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C O V E R  F E A T U R E

API-Level Attacks
on Embedded
Systems

A
whole new family of attacks has recently
been discovered on the application pro-
gramming interfaces (APIs) used by secu-
rity processors. These extend and generalize
a number of attacks already known on

authentication protocols. The basic idea is that by pre-
senting valid commands to the security processor, but
in an unexpected sequence, it is possible to obtain
results that break the security policy its designer envi-
sioned. Our attacks are economically important, as
security processors are used to support a wide range
of services, from automatic teller machines through
pay-TV to prepayment utility metering. Designing
APIs that resist them is difficult, as a typical security
processor needs several dozen commands in order to
service a number of external and internal protocols.
Our attacks are also scientifically interesting; pre-
venting them may become an important new appli-
cation area for formal methods and design verification
tools generally.

A large and growing number of embedded systems
use security processors to distribute control, billing,
and metering among devices with intermittent or
restricted online connectivity. The more obvious exam-
ples include 

• smart cards used to personalize mobile phones
and to manage subscribers to satellite-TV services; 

• microcontrollers used as value counters in postal
meters and vending machines to prevent fraud by
maintenance staff; and

• cryptographic processors used in networks of
automatic teller machines (ATMs) and point-of-

sale equipment to encipher customers’ personal
identification numbers (PINs).

Behind these visible applications there may also be sev-
eral layers of back-end systems that must prevent fraud
by distributors, network operators, and other partic-
ipants in the value chain.

A good example is the prepayment electricity meters
used to sell electric power to students in residence halls
and to poorer customers in general.1 They are typical
of the many systems that once used coin-operated vend-
ing, but have now switched to tokens such as magnetic
cards or smart cards. The principle of operation is sim-
ple. The meter will supply a certain quantity of energy
on receipt of an encrypted instruction. The instructions
are created in a token vending machine, which knows
the secret key of each local meter. One design goal is
to limit the loss if a vending machine is stolen or mis-
used; this lets the supplier entrust vending machines to
marginal economic players, ranging from student
unions to third-world village stores.

The common solution is to build the vending
machine around a tamper-resistant cryptographic
processor, which contains the meter keys and a value
counter. The value counter enforces a credit limit
whereby the vending machine stops working upon
reaching that limit and must be reloaded. Reloading
requires an encrypted message from a controller one
step higher up the chain of control, and is typically
done by the distributor after payment by the machine
operator. If anyone attempts to tamper with the value
counter, the cryptographic keys are erased and the
vending machine will no longer work. Without these

We have recently discovered a whole new family of attacks on APIs used
by security processors. These attacks are economically important, as
security processors are used to support a wide range of services—from
ATMs to prepayment utility metering—but designing APIs that resist them
is difficult.

Mike Bond 
Ross
Anderson
Cambridge
University



68 Computer

controls, the theft of a vending machine might
compel the distributor to re-key all the meters
within its vend area.

A similar arrangement can be found in net-
works of ATMs and point-of-sale (POS)
devices: A tamper-resistant processor called a
security module contains the cryptographic
keys used for communicating with terminal
equipment and also for verifying PINs in the
incoming transactions. 

No matter what the application of the secu-
rity processor, its API sits on the boundary
between trusted and untrusted environments.
It is the point where cryptography, protocols,

access controls, and operating procedures must all
come together to enforce its security policy. Thus,
understanding the threats to these APIs is essential.

ATTACKS ON CRYPTOGRAPHIC APIS
Our research into attacks on cryptographic APIs

started with an examination of ways in which bank-
ing security modules can be manipulated2 and pro-
ceeded to a study of attacks on more general-purpose
tamper-resistant processors.3 Recently, we have also
found attacks on security processors used in utility
prepayment applications.

Explaining these attacks in historical order is con-
venient, but the attacks on both old and new systems
are interesting for a number of general reasons:

• First, there has been a good deal of work on ver-
ifying crypto protocols, which are typically sets
of three to five transactions exchanged by two
principals. But in many real systems, these tech-
niques must be extended to the dozens or even
hundreds of transactions supported by the actual
cryptographic service provider (whether smart
card, cryptoprocessor, or software library).

• Second, designing a secure and robust API is a
fundamental challenge, which has until recently
been overlooked by both formal methods and
software engineering researchers—the bulk of
whose work has focused on avoiding errors in
the API implementation, and verifying its corre-
spondence to its specification. Thus, API design
could be the next basic research challenge.

• Third, many of the things that go wrong with
secure systems happen at an interface between
two or more kinds of protection mechanism.
Crypto protocol failures tangle up the boundary
between cryptography and access control; oper-
ating system security failures (and limitations)
mean that applications often cannot exploit the
protection features a processor supports. In the
same way, design flaws in crypto APIs occur at
the even more complex interface between crypto,

security protocols, operating system access con-
trols, and specialist services such as value coun-
ters.

• Finally, a tamper-resistant device can simply be
considered as a high-quality implementation of
an object that can only be invoked using its offi-
cial methods and whose internal variables remain
inaccessible. Given the popularity of the object-
oriented programming model, there may be more
general lessons to be learned for robust pro-
gramming.

Thus, learning how to design security APIs prop-
erly is important, especially if we are to realize the
potential of systems that distribute trust across a het-
erogeneous set of processes. It may thus be funda-
mental for large-scale embedded systems. Rectifying
mistakes afterwards can be horrendously expensive.
Once a system is as well entrenched as ATMs are—
with over 600,000 devices from more than a dozen
vendors operated worldwide by perhaps 20,000
banks—changes may be next to impossible. Even in
2001, there is still a lot of fielded technology from the
late 1970s, and systems being designed today will
remain in use for decades to come.

EARLY SYSTEMS
ATMs were the “killer application” that got cryp-

tography into wide use outside military and diplo-
matic circles. Following card forgery attacks on early
machines in the late 1960s and early 1970s, IBM
developed a system in which the customer’s PIN was
computed by encrypting their account number using
a key called the PIN derivation key. This system was
introduced in 1977 with the launch of the 3614 ATM
series.4-6

IBM 3848 cryptoprocessor
At the host end, vendors gave some thought to the

problem of protecting cryptographic keys against the
bank’s own systems staff. Merely embedding the
cryptography in an application and protecting it with
access control mechanisms was felt to be insufficient,
as many programming and operations staff would be
able to get at the key. So vendors started building
cryptoprocessors that kept keys in tamper-resistant
hardware and limited what could be done with them.
The IBM 3848, for example, supported encrypted
communications between a mainframe and a termi-
nal without letting the mainframe programmers get
at the key material.2,7 It was also adapted to control
ATM networks and evolved into the IBM 4758 prod-
uct.

The 3848 and similar devices contained tamper-resis-
tant memory, implemented as battery-powered RAM
that had its power supply interrupted whenever the
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equipment was opened. This secure memory was not
large enough to hold all the crypto keys that an appli-
cation might use, and in any case had to be reloaded
by hand after maintenance. Therefore, the secure RAM
retained a small number of master keys, under which
working keys were encrypted for storage outside the
device. For example, the 3848 had three master keys.
A working key encrypted under the first master key
could be used to encrypt or decrypt data without restric-
tion, whereas working keys encrypted under the other
two were limited to local and remote use respectively. 

Visa Security Module
First-generation devices such as the 3848 gave way

in the mid-1980s to second-generation products
including the Visa Security Module (VSM), which was
widely adopted. The VSM is a cryptoprocessor whose
function is to protect PINs transmitted over bank
ATM networks. It was designed in the early 1980s and
has many clones—including a software-compatible
product analyzed during our research.

Visa’s goal in promoting this technology was to per-
suade member banks to hook up their ATMs to Visa’s
network so that a customer of one member bank could
get cash from an ATM owned by another member. To
do this, Visa had to make it harder for any of its mem-
ber banks to lose money as a result of the dishonesty
or negligence of someone at another bank. One goal
was that no single employee of any bank in the net-
work should learn the clear value of any customer’s
PIN, but if PINs in transit to the verifying bank were
simply managed in the software running on the banks’
mainframes, system programmers could learn the PIN
of any customer who passed a transaction through
their bank. A programmer might then forge a card; or
a customer could successfully defraud the bank by
falsely disputing a transaction and claiming that some
bank insider must be responsible. So the cryptographic
systems used to compute and verify PINs had to sup-
port a policy of shared control.5,6

ATM network designers implemented this policy
by having each node in the system contain an
approved cryptographic device to protect the cus-
tomer PINs in transit and setting up key material
under dual control between nodes. The PINs were
generated on printers attached physically to the secu-
rity modules and mailed out separately from the ATM
cards. Key shares for both ATM and interbank key
setup were printed on the same sort of tamper-evident
envelope stock used for PIN issue. 

In the case of a link between a bank and an ATM,
the bank’s central security module would generate two
or more key shares, to be carried by separate people
to each ATM when it was initially brought online.
These were combined together by bitwise exclusive-or
(XOR) to create a terminal master key conventionally

known as KMT; subsequent encryption keys
would then be sent to the device encrypted
under this master key. Similarly, participating
banks set up interbank keys by hand-carrying
three shares from one bank’s security module
to the other’s.

Thus, most bank security modules had a
transaction to generate a key share and print
out its clear value on an attached security
printer. It also returned this value to the calling
program, encrypted under a master key (KM)
that was kept in the tamper-resistant hardware:

Host   → VSM : “Generate Key Share”
VSM  → Printer : KMTi

VSM  → Host : {KMTi}KM

The VSM had another transaction that combined two
of the shares to produce a terminal key:

Host  → VSM : “Combine Keys”, {KMT1}KM,  
{KMT2}KM

VSM → Host  : {KMT1 ⊕ KMT2}KM

To generate a terminal master key, a programmer
would use the first of these transactions twice followed
by the second, giving KMT = KMT1 ⊕ KMT2. The
host program would use this version to talk to the
ATM, while the ATM created a KMT directly when
the two shares were entered manually.

Known-key attack 
The protocol failure is that the programmer can

take any old encrypted key and supply it twice in the
second transaction, resulting in a known terminal key
(the key of all zeroes, as the key is XORed with itself):

Host → VSM : “Combine Keys”, {KMT1}KM, 
{KMT1}KM

VSM → Host : {KMT1 ⊕ KMT1}KM

= {0}KM

There are now several ways in which an exploit can
be implemented. One of the simplest uses a transac-
tion that lets a programmer encrypt the PIN key under
a terminal master key so that an ATM can verify cus-
tomer PINs while the network is down. In this attack,
the programmer obtains the PIN key encrypted under
the all-zero key and decrypts it using his own com-
puter. This enables him to obtain every customer’s PIN.

Two-time type attack 
While the above attack was found by inspection,

we found the following attack using formal meth-
ods—by writing a program that mapped the possible
key and data transformations between different key
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types, computing the transitive closure under
these, and scanning the composite operations
for undesirable properties.

Like the 3848, the VSM enforces a type sys-
tem on working keys. An interbank master key
can only do certain transactions, which are dif-
ferent from those permitted for a terminal mas-
ter key. As in the 3848, the VSM enforces this
policy by having separate master keys to
encrypt separate key types.

The VSM has nine key types rather than
the 3848’s three, but these are still not enough
to express the syntax of the underlying appli-
cation. For example, terminal master keys
and PIN derivation keys are treated as the
same type.

Reusing a key type can be as dangerous as reusing
a key in a one-time cryptosystem. Just as the Soviet
reuse of key material during World War II led to what
Bob Morris beautifully describes as the “two-time
pad,” so reusing the terminal master key type for PIN
generation keys makes it into a “two-time type” that
opens up another neat attack. 

One use of the terminal master key is to protect the
transmission of a terminal communications key (KC)
to an ATM from the host VSM. This type of key is
used to compute MACs (message authentication
codes) on messages. As the message cleartext is
assumed to be freely available anyway, there are no
restrictions on the use of a KC for encryption or
decryption. So, for convenience, there is also a trans-
action that allows a clear key to be entered into the
system as a KC—that is, encrypted under the relevant
master key, which for simplicity’s sake we’ll call
KMC.

However, there is also a transaction that allows a
KC to be decrypted from KMC and reencrypted under
any terminal master key. This allows existing KCs to
be sent out to ATMs in the field following rekeying.
However, taken together with the fact that a PIN
derivation key can be passed off as a terminal master
key, it sets up an attack. Recall that a PIN is, in effect,
a customer’s primary account number (PAN)
encrypted under the PIN derivation key (KP):

Host  → VSM : “Encrypt Comms Key”, PAN
VSM → Host  : {PAN}KMC

The second step is to get the VSM to take the
encrypted PAN—which is now considered to be a
KC—and reencrypt it under a terminal master key.
However, instead of supplying {KMT}KM, we supply
the PIN key {KP}KM:

Host → VSM : “KC to KMT”, {PAN}KMC, {KP}KM

VSM → Host : {PAN}KP

The answer, {PAN}KP, is just the PIN.

When keys are used for complex purposes, their
security assumptions can also become complex and
escape the untutored intuition. For example, there is
a tendency to assume that encrypted data is no longer
sensitive. But in this case, where the key is for PIN
derivation, the result is a sensitive value—the cus-
tomer’s PIN.

A general problem with many common key-typing
systems is that once a single key of a given type is com-
promised, all material at the next level down the hier-
archy—that is, encrypted with a key of this type—can
be compromised too. For example, once any KMT or
KP is found, all keys output by a transaction that
encrypts under this key type could be compromised.
It is difficult to avoid this sort of vulnerability without
a radical redesign. In the specific case of the VSM, it
is worse. Because there is a transaction that encrypts
one terminal master key under another, compromis-
ing a single KMT will also compromise all its neigh-
bors at the same level.

The Prism security module,8 which is widely used
in utility metering applications, is most successful in
limiting damage from this threat. Each child key is
bound together with the register number of its par-
ent, so compromise of a parent only compromises the
parent’s direct children. There are flexibility and scal-
ability issues with this approach (the module has a
limited number of internal registers), but it is a step
in the right direction.

Compromises can also cross type boundaries. For
example, the VSM allows the export of PIN derivation
keys over interbank links so that Visa can do stand-in
PIN verification for a bank whose network is down.
The result is that the compromise of an interbank key
can allow a programmer to extract PIN generation
keys.6

Type system design touches on a number of issues
familiar from elsewhere in security engineering.
Information-flow-based security policy models are an
example. The policy statement “the value of KP must
never become known” is broadly equivalent to the
statement “KP is at High in a multilevel secure sys-
tem.” Thus, if KP can be encrypted under KMT, KMT
is also high. This is a reminder of the problems
encountered by the designers of multilevel secure sys-
tems in that classification schemes tend to classify
either so little that the system is insecure, or so much
that it is not usable. However, the analogy is not per-
fect, as an opponent who can get a known value of a
KMT can break the system. “Write-up” can be as dan-
gerous as “write-down,” and the extent to which
information flow policy ideas can be applied to key
management systems is an interesting open research
problem.
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Meet-in-the-middle attacks
The meet-in-the-middle attack exploits the fact that

to abuse all the keys of a certain type, it’s usually only
necessary to get one of them. This leads naturally to
a time-memory trade-off in key search.

Legacy cryptoprocessors typically use DES (the
Data Encryption Standard) for all but a small num-
ber of high-level transactions, and many modern ones
offer it as a backwards-compatibility mode. A key can
be found with an effort of about 255. Systems are
therefore vulnerable to someone who can organize a
few thousand people to donate spare cycles to a key-
search effort. But it is often much worse than that.
Many cryptoprocessors will happily generate a lot of
keys of the target type. 216 key generation transactions
take somewhere between a few minutes and a few
hours on the devices examined, and this can reduce
the work involved in finding one of these keys to 239,
which takes only a few days on a home PC.

The attack itself is straightforward. An identical test
pattern is encrypted under each key and the results are
recorded. The same test pattern is encrypted under
each trial key, and the result is then compared against
all versions of the encrypted test pattern. Using a hash
table, the comparison stage is almost free. In effect,
the keysearch machine and the cryptoprocessor attack
the key space from opposite sides, and the effort
expended by each meets somewhere in the middle.

This attack can compromise eight out of the nine
types used by the VSM, as there are no limits or spe-
cial authorization requirements on key generation.
The Prism security module permits an interesting vari-
ation, which even allows a top-level master key to be
cracked with about 239 effort. The module’s master
key is manually loaded from multiple shares, and a
test vector is returned after the loading of each share
to ensure that it has been received correctly. The flaw
is that any user can continue to XOR in chosen shares,
receiving the same test vector encrypted under each
variant in successive responses. With a few hours’
access, 216 different variants of the master key can be
created, along with the set of test vectors required for
a meet-in-the-middle attack. We implemented this as
an experiment and succeeded in extracting the mas-
ter key from a device.

BREAKING CURRENT CRYPTOPROCESSORS
Third-generation cryptoprocessors such as the IBM

4758 aim to achieve much more with their APIs than
their predecessors. The 4758 is supplied with a
default financial architecture—the Common Crypto-
graphic Architecture (CCA)—which has 150 or so
transactions supporting a great range of banking
applications. It is designed to be backwards compat-
ible with the 3848 and to provide much of the VSM
functionality as well.9-11 By comparison, Prism sup-

plies crypto modules that all support a default
transaction set of 25 or so commands. Both
vendors are prepared to customize the trans-
action set if required by their clients.8 Of
course, the more complex and customizable the
transaction set is, the more the opportunity for
designers to make mistakes.

Roger Needham called the process by which
APIs get progressively more complex “the
inevitable evolution of the Swiss Army knife.”
There is a tendency for any computer architec-
ture to become so versatile that it becomes dif-
ficult or impossible to follow the principle of
least privilege, or even to understand which
architectural features are security-relevant.
Cryptoprocessors are unsettlingly like word-
processing macro languages in this respect. The exis-
tence of backwards compatibility modes also
complicates matters; they not only perpetuate old
problems, but cause new problems too.

Type-casting attacks
We mentioned that interbank keys are typically car-

ried from one security module to another in the form
of three shares, which in legacy equipment are simply
XORed together to give a single DES key.  With the
Prism module, combining in further chosen shares to
create a range of values allowed us to break the mas-
ter key, but the VSM was not vulnerable in this way.
It used a check value on the combined key along with
each key share, which had to be entered along with
them to activate the new combined key. 

The IBM 4758 CCA supports a key transfer proce-
dure of this type, but there are a few strings attached.
The transaction Key_Part_Import is used in inde-
pendently authorizable modes—Load_First_Key_
Part and Key_Part_Combine. By assigning per-
mission for each of these modes to different users, a
dual control policy can be implemented. When n > 2,
things are not quite so simple. The first user is given
Load_First_Key_Part and the remaining users
Key_Part_Combine. One might think that this gives
n-fold shared control, as all n shareholders can col-
lude to discover the value of the communications key.
But any single Key_Part_Combine holder can col-
lude with the Load_First_Key_Part holder to
enter a chosen key into the cryptoprocessor, so it really
gives only dual control.

But that is not all. The CCA introduced control vec-
tors, a new key type mechanism with the laudable aim
of supporting more key types and more flexible key
types than previous products.10,11 A control vector is
simply a string containing key type information that
is XORed with the master key. The working key KW
of type CV is stored under master key KM as the token
{KW}KM ⊕ CV. When KW is presented to the crypto-
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graphic processor, the claimed control vector is
XORed with the current master key, the token
is decrypted, and the parity of the result is
checked to ensure that it is a valid key. Some
control vectors are prespecified (such as “PIN
generation key”), but application designers can
specify new ones.

The goals of this design included providing a
reasonable amount of backwards compatibility
with processors such as the 3848 and the VSM.
One trick that can be used to import encrypted
keys from other systems is known as pre-XOR
type-casting, which allows the types of trans-
ferred keys to be modified during import. It
involves simply XORing the difference between

the two control vectors to a key-importing key used 
to import the chosen key. In normal operation, 
the difference is introduced with an extra
Key_Part_Combine operation once the final key is
present. The vulnerability we noticed is that any indi-
vidual key shareholder can modify his key share at
will. Although the absolute value of the key would
remain unknown, the key shareholder would be able
to set up the keys required for a type-casting attack.

In response to an early draft of this work, IBM sug-
gested that testing keys for integrity on import is the
route to avoid the latter attack. But it is not at all obvi-
ous how to do this.

One approach would be for one bank to generate a
key and check value, split the key into three shares,
and send each by courier to bank B, where they are
reassembled and the check value tested. If any share-
holder had modified his key share (accidentally or
deliberately), the check value would not match, and
the key exchange process could be aborted.

The difficulty comes in binding the testing opera-
tion to the completion of the import process. If you
let the final shareholder test the key, he might approve
a modified key into the system. Thus, somebody else
must do the verification. For example, you could
require anyone who uses a key to test it first. But then
a type-casting attack can be performed when any one
user colludes with any one key share holder. When the
size of either of these sets increases, the risk of collu-
sion attacks is increased, not decreased. The security
of the system decreases as the key is split into more
parts and as we add more users.

A deeper objection to IBM’s proposed solution is
that even if all keys are checked before use, this still
does not stop the final key shareholder from generat-
ing two complete keys, one true key and one key with
the intended difference. The true key would then be
passed on for testing and use, and the bogus one used
for an attack.

The core problem is that having a separate and final
testing stage can only work if testing is necessary

before use. For example, we can build the key inter-
nally within the cryptoprocessor and require a correct
check value before releasing it, so that partial, unver-
ified keys are not returned to the host. (This is how
the VSM works—although the check values are only
six decimal digits.) Alternatively, we could make a
type distinction between verified and unverified keys.
Indeed, key verification appears to have been intro-
duced as a measure against accidental errors in key
share entry rather than malicious modification of keys.
It requires more careful attention in future designs.

One conclusion to draw is that whenever we use a
combining function with arithmetic properties, all
dependent protocols should be checked for potentially
unpleasant side effects of these properties. In other
words, IBM’s choice of a combining function raised
the complexity of transaction set verification.

How to import key shares properly
So how can we import key shares safely so that the

only attack requires collusion between all n share-
holders? One solution is to use a cryptographic hash
function instead of XOR to combine the shares. With
this method, a shareholder who modifies his keypart
can only introduce a random difference between the
loaded key and the intended key:

K = H (S1, S2, S3)

However, this method is not suitable where an
already existing key must be shared—the Si cannot be
calculated from an already chosen K. In that case, one
possible approach might be to perform nested encryp-
tions on the first share, using the successive shares as
keys. No single key shareholder can introduce a known
difference between the loaded key and the intended key:

K = {{S1}S2}S3

We can come up with many variant schemes, some
with distinct testing stages or detailed contextual
information in each share (for example, share num-
ber, destination module, time stamp, and so on), but
there is an important requirement to put upon the key
share entry method before we are home and dry. No
matter what the key share combination method, the
transaction for each share entry must be distinct and
independently authorizable. If any two users share the
same transaction for key share entry, the work of one
would reproducible by the other, so n-1 key share-
holders could collude to mount an attack in an n share
system. The 4758/CCA method uses the same trans-
action for all but the holder of the first key share, so
the maximum n is 2. The transaction set must allow
the cryptoprocessor to keep track of how many dis-
tinct users have contributed to the key.
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The procedure used with some VSM clones remains
a model of good practice. When an interbank key is
generated, three officials stand round the machine. A
special “security manager” key is inserted to put the
equipment into a highly authorized state. Three key
mailers are produced, each with a key component and
the (same) check value on the (combined) key. These
mailers are taken to the correspondent bank and
entered. If the three keys combine into one with the
correct check value, that key becomes live.

However, optimizations of this simple procedure
seem to be dangerous. If key shares are not entered
simultaneously in an atomic transaction, binding the
component transactions becomes a problem. The sit-
uation is further confused when the confidentiality
and integrity of the key are treated separately. For
example, any system with a single user authorized as
the tester allows a key to be damaged by collusion
between the tester and any key shareholder. 

Backwards compatibility and 
key-binding attacks

Since the 3848, concerns about the vulnerability of
DES to keysearch have led cryptoprocessor designers
to support triple DES (3DES), often with two keys and
sometimes with three. 3DES is implemented as
“encrypt, decrypt, encrypt” with single DES, so if the
multiple input keys used are the same, 3DES performs
exactly as single DES, thus providing backwards com-
patibility. Export licensing pressures originally limited
3DES to top-level master-key operations and to irre-
versible operations such as computing the check dig-
its for use on bank card magnetic strips, but it is now
used for more functions.

The 4758 CCA has a subtle implementation prob-
lem with 3DES. It uses a two-key mode of 3DES (one
key for both encryptions, the other for the decryption),
but it does not properly bind together these two halves
of the whole 3DES key. Each half has an associated
control vector, which distinguishes between left halves,
right halves, and single DES keys. However, the type
system does not specifically associate the left and right
halves of a particular key. The result is that we can use
keysearch to discover the halves of a 3DES key one at
a time. For example, if we know KAL and KAR, and
wish to discover KXL and KXR, we can encrypt test
values under (KAL, KXR) to recover KXR and then
under (KXL, KXR) to discover KXL. Our meet-in-the-
middle technique works well with this attack. Provided
we can find the value of a single key half and encrypt
a reasonable number of known test values, we can
break all the DES keys of interest in the device (includ-
ing keys that do not have export permissions).

A 4758 backwards-compatibility feature allows us
to get the known key half we need for this attack. This
feature gives the option to generate replicate 3DES

keys—keys with both halves having the same
value. Again, the meet-in-the-middle attack cuts
the effort from about 255 to about 240. The
attacker generates 216 replicate keys sharing the
same type as the target key, and then searches
for the value of two of them. The halves of the
two replicate keys can then be exchanged to
make a 3DES key with differing halves.

Strangely, the 4758-type system permits dis-
tinction between true 3DES keys and replicate
3DES keys, but the manual states that this fea-
ture is not implemented, and all share the
generic 3DES key type. Now that a known
3DES key has been acquired, the conclusion of
the attack is simple: Let the key be an exporter key,
and export all keys using it.

In the case of the 4758 CCA, generating a large
number of keys is essentially free. The IBM products
have for years used key formats without any plaintext
padding, so that keys could be generated simply by
choosing some value and submitting it as an encrypted
key. The decrypted result is thus an unknown pseudo-
random value (the cryptoprocessor then manually
adjusts the parity). So our 216 test values can be auto-
matically computed as fast as we can supply different
input values to the device and store the responses. We
refer to this feature as key conjuring.3

A nonexportable key can also be extracted by
making two new versions of it, one with the left half
swapped for a known key, and likewise for the right
half. A 256 search would yield the key (looking for
both versions in the same pass through the key
space). A distributed effort or special hardware
would be required to get results within a few days,
but this would be a valuable long-term key, justify-
ing the expense. In fact, a brute-force effort in soft-
ware could search for all nonexportable keys in the
same pass.

FUTURE RESEARCH
The latest cryptoprocessors have forsaken manual

secret-key exchange and use public-key cryptography
to exchange symmetric transport keys. However, it is
not clear how much things have changed because
shared control is still required to achieve the same level
of assurance. Getting the procedural controls right for
public-key exchange may be at least as difficult,
because of the counterintuitive twists introduced by
the asymmetry of the underlying mechanism.
Designing public-key protocols is notoriously hard,
and their interaction with tamper-resistant embedded
devices is by no means fully explored.

A related issue is the design of formats for keying
material. We might expect that a key being trans-
ported should be padded with a checksum and with
freshness information such as a nonce or date.

Designing public-key
protocols is notori-

ously hard, and their
interaction with
tamper-resistant

embedded devices is
by no means fully

explored.
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However, many designs have failed because
keys are encrypted first and their contextual
information tacked on afterwards, often using
mechanisms that break. For example, failures of
protocols that use public-key encryption before
signature were discussed in previous work.12

There may be a psychological factor at work
here, in that designers feel a clear key is
“radioactive” and must be shielded as soon as
possible by encryption. Be that as it may, the
design of key formats is another opportunity
for research.

Another related issue is trusted path. One rea-
son that top-level key management seems more robust
in the VSM than in the 4758 is that the former has a
terminal physically attached to the device, at which
management operations are conducted, as well as a
printer at which key components are output. The
VSM has a supervisor password to control this access;
one clone goes further, with separate physical keys for
routine security operations (such as printing customer
PINs and ATM keys) and top-level ones (such as gen-
erating interbank keys). This means that the holder of
the top-level key can ensure that all three key share-
holders are physically present at the device while the
whole operation is done atomically.

The 4758, on the other hand, works as a PC periph-
eral, so it seems to have been natural for the design-
ers to make management operations more flexible.
However, the trust boundary for key management can
also include operating system access control, virus
protection, network security, and so on—so it’s less
clear what value a tamper-resistant cryptoprocessor
adds. The interaction of trusted path with shared con-
trol and environmental issues promises to be even
harder in a world of ubiquitous computing.

Another issue is understanding protection depen-
dencies. A common cause of real-life security failures
is that an application evolves in ways that cause
assumptions to no longer hold. For example, we might
not be too concerned about card forgery attacks on
an electronic purse that only makes online transac-
tions to merchants, as the threat model is almost iden-
tical to that of magnetic-strip card forgery. But if
transfers are suddenly allowed between customer
purses, the mechanisms of hot cards and floor limits
break down, and large-scale fraud is suddenly possi-
ble. Furthermore, the compromise of the master key
from a single card can now break the entire system
rather than defraud a single account. This is a (delib-
erately) blatant example, but there are many more
subtle ones.5 Ideally, we want better tools for tracking
dependencies between protection goals, assumptions,
and mechanisms as systems evolve.

Finally, there are broader computer science issues.
Given a number of embedded processors that enforce

different security properties—an electronic purse, a
postal meter, and the SIM card of a mobile phone—
how do we go about building a secure system using
them? In other words, given N processors each sup-
porting a different security policy, how do we com-
pose them into something that supports yet another
security policy? This composition problem is an old
chestnut. So is the problem of the interaction of secu-
rity and reliability: How can we build a robust, secure
system out of less dependable components? A related
question is whether there is any deep philosophical
difference between access control in a host CPU, a
cryptoprocessor, and an application. Perhaps this new
space of application problems will give valuable new
insights.

D esigning security APIs is a new field of research
that has significant industrial and scientific
importance. The poor design of present inter-

faces prevents many tamper-resistant processors from
achieving their potential and leaves disappointing
dependency on procedural controls—the design of
which involves subtleties that are likely to be beyond
the grasp of most implementers.

Some of the design failures we have touched on are
new, such as the key-binding problems with triple-DES,
type-casting attacks, subtle interactions with back-
wards compatibility modes, and new types of chosen-
key and meet-in-the-middle attacks. Others are variants
of problems already encountered elsewhere, such as
trusted-path issues and using combining functions such
as XOR that have exploitable mathematical proper-
ties. Many involve the interface between different pro-
tection technologies, such as between type systems and
cryptology, and between technical and procedural
mechanisms for shared control. Some failures were
found by inspection, others by applying crude formal
methods to the published transaction sets.

We are only starting to come to grips with the
deeper, conceptual issues. It is unclear that a “gener-
alized” API will work. As we have seen, the natural
accretion of functionality is one of the great enemies
of security. Yet getting the API right is relevant for
more than just cryptoprocessors. The API is “where
the rubber hits the road,” as it is where cryptography,
protocols, operating system access controls, and oper-
ating procedures all come together—or fail to. It truly
is a microcosm of the security engineering problem.
Many tools can be brought to bear, and hopefully we
will learn much of value about our existing techniques
by applying them in this new problem space. ✸
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