error model that is unrelated to the species 
involved or evolution.  It is usual to define scoring systems that produce positive scores 
when two sequences share a minimum percent identity.  The minimum percent identity 
required to achieve a positive match score is calculated from the match and mismatch 
scores: 












+
−=

mismatchmatch
matchID 1*100%  

Table 1 lists representative match and mismatch scores and the associated minimum 
percent identity. 

Table 1: Match/Mismatch 
Scores & Minimum 

Percent Identity 
Match 
Score 

Mismatch 
Score 

% 
Identity 

1 -1 50.0 
1 -2 66.7 
1 -3 75.0 
1 -10 90.9 
1 -15 93.8 
1 -20 95.2 

 

To illustrate computing a similarity score based on percent identity, we use the +1/-1 
matrix to score the alignment: 

A A C C T T G G G A G A C C G A T 
A A T C C C G G G A G A C C T A T 
+ + - + - - + + + + + + + + - + + = 13 – 4 = 9 
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Gap penalties are usually selected relative to the match/mismatch scores.  It is common 
to set the gap open penalty between 0.5 and 5 times the match score and the gap 
extension penalty to be between 0.1 and 1 times the gap open penalty. 

Local and global similarity 
Sequence similarity may be evaluated globally or locally depending on the needs of an 
investigation.  Global similarity requires consideration of the total lengths of the 
sequences under study while local similarity may consider only portions of sequences 
that have the best matches.  Global alignments are used to find conserved regions of 
sequences that are already known to be homologous, for example.  Local similarity is 
typically used in contextual investigations and in determining whether unannotated 
sequences might be homologous to annotated sequences.    

Paracel’s Similarity Search Algorithms 
Authors have traditionally classified algorithms on the basis of the type of inputs used, 
the manner in which rewards and penalties are accessed, algorithm rigor, complexity, 
and so forth.  We take a no less controversial, but different approach by classifying 
algorithms based on their utility in biological similarity searching.  Detailed discussions 
of each algorithm are provided in the next section. 

Figure 3 is a conceptual representation of the similarity search space based on the 
expected percent identity of the sequences being compared and the type of search 
being performed.  The y axis in Figure 3 is a search type continuum starting with 
contextual analysis at the bottom and moving upward to closely related homology 
searching and distantly related homology searching.  Equivalently, the x axis in Figure 3 
is a continuum starting with highly similar sequences on the left and more dissimilar 
sequences on the right.  Algorithms shown toward the bottom, left in Figure 3 tend to be 
simpler and faster than algorithms shown toward the upper right.  The BLAST and 
Smith Waterman variants overlap each other and span a wide range of applicability.  
Profile variants tend to be best used in low identity, homology applications while regular 
expression searches are best used in high identity, contextual evaluations.  BLAST and 
Smith Waterman are similar in that these both use position-independent residue 
substitution rewards and penalties.  Conversely, profiles can have different rewards and 
penalties at each character position as a function of conserved and non-conserved 
residues. 
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High % ID                   Low % ID 

BLAST
Variants 

Smith Waterman 
Variants 

Profile 
Variants 

Distantly 
Related 

Homologs 

Closely 
Related 

Homologs 

Contextual 

Regular
Expressions

 

Figure 3: Search domain classification for various algorithms. 

Although there are far too many applications for similarity searching than can be listed, 
Table 2 provides guidance on the percent identity and similarity type typical of a few 
common similarity investigations.  

 

Table 2: Parameterization of Common Similarity Investigations 
Investigation % ID Type Comments 

Gene finding using 
ESTs High Contextual and 

homology  

Gene structure 
prediction using 

cDNA or proteins 
High Contextual and 

homology 
Intron tolerance 

required 

Annotation High to low Homology  

Primer design High Contextual 
Generally want 

exact matches, no 
gaps. 

Overlap detection High Contextual 
Generally want 
nearly identical 

matches 

Vector 
contamination High Contextual 

Generally want 
nearly identical 

matches 
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Table 2: Parameterization of Common Similarity Investigations 
Investigation % ID Type Comments 
Simple repeats Moderate to high Contextual  
Ancient repeats Moderate to low Homology  

 

Paracel accelerates BLAST, Smith Waterman, and profile similarity search variants.  
Tables 3-5 enumerate these variants and summarizes their usage.  Referring back to 
Figure 3, regular expression searches are performed by PHI-BLAST which is listed in 
Table 3 as one of the BLAST variants.  It is also possible to create profiles from regular 
expressions and search these using a profile search variant.  In some cases, regular 
expression searches are efficiently performed by Perl or similar scripts. 

 

Table 3: BLAST Algorithms 
Algorithm Query Type Database Type Purpose 

BLASTN Nucleotide Nucleotide 

Moderate 
sensitivity, high 

specificity homology 
and contextual 

searching 

BLASTP Peptide Peptide 

Moderate 
sensitivity, high 

specificity homology 
searching 

BLASTX Nucleotide Peptide 

Moderate 
sensitivity, high 

specificity homology 
searching; six frame 
translation of query 

sequences 

TBLASTN Peptide Nucleotide 

Moderate 
sensitivity, high 

specificity homology 
searching; six frame 

translation of 
database 

sequences 

TBLASTX Nucleotide Nucleotide 

Moderate 
sensitivity, high 

specificity homology 
searching; six frame 

each search of 
query and database

PSI-BLAST Peptide Peptide Moderate to high 
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Table 3: BLAST Algorithms 
Algorithm Query Type Database Type Purpose 

sensitivity, high 
specificity homology 

searching 

PHI-BLAST Regular Expression 
& Peptide Peptide 

Low to moderate 
sensitivity and 

specificity homology 
searching 

MEGABLAST Nucleotide Nucleotide 

Low to moderate 
sensitivity and 

specificity 
contextual 
searching 

 

Table 4: Smith Waterman Algorithms 
Algorithm Query Type Database Type Purpose 

Smith Waterman 
Nucleotide (linear 

gap penalties) 
Nucleotide Nucleotide 

High sensitivity and 
specificity 
contextual 
searching. 

Smith Waterman 
Nucleotide (affine 

gap penalties) 
Nucleotide Nucleotide 

High sensitivity and 
specificity homology 

searching. 

Smith Waterman 
Nucleotide (double 

affine gap penalties) 

Coding DNA or 
RNA Genomic DNA 

High sensitivity and 
specificity homology 

searching with 
intron tolerance. 

Smith Waterman 
Peptide (affine gap 

penalties) 
Peptide Peptide 

High sensitivity and 
specificity homology 

searching. 

Smith Waterman 
Peptide (double 

affine gap penalties) 
Peptide Peptide 

High sensitivity and 
specificity homology 
searching with long 

gap tolerance. 

Smith Waterman 
frame search (affine 

gap) 
Nucleotide Peptide 

High sensitivity and 
specificity homology 

searching; 
frameshift tolerant. 

Smith Waterman 
reverse frame 

search (affine gap) 
Peptide Nucleotide 

High sensitivity and 
specificity homology 
searching of coding 
regions; frameshift 

tolerant. 
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Table 4: Smith Waterman Algorithms 
Algorithm Query Type Database Type Purpose 

Smith Waterman 
reverse frame 
search (double 

affine gap) 

Peptide Genomic DNA 

High sensitivity and 
specificity homology 
searching of coding 
regions; frameshift 
and intron tolerant. 

 

Table 5: Profile Algorithms 
Algorithm Query Type Database Type Purpose 

Gribskov profile 
search Protein profile Peptide 

High sensitivity, 
specificity distant 

homology 
searching. 

Gribskov profile 
search Nucleotide profile Nucleotide 

High sensitivity, 
specificity distant 

homology 
searching. 

Gribskov profile 
frame search Protein profile Nucleotide 

High sensitivity, 
specificity distant 

homology searching 
of coding regions. 

Hidden Markov 
Model Protein profile Peptide 

High sensitivity, 
specificity distant 

homology 
searching. 

Hidden Markov 
Model Nucleotide profile Nucleotide 

High sensitivity, 
specificity distant 

homology 
searching. 

Hidden Markov 
Frame search Protein profile Nucleotide 

High sensitivity, 
specificity distant 

homology searching 
of coding regions, 
frameshift tolerant. 

Hidden Markov 
Frame search 

(double affine gap) 
Protein profile Genomic DNA 

High sensitivity, 
specificity distant 

homology searching 
of coding regions, 

frameshift and 
intron tolerant. 
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Table 5: Profile Algorithms 
Algorithm Query Type Database Type Purpose 

GeneWise Protein profile or 
peptide Genomic DNA 

High sensitivity, 
specificity distant 

homology searching 
of coding regions, 

frameshift and 
intron tolerant. 

 

 

BLAST variants 
Description 
Basic Local Alignment Search Tool (BLAST) nucleotide, peptide and frame algorithms 
find multiple high scoring local similarities among sequences having moderate to high 
similarity.  Underlying the BLAST heuristic is the idea that all true matches will consist of 
short stretches of identical or near-identical matches.  BLAST initially extends these 
seed matches outward as far as possible without introducing gaps.  The ungapped 
alignments are then combined using dynamic programming to form the final, gapped 
alignments.  BLAST’s dependence on finding short, near identity matches however, 
reduces it’s sensitivity when many short gaps occur. 

Usage 
BLAST is a fast, general purpose similarity search tool that may be used in contextual 
and homology analyses.  BLAST characteristically has good sensitivity and very good 
specificity meaning that it almost always finds true matches and virtually always does 
not report false positives.  An important feature of BLAST is it’s ability to report multiple 
local alignments between sequences. This feature allows an investigator to look for 
repetitive elements, domain ordering, evidence of gene transposition, and so forth. 

BLASTN 
BLASTN compares nucleic acid sequences to each other.  BLASTN uses one match 
score and one mismatch score for all characters as well as an affine gap model.  The 
default seed word size is 11 characters so sequences under investigation must be fairly 
similar in order for BLASTN to report any hits. 

BLASTP 
BLASTP is the protein equivalent of BLASTN.  BLASTP permits the use of a limited 
number of evolution-based scoring matrices such as PAM and BLOSUM along with a 
limited set affine gap parameters.  The default seed word size is 3 for BLASTP which 
means that BLASTP searches will run slower than BLASTN but have the advantage of 
allowing more diversity in the sequences under study.   
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BLASTX 
BLASTX compares nucleic acid coding sequences to protein databases.  The algorithm 
begins by translating the queries into six proteins corresponding to a three-frame 
forward translation and a three-frame reverse-compliment translation.  The six proteins 
are then searched against the protein data using the BLASTP algorithm.  Results are 
linked to the frame but there is no frame-to-frame linkage. 

TBLASTN 
TBLASTN compares protein queries to nucleic acid genomic or coding data.  Nucleic 
acid data are converted into six proteins as described for BLASTX and then  BLASTP is 
executed.  As with BLASTX comparisons, TBLASTN reports results linked to the protein 
frame. 

TBLASTX 
TBLASTX compares nucleic acid coding sequences to other nucleic acid coding 
sequences through translated proteins.  The query and data sequences are each 
converted into six protein frames which are then searched using BLASTP and the 
results are linked to the query and database frames.  This search is particularly useful 
when nucleic acid sequences are too divergent for BLASTN to report hits even though 
those sequences code for similar proteins. 

PSI-BLAST 
Position specific iterative BLAST (PSI-BLAST) initially creates a profile from the results 
of a BLASTP search.  Results above a threshold are aligned to each other and the 
residue substitution frequencies are calculated at each character position.  Highly 
conserved positions contribute to higher match rewards and mismatch penalties than 
weakly conserved positions.  The profile is used as the input to the next iteration and 
the returned results above a threshold are again multiply aligned and another profile 
computed.  PSI-BLAST increases search sensitivity but care must be taken when 
selecting search results at each iteration to prevent specificity degradation.  PSI-BLAST 
is useful in low to moderate homology evaluations. 

PHI-BLAST 
PHI-BLAST (Pattern-Hit Initiated BLAST) finds sequences that contain an occurrence of 
a regular expression that are also homologous to another sequence in the region(s) 
near the regular expression.  In many cases, protein domains, for example, can be 
represented by regular expressions.  The advantage of doing regular expression 
searches is that they are computationally inexpensive and easy to implement.  The 
disadvantage of regular expression searches is that by themselves are not usually 
sufficiently specific to remove random matches.  PHI-BLAST improves the specificity of 
regular expression searches. 

MEGABLAST 
MEGABLAST is used for evaluations of highly similar, large nucleotide sequence sets.  
MEGABLAST will combine smaller queries internally to reduce execution time, however, 
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the results obtained by combining queries is different than if the queries were not 
combined.   

Smith Waterman variants 
Usage 
The Smith Waterman evaluation finds an optimal, local alignment of nucleotide or 
peptide sequences and is typically used when low to moderate sequence identity is 
expected.  Alignments are optimal because the Smith Waterman algorithm considers all 
possible ways that two sequences can be matched up and reports the one having the 
best score.   Paracel supports three gap penalty models corresponding to randomly 
introduced gaps, evolution-induced gaps, and introns.  Additionally, like BLAST, 
Paracel’s implementation of Smith Waterman permits reporting multiple high scoring 
segments of an alignment. 

Sensitivity 
Although the BLAST algorithms are similar to Smith Waterman, there are three 
significant differences that make Paracel’s Smith Waterman more sensitive: 

1. The BLAST algorithm begins by finding short regions of exact match between 
pairs of sequences.  These seed regions are then extended, without gaps until 
the extension causes the score to drop below a threshold.  Extended regions are 
then joined with gaps through a dynamic program.  The effectiveness of a BLAST 
search is heavily dependent on the size of the initial seed region.  Smaller 
regions produce better results because they are less likely to miss a true 
alignment but the computations are very expensive.  On the other hand, longer 
initial word sizes make for faster searches but the results are not as good.  The 
more evolutionary distance there is between two sequences, the greater the 
chance that BLAST will miss a real hit.  Smith Waterman, by contrast, examines 
all alignments and reports an alignment having the highest score.  This assures 
that an optimal alignment (there may be more than one) is always reported. 

2. In seed processing, BLAST randomly substitutes one of the nucleic acids for “N” 
in DNA sequence searches.  Many sequences such as genomic scaffolds or 
sequences masked by low-complexity filtering, can contain long strings of “N.”  
By randomly substituting nucleic acids for “N,” BLAST may fail to create a seed 
and therefore miss a hit.  Paracel’s Smith Waterman algorithm does not need to 
make this substitution because it uses explicitly specified scoring matrices.  The 
reward for matches with “N” may be explicitly specified to represent the biology, 
chemistry, or quality of the sequences involved. 

3. In DNA searches, BLAST provides a match and mismatch score parameter that 
is applied to all nucleic acids.  This model is appropriate for evaluating 
differences due to sequencing error in which all modifications are equally likely, 
i.e., in contextual evaluations.  Evaluating mismatches due to evolution requires 
more complicated scoring models that take into account actual differences 
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between related sequences.  This leads to matrices that may penalize certain 
substitutions differently than others, and additionally, may be asymmetric to 
penalize changes in one direction more heavily than another.  Because Paracel’s 
Smith Waterman implementation uses explicitly specified substitution matrices 
for both DNA and protein searches, users can select the scoring matrix that best 
models the situation. 

Gap options 
Paracel’s Smith Waterman algorithms support three gap penalty options: 

1. Linear: the penalty for starting a gap is the same as the per character penalty for 
extending a gap.  Linear gap penalties are most appropriate when modeling 
sequence variations due to random processes rather than evolutionary 
processes. 

2. Affine: it is assumed that starting a gap is a more important event than extending 
a gap.  In an affine gap model the open penalty is higher than the extension 
penalty.  Affine gap penalties are typically used to model evolutionary variations. 

3. Double affine: it is assumed that sequencing errors or minor biological variations 
can only reasonably account for gaps of a certain size.  Gaps longer than this 
size tend to represent major alterations such as the introns that separate coding 
regions of a gene or extensions of unessential structures such as loops in some 
proteins.  A double affine gap model enables penalizing short gaps at a different 
rate than longer gaps. 

Double affine consists of two sets of gap open (go) and gap extension (ge) 
penalties and at any gap length, the algorithm chooses the smaller of the 
penalties.  This means that the line defined by the first gap open and first gap 

extension must intersect the line defined by the second gap open and second 
gap extension: 

 

A typical cross-over length for DNA sequences is 3 to 6 nucleic acids while 2 or 3 
amino acids is typical for proteins. 

The power of double affine is shown in the partial alignment below.  The 
alignment compares a cDNA sequence from Unigene to genomic data.  Notice 
the long gap starts with a GT at the 5’ end and terminates in CAG at the 3’ end 
which defines the classical intron donor and acceptor sites.  A BLAST search 
might find the two pieces of this alignment if these had sufficiently high score but 
would be unable to correctly show the gene structure. 
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Query:     3 ATGGCGGCTGGAGGCGATCATGGTTCGCCCGACAGCTACCGCTCACCTCTTGCCTCCCGC 62 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 48787 ATGGCGGCTGGAGGCGATCATGGTTCGCCCGACAGCTACCGCTCACCTCTTGCCTCCCGC 48846 

Query:    63 TATGCCAGCCCGGAGATGTGCTTCGTGTTTAGCGACAGGTATAAATTCCGGACATGGCGG 122 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 48847 TATGCCAGCCCGGAGATGTGCTTCGTGTTTAGCGACAGGTATAAATTCCGGACATGGCGG 48906 

Query:   123 CAGCTGTGGCTGTGGCTGGCGGAGGCCGAGCAG--------------------------- 156 
             |||||||||||||||||||||||||||||||||                            
Sbjct: 48907 CAGCTGTGGCTGTGGCTGGCGGAGGCCGAGCAGGTAACGGATCCCGGGCTGAGGGGCTGG 48966 

Query:   156 ------------------------------------------------------------ 156 
Sbjct: 48967 GCCGGGAGGGACGGGCCCGCCCCAGCACGTGCCGGGCTCTGTTCCGGGCTGGGCTTAGCC 49026 

Query:   156 ------------------------------------------------------------ 156 

Query:   156 ------------------------------------------------------------ 156 
                                                                          
Sbjct: 51967 TGCTAACATGAATCAGTTTTTTTTCCTTGGTGTCACTTCATTCAAATAACTGTGACACTG 52026 

Query:   156 ---------------------------------ACATTGGGTTTGCCTATCACAGATGAA 182 
                                              ||||||||||||||||||||||||||| 
Sbjct: 52027 AGACTATTTTATTTTATTTTGCCTATTCTGCAGACATTGGGTTTGCCTATCACAGATGAA 52086 

Query:   183 CAAATCCAGGAGATGAAATCAAACCTGGAGAACATA-GACTTCAAGATGGCAGCTGAGGA 241 
             |||||||||||||||||||||||||||||||||||  ||||||||||||||||||||||| 
Sbjct: 52087 CAAATCCAGGAGATGAAATCAAACCTGGAGAACAT-CGACTTCAAGATGGCAGCTGAGGA 52145 

Query:   242 AGAGAAACGTTTACGACATGATGTGATGGCTCACGTGCACACATTTGGCCACTGCTGTCC 301 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 52146 AGAGAAACGTTTACGACATGATGTGATGGCTCACGTGCACACATTTGGCCACTGCTGTCC 52205 

Query:   302 AAAAGCTGCAGGCATTATTCACCTTGGTGCTACTTCTTGCTATGTTGGAGACAATACTG- 361 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Sbjct: 52206 AAAAGCTGCAGGCATTATTCACCTTGGTGCTACTTCTTGCTATGTTGGAGACAATACTGT 52265 

Smith Waterman nucleotide and peptide variants 
SWN 
Smith Waterman nucleotide (SWN) compares nucleic acid sequences.   Paracel’s 
implementation allows the user to specify an arbitrary match/mismatch matrix so that 
SWN may be used for both contextual and evolutionary comparisons.  The matrix need 
not be symmetric to permit modeling directional substitutions.    

SWP 
Smith Waterman peptide (SWP) compares peptide sequences.  Generally SWP is used 
for homology analysis and one of the evolutionary matrices, e.g., BLOSUM, is used.  
Unlike BLASTP, SWP does not restrict the value of permitted gap penalties. 

Smith Waterman frame variants 
Paracel accelerates three per-character, frameshift-tolerant, Smith Waterman style 
algorithms.  In each of these algorithms, at each character position the score is 
determined by evaluating whether to stay in the current reading frame and accepting a 
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match/mismatch score or an amino acid insertion/deletion (indel) or to jump to another 
reading frame and incur a frameshift penalty along with a match/mismatch score.  This 
contrasts to the equivalent BLAST search types in which six static protein translations 
corresponding to three forward frames and three reverse frames are used in the 
comparison.  Paracel’s frame search variants tolerate frameshifts that are most often 
the result of sequencing errors and produce longer meaningful alignments then can be 
produced by BLAST.   

SWX 
Paracel’s frame search compares nucleic acid query sequences to protein data.  This 
search is used to find putative homologous proteins for newly sequenced ESTs, RNAs, 
and cDNAs.  An independently adjustable frameshift penalty may be set to reflect the 
overall quality of the nucleic acid sequences.  Additionally, this algorithm uses protein 
scoring matrices that can be chosen to reflect the evolutionary distance between the 
nucleic acid sequences and the organisms represented in the protein database.  An 
affine gap penalty is generally used to model evolutionary variations. 

TSWN 
Searching a peptide sequence against nucleic acid coding regions is performed with 
Paracel’s reverse frame algorithm.  This comparison allows a user to annotate unknown 
peptide sequences by comparing them to databases of nucleic acid coding regions or to 
locate putative genes with known proteins.  An independently adjustable frameshift 
penalty is available to model the possibility that a sequencing error in the nucleic acid 
data has occurred.  Protein scoring matrices are used along with affine gap penalties to 
model evolutionary variations.  Double affine gap penalties may be used to evaluate 
gene structure. 

TSWX 
Lastly, Paracel offers a double frame nucleic acid to nucleic acid comparison at the 
protein level.  This search allows for frameshifts at each character of both nucleic acid 
sequences.  This search is useful for comparing homologous coding regions that are 
sufficiently separated by evolution to have differing codon usage.   

Profile variants 
A profile is a mathematical summary of the alignment of multiple, related nucleic acid or 
protein sequences.  A profile is built by scanning down each column of the multiple 
sequence alignment to determine the frequency of each character in the column.  These 
position-dependent character frequencies are normalized by the frequency of each 
character in the multiple alignment to produce an odds ratio for the substitution of one 
character for another. 

Profile searches enable a comparison of database sequences with the family 
represented by the profile.  The position-specific nature of these searches facilitate a 
comparison of the critical features characteristic of the family.  For example, a multiple 
alignment of a protein or nucleotide family will have highly conserved regions 
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interspersed with non-conserved regions.  The profile gives high scores to matches of a 
query within the conserved areas and correspondingly very low scores for mismatches.  
In non-conserved regions match and mismatch scores have lower positive or negative 
impact to reflect the reduced contribution of those regions to the function or structure of 
the protein or nucleic acid sequence. 

Gribskov profile and profile frame 
Paracel’s profile function is implemented in the GeneMatcher as a position-specific 
Smith Waterman.  This means that each position of a query will have it’s own set of 
scoring parameters as determined by the content of the profile.  Paracel’s profile search 
takes protein or nucleic acid profile inputs in GCG format and compares these to a 
protein or nucleic acid databases respectively.  Results may be reported either as a 
search of database entries by the profiles or as a search of profiles by the database 
entries. 

The profile frame search variant enables searching protein profiles against nucleic acid 
coding regions using a per-character frameshift tolerant algorithm.  This algorithm is 
essentially a position-specific version of Paracel’s TSWN algorithm discussed 
previously.   

Hidden Markov Model and Hidden Markov Model Frame Searches 
A hidden Markov Model (HMM) is a profile trained from a multiple sequence alignment 
in a manner analogous to the profile discussed above.   While profiles assume a 
relatively simple model of evolution, HMMs allow for more options which often enhances 
the sensitivity searches.  In particular, at each position in an alignment, HMMs have an 
explicitly computed probability associated with starting or continuing a gap.  Additionally, 
at each insertions point, an HMM explicitly models the probabilities associated with 
adding specific amino acids.   HMMs are best used for homology searching of 
evolutionary distant sequences. 

Paracel’s HMM search currently accepts PFAM, Bucher’s Generalized Profile, and SAM 
input formats.  Nucleic acid models and protein models may be used to search 
respectively against nucleic acid or protein databases. 

Paracel’s HMM frame algorithm is analogous to the profile frame algorithm in that it 
allows a search of nucleic acid sequences by protein HMMs.  This search also uses a 
per-character frameshift tolerant algorithm.  HMM frame searches are used to search 
coding nucleotides or by using a double affine option, genomic data. 

GeneWise 
GeneWise is an intron and frameshift tolerant search of genomic data by proteins or 
protein HMMs.  GeneWise facilitates determination of gene structures by expanding the 
HMM concept to include transitions to and from intron states.  This means that during 
the search process, the algorithm evaluates whether the best score is achieved by 
staying in a given reading frame and accepting a match/mismatch score, changing 
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reading frames and incur a frameshift penalty, accepting an amino acid indel, starting 
an intron if one hasn’t been started, or by exiting and intron if one has been started.  

Paracel’s genewise search uses a GU (GT) pattern at the 5’ end to signal the possible 
beginning of an intron and an AG pattern at the 3’ end to signal the possible end of an 
intron.  These patterns do not force intron start and end but rather enable the algorithm 
to consider whether a start or end produces the best score result.  

GeneWise is similar to Paracel’s HMM frame search with the additional benefit of 
tolerating long introns.  It is also similar to Paracel’s double affine Smith Waterman 
search with the additional benefit of using protein HMMs to better model the important 
features of a protein family. 


