Exploring Data and Descriptive Statistics (using Stata)

Oscar Torres-Reyna

Data Consultant

otorres@princeton.edu

http://dss.princeton.edu/training/

Agenda...

- What is Stata
- Transferring data to Stata
- Excel to Stata
- Exercise 1: Data from ICPSR using the Online Learning Center.
- Exercise 2: Data from the *World Development Indicators & Global Development Finance* from the World Bank

Basic commands (review)

- Stata's screen
- First steps (working directory, log file, memory setting)
- Frequencies
- Crosstabulations
- Scatterplots/Histograms

What is Stata?

- It is a multi-purpose statistical package to help you explore, summarize and analyze datasets.
- A <u>dataset</u> is a collection of several pieces of information called <u>variables</u> (usually arranged by columns). A variable can have one or several values (information for one or several cases).
- Other statistical packages are SPSS, SAS and R.
- Stata is widely used in social science research and the most used statistical software on campus.

Other data formats...

Features	Stata	SPSS	SAS	R
Data extensions	*.dta	*.sav, *.por (portable file)	*.sas7bcat, *.sas#bcat, *.xpt (xport files)	*.Rdata
User interface	Programming/point-and-click	Mostly point-and-click	Programming	Programming
Data manipulation	Very strong	Moderate	Very strong	Very strong
Data analysis	Powerful	Powerful	Powerful/versatile	Powerful/versatile
Graphics	Very good	Very good	Good	Excellent
Cost	Affordable (perpetual licenses, renew only when upgrade)	Expensive (but not need to renew until upgrade, long term licenses)	Expensive (yearly renewal)	Open source
Program extensions	*.do (do-files)	*.sps (syntax files)	*.sas	*.txt (log files)
Output extension	*.log (text file, any word processor can read it), *.smcl (formated log, only Stata can read it).	*.spo (only SPSS can read it)	(various formats)	*.R, *.txt(log files, any word processor can read)

Stat/Transfer: Transferring data from one format to another (available in the DSS lab)

Stat/Transfer Transfer Variables Observations Op	ions Run Program Log About	
1) Select the	current format of the dataset	
Input File Type:	• ?	
2) Browse for	the dataset	
File Specification:	¥	Browse
	View]
3) Select "Sta	ta" or the data format you need	
Output File Type:	• ?	
File Specification:	,	Browse
	1	
4) It will say	re the file in the same directory as the original but with	1
the approp	riate extension (*.dta for Stata)	
b) Click on 'Transfer'		
	Transfer OTR Help Exit	

Example of a dataset in Excel.

Variables are arranged by columns and cases by rows. Each variable has more than one value

4	Α	B	С	D	E	F	G	Н	1	J	K	L	M	N
1	ID	Last Name	First Name	City	State	Gender	Student Status	Major	Country	Age	SAT	Average score (grade)	Height (in)	Newspaper readership (times/wk)
2	1	DOE01	JANE01	Los Angeles	California	Female	Graduate	Politics	US	30	2263	67	61	5
3	2	DOE02	JANE02	Sedona	Arizona	Female	Undergraduate	Math	US	19	2006	63	64	7
4	3	DOE16	JOE16	Elmira	New York	Male	Graduate	Math	US	26	2221	78	73	6
5	4	DOE17	JOE17	Lackawana	New York	Male	Graduate	Econ	US	33	1716	78	68	3
6	5	DOE18	JOE18	Defiance	Ohio	Male	Graduate	Econ	US	37	1701	65	71	6
7	6	DOE19	JOE19	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	1786	69	67	5
8	7	DOE20	JOE20	Cimax	North Carolina	Male	Graduate	Politics	US	39	1577	96	70	5
9	8	DOE03	JANE03	Liberal	Kansas	Female	Undergraduate	Politics	US	21	1842	87	62	5
10	9	DOE04	JANE04	Montreal	Canada	Female	Undergraduate	Math	Canada	18	1813	91	62	6
11	10	DOE05	JANE05	New York	New York	Female	Graduate	Math	US	33	2041	71	66	5
12	11	DOE21	JOE21	Hot Coffe	Mississippi	Male	Undergraduate	Econ	US	18	1787	82	67	3
13	12	DOE06	JANE06	Java	Virginia	Female	Graduate	Math	US	38	1513	79	59	5
14	13	DOE22	JOE22	Varna	Bulgaria	Male	Graduate	Politics	Bulgaria	30	1637	79	63	4
15	14	DOE23	JOE23	Moscow	Russia	Male	Graduate	Politics	Russia	30	1512	70	75	6
16	15	DOE07	JANE07	Drunkard Creek	New York	Female	Undergraduate	Math	US	21	1338	82	64	5
17	16	DOE08	JANE08	Mexican Hat	Utah	Female	Undergraduate	Econ	US	18	1821	80	63	3
18	17	DOE09	JANE09	Amsterdam	Holland	Female	Undergraduate	Math	Holland	19	1494	75	60	3
19	18	DOE10	JANE10	Mexico	Mexico	Female	Graduate	Politics	Mexico	31	2248	95	59	4
20	19	DOE11	JANE11	Caracas	Venezuela	Female	Undergraduate	Math	Venezuela	18	2252	92	68	5
21	20	DOE24	JOE24	San Juan	Puerto Rico	Male	Graduate	Politics	US	33	1923	95	63	7
22	21	DOE12	JANE12	Remote	Oregon	Female	Undergraduate	Econ	US	19	1727	67	62	7
23	22	DOE25	JOE25	New York	New York	Male	Undergraduate	Econ	US	21	1872	82	73	4
24	23	DOE13	JANE13	The X	Massachusetts	Female	Graduate	Politics	US	25	1767	89	68	6
25	24	DOE14	JANE14	Beijing	China	Female	Undergraduate	Math	China	18	1643	79	65	6
26	25	DOE26	JOE26	Stockholm	Sweden	Male	Undergraduate	Politics	Sweden	19	1919	88	64	4
27	26	DOE27	JOE27	Embarrass	Minnesota	Male	Graduate	Econ	US	28	1434	96	71	4
28	27	DOE28	JOE28	Intercourse	Pennsylvania	Male	Undergraduate	Math	US	20	2119	88	71	5
29	28	DOE15	JANE15	Loco	Oklahoma	Female	Undergraduate	Econ	US	20	2309	64	68	6
30	29	DOE29	JOE29	Buenos Aires	Argentina	Male	Graduate	Politics	Argentina	30	2279	85	72	3
31	30	DOE30	JOE30	Acme	Louisiana	Male	Undergraduate	Econ	US	19	1907	79	74	3

Path to the file: http://dss.princeton.edu/training/students.xls

1 - To go **from Excel to Stata** you simply copy-andpaste data into the Stata's "Data editor" which you can open by clicking on the icon that looks like this:

3 - Press Ctrl-v to paste the data from Excel...

Preserve Restore Sort << >> Hide

•	Window	۱. I
	- 🗇 🛙	1
		×
	_rc	

Delete ...

Excel to Stata (copy-and-paste)

2 - This window will open, is the data editor

Preserve	Restore	Sort	< < <	>>	Hide	Delete	
		va	ar1[1] =				
	D						
	~						
	_						

🗐 Data Editor

		id[1] = 1											
	id	lastname	firstname	city	state	gender	studentstatus	major	country	age	sat	averagesco~e	heightin	newspaperr~k
1	1	D0E01	JANE01	Los Angeles	California	Female	Graduate	Politics	US	30	2263	67	61	5
2	2	D0E02	JANE02	Sedona	Arizona	Female	Undergraduate	Math	US	19	2006	63	64	7
3	3	D0E16	JOE16	Elmira	New York	Male	Graduate	Math	US	26	2221	78	73	6
4	4	D0E17	J0E17	Lackawana	New York	Male	Graduate	Econ	US	33	1716	78	68	3
5	5	D0E18	JOE18	Defiance	Ohio	Male	Graduate	Econ	US	37	1701	65	71	6
6	6	D0E19	J0E19	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	1786	69	67	5
7	7	D0E20	J0E20	Cimax	North Carolina	Male	Graduate	Politics	US	39	1577	96	70	5
8	8	DOE03	JANE03	Liberal	Kansas	Female	Undergraduate	Politics	US	21	1842	87	62	5
9	9	D0E04	JANE04	Montreal	Canada	Female	Undergraduate	Math	Canada	18	1813	91	62	6
10	10	D0E05	JANE05	New York	New York	Female	Graduate	Math	US	33	2041	71	66	5
11	11	D0E21	J0E21	Hot Coffe	Mississippi	Male	Undergraduate	Econ	US	18	1787	82	67	3
12	12	D0E06	JANE06	Java	Virginia	Female	Graduate	Math	US	38	1513	79	59	5
13	13	D0E22	J0E22	Varna	Bulgaria	Male	Graduate	Politics	Bulgaria	30	1637	79	63	4
14	14	D0E23	J0E23	Moscow	Russia	Male	Graduate	Politics	Russia	30	1512	70	75	6
15	15	D0E07	JANE07	Drunkard Creek	New York	Female	Undergraduate	Math	US	21	1338	82	64	5
16	16	D0E08	JANE08	Mexican Hat	Utah	Female	Undergraduate	Econ	US	18	1821	80	63	3
17	17	D0E09	JANE09	Amsterdam	Holland	Female	Undergraduate	Math	Holland	19	1494	75	60	3
18	18	D0E10	JANE10	Mexico	Mexico	Female	Graduate	Politics	Mexico	31	2248	95	59	4
19	19	D0E11	JANE11	Canacas	Venezuela	Female	Undergraduate	Math	Venezuela	18	2252	92	68	5
20	20	D0E24	J0E24	San Juan	Puerto Rico	Male	Graduate	Politics	US	33	1923	95	63	7
21	21	D0E12	JANE12	Remote	Oregon	Female	Undergraduate	Econ	US	19	1727	67	62	7
22	22	D0E25	JOE25	New York	New York	Male	Undergraduate	Econ	US	21	1872	82	73	4
23	23	D0E13	JANE13	The X	Massachusetts	Female	Graduate	Politics	US	25	1767	89	68	6
24	24	D0E14	JANE14	Beijing	China	Female	Undergraduate	Math	China	18	1643	79	65	6
25	25	D0E26	J0E26	Stockholm	Sweden	Male	Undergraduate	Politics	Sweden	19	1919	88	64	4
26	26	D0E27	J0E27	Embarrass	Minnesota	Male	Graduate	Econ	US	28	1434	96	71	4
27	27	D0E28	J0E28	Intercourse	Pennsylvania	Male	Undergraduate	Math	US	20	2119	88	71	5
28	28	D0E15	JANE15	Loco	0k1ahoma	Female	Undergraduate	Econ	US	20	2309	64	68	6
29	29	D0E29	JOE29	Buenos Aires	Argentina	Male	OFRaduate	Politics	Argentina	30	2279	85	72	7 3
30	30	D0E30	JOE30	Acme	Louisiana	Male	Undergraduate	Econ	US	19	1907	79	74	3

Stata color-coded system

An important step is to make sure variables are in their expected format.

Stata has a color-coded system for each type. Black is for numbers, red is for text or string and blue is for labeled variables.

9

Another way to bring excel data into Stata is by saving the Excel file as ***.csv** (comma-separated values) and import it in Stata using the insheet command.

In **Excel** go to File->Save as and save the Excel file as *.csv:

You may get the following messages, click OK and

In **Stata** go to File->Import->"ASCII data created by spreadsheet". Click on 'Browse' to find the file and then OK.

👩 St	ata/SE 11.2 - http://dss.princeton.ed	u/training/return.dta - [Results]	📰 insheet - Import ASCII data
File	Edit Data Graphics Statistic Open Ctrl+O	s User Window Help	ASCII dataset filename:
	Save Ctrl+S Save As Ctrl+Shift+S	_rc	Browse New variable names: (optional)
	View Do Filename		Storage type © Use default © Force float © Force double
	Change Working Directory Log		Delimiter Automatically determine delimiter
	Import >	ASCII data created by a spreadsheet	Tab-delimited data
	Export >	ASCII data in fixed format	Comma-delimited data
	Print +	ASCII data in fixed format with a dictionary	O User-specified delimiter
	Example Datasets	Unformatted ASCII data	
	Recent Datasets	FDA data (SAS XPORT)	Replace data in memory Preserve variable case
	Exit	Haver Analytics database	
		XML data	OK Cancel Submit

An alternative to using the menu you can type:

Exercises

Exercise 1

Using the ICPSR Online Learning Center, go to guide on *Civic Participation and Demographics in Rural China (1990)* <u>http://www.icpsr.umich.edu/icpsrweb/ICPSR/OLC/guides/China/sections/a01</u>

Got to the tab 'Dataset' and download the data (<u>http://www.icpsr.umich.edu/icpsrweb/ICPSR/OLC/guides/China/sections/a02</u>)

We'll focus on the first exercise on 'Age and Participation' and use the following variables:

- Respondent's year of birth (M1001)
- Village meeting attendance (M3090)

Activities:

- Create the variable 'age' for each respondent
- Create the variable 'agegroup' with the following categories: 16-35, 36-55 and 56-79

Questions:

- What percentage of respondents reported attending a local village meeting?
- Of those attending a meeting, which age group was most likely to report attending a village meeting?
- Of those attending a meeting , which group was most likely to report no village meeting attendance?

Source: Inter-university Consortium for Political and Social Research. Civic Participation and Demographics in Rural China: A Data-Driven Learning Guide. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], July, 31 2009. Doi:10.3886/China

Exercise 2

Got to the World Development Indicators (WDI) & Global Development Finance (GDF) from the World Bank (access from the library's Articles and Databases, <u>http://library.princeton.edu/catalogs/articles.php</u>)

Direct link to WDI/GDF http://databank.worldbank.org/ddp/home.do?Step=12&id=4&CNO=2

Get data for the United States and all available years on:

- Long-term unemployment (% of total unemployment)
- Long-term unemployment, female (% of female unemployment)
- Long-term unemployment, male (% of male unemployment)
- Inflation, consumer prices (annual %)
- GDP per capita (constant 2000 US\$)
- GDP per capita growth (annual %)

See here to arrange the data as panel data <u>http://dss.princeton.edu/training/FindingData101.pdf#page=21</u> For an example of how panel data looks like click here: <u>http://dss.princeton.edu/training/DataPrep101.pdf#page=3</u>

Activities:

- Rename the variables and explore the data (use describe, summarize)
- Create a variable called crisis where it takes the value of 17 for the following years: 1960, 1961, 1969, 1970, 1973, 1974, 1975, 1981, 1982, 1990, 1991, 2001, 2007, 2008, 2009. Replace missing with zeros (source: nber.org).
- Set as time series (see http://dss.princeton.edu/training/TS101.pdf#page=6)
- Create a line graph with unemployment rate (total, female and males) and crisis by year.

Questions:

• What do you see? Who tends to be more affected by the economic recessions?

Basic commands

Do-file editor Open data editor Ope

Open data browser

First steps: Working directory

To see your working directory, type

pwd

To change the working directory to avoid typing the whole path when calling or saving files, type:

cd c:\mydata

Use quotes if the new directory has blank spaces, for example

```
cd "h:\stata and data"
```

If you want to use the menu go to (useful with Macs):

File -> Change Working Directory ...

First steps: log file

Create a *log file*, sort of Stata's built-in tape recorder and where you can: 1) retrieve the output of your work and 2) keep a record of your work.

In the command line type:

```
log using mylog.log
```

This creates the file 'mylog.log' in your working directory. You can read it using any word processor (notepad, word, etc.).

To close a log file type:

log close

To add more output to an existing log file add the option append, type:

log using mylog.log, append

To replace a log file add the option replace, type:

```
log using mylog.log, replace
```

Note that the option replace will delete the contents of the previous version of the log.

First steps: set the correct memory allocation

If you get the following error message while opening a datafile or adding more variables:

no room to add more observations

An attempt was made to increase the number of observations beyond what is currently possible. You have the following alternatives:

- 1. Store your variables more efficiently; see help <u>compress</u>. (Think of Stata's data area as the area of a rectangle; Stata can trade off width and length.)
- 2. Drop some variables or observations; see help drop.
- 3. Increase the amount of memory allocated to the data area using the set memory command; see help memory.

You need to set the *correct <u>memory allocation</u>* for your data or the maximun number of variable allowed. Some big datasets need more memory, depending on the size you can type, for example:

set mem 700m

. set mem 700m

Current memory allocation

settable	current value	description	memory usage (1M = 1024k)
set maxvar set memory set matsize	5000 700м 400	max. variables allowed max. data space max. RHS vars in models	1.909M 700.000M 1.254M
			703.163M

Note: If this does not work try a bigger number.

*To allow more variables type set maxvar 10000

First steps: Opening/saving Stata files (*.dta)

To open files already in Stata with extension *.dta, run Stata and you can either:

- Use the menu: go to file->open, or
- In the command window type use "c:\mydata\mydatafile.dta"

If your working directory is already set to c:\mydata, just type

use *mydatafile*

To save a data file from Stata go to file – save as or just type:

save, replace

If the dataset is new or just imported from other format go to file -> save as or just type:

save mydatafile

For ASCII data please see <u>http://dss.princeton.edu/training/DataPrep101.pdf</u>

To get a general description of the dataset and the format for each variable type describe

. describe

Contains data f	rom http 30	o://dss.prin	ceton.edu/t	raining/students.dta
vars: size:	14 2,580 (9	99.9% of memo	ory free)	29 Sep 2009 17:12
variable name	torage type	display format	value label	variable label
id lastname firstname city state gender studentstatus major country age sat averagescoreg~e heightin newspaperread~k	byte str5 str6 str14 str14 str6 str13 str8 str9 byte int byte byte byte byte	%8.0g %9s %9s %14s %14s %9s %13s %9s %9s %8.0g %8.0g %8.0g %8.0g %8.0g		ID Last Name First Name City State Gender Student Status Major Country Age SAT Average score (grade Height (in) Newspaper readership

Type help describe for more information...

Command: summarize

('don't know' or 'no answer' are usually

21

coded as 99 or 999)

Type summarize to get some <u>basic descriptive statistics</u>.

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
id lastname firstname city state	30 0 0 0 0	15.5 Zeros indica	8.803408	1	30
gender studentsta~s major country age	0 0 0 30	25.2	6.870226	18	39
sat averagesco~e heightin newspaperr~k	30 30 30 30	1848.9 80.36667 66.43333 4.866667	275.1122 10.11139 4.658573 1.279368	1338 63 59 3 Use 'min' and 'ma valid range in ead 'aga' aboutd bays	2309 96 75 7 ax' values to check for ch variable. For examp

Type help summarize for more information...

Exploring data: frequencies

Frequency refers to the number of times a value is repeated. Frequencies are used to analyze <u>categorical data</u>. The tables below are *frequency tables*, values are in ascending order. In Stata use the command tab varname.

'<u>Freq</u>.' provides a raw count of each value. In this case 10 students for each major.

'<u>Percent</u>' gives the relative frequency for each value. For example, 33.33% of the students in this group are econ majors.

'<u>Cum</u>.' is the cumulative frequency in ascending order of the values. For example, 66.67% of the students are econ or math majors.

'<u>Freq</u>.' Here 6 students read the newspaper 3 days a week, 9 students read it 5 days a week.

'<u>Percent</u>'. Those who read the newspaper 3 days a week represent 20% of the sample, 30% of the students in the sample read the newspaper 5 days a week.

'<u>Cum</u>.' 66.67% of the students read the newspaper 3 to 5 days a week.

Type help tab for more details.

Exploring data: frequencies and descriptive statistics (using table)

Command table produces frequencies and descriptive statistics per category. For more info and a list of all statistics type help table. Here are some examples, type

table gender, contents(freq mean age mean score)

. table gender, contents(freq mean age mean score)

Gender	Freq.	mean(age)	<pre>mean(score)</pre>
Female	15	23.2	78.73333
Male	15	27.2	82

The mean age of females is 23 years, for males is 27. The mean score is 78 for females and 82 for males. Here is another example:

table major, contents(freq mean age mean sat mean score mean readnews)

. table major, contents(freq mean age mean sat mean score mean readnews)

Major	Freq.	mean(age)	<pre>mean(sat)</pre>	mean(score)	mean(read~s)
Econ	10	23.8	1806	76.2	4.4
Math	10	23	1844	79.8	5.3
Politics	10	28.8	1896.7	85.1	4.9

Exploring data: crosstabs

Also known as *contingency tables*, crosstabs help you to analyze the relationship between two or more categorical variables. Below is a crosstab between the variable 'ecostatu' and 'gender'. We use the command **tab** *var1 var2*

Exploring data: crosstabs (a closer look)

You can use crosstabs to compare responses among categories in relation to aggregate responses. In the table below we can see how opinions for males and females diverge from the national average.

tab ecostatu gender, column row

Кеу			
frequenc row percent column perce	cy tage entage		
Status of	Gender of	Respondent	Total
Nat'l Eco	Male	Female	
Very well	90	59	149
	60.40	39.60	100.00
	14.33	7.92	10.85
Fairly well	337	333	670
	50.30	49.70	100.00
	53.66	44.70	48.80
Fairly badly	139	209	348
	39.94	60.06	100.00
	22.13	28.05	25.35
Very badly	57	134	191
	29.84	70.16	100.00
	9.08	17.99	13.91
Not sure	2	10	12
	16.67	83.33	100.00
	0.32	1.34	0.87
Refused	3	0	3
	100.00	0.00	100.00
	0.48	0.00	0.22
Total	628	745	1,373
	45.74	54.26	100.00
	100.00	100.00	100.00

As a rule-of-thumb, a margin of error of ±4 percentage points can be used to indicate a significant difference (some use ± 3).

For example, rounding up the percentages, 11% (10.85) answer 'very well' at the national level. With the margin of error, this gives a range roughly between 7% and 15%, anything beyond this range could be considered significantly different (remember this is just an approximation). It does not appear to be a significant bias between males and females for this answer.

In the 'fairly well' category we have 49%, with range between 45% and 53%. The response for males is 54% and for females 45%. We could say here that males tend to be a bit more optimistic on the economy and females tend to be a bit less optimistic.

If we aggregate responses, we could get a better picture. In the table below 68% of males believe the economy is doing well (comparing to 60% at the national level, while 46% of females thing the economy is bad (comparing to 39% aggregate). Males seem to be more optimistic than females.

RECODE o ecostat (Status o Nat'l Eco	f u f Gender of) Male	Respondent Female	Total
wel	1 427	392	819
	52.14	47.86	1 00.0 0
	67.99	52.62	59.65
Ba	d 196	343	539
	36.36	63.6 4	100.00
	31.21	46.04	39.26
Not sure/re	f 5	10	15
	33.33	66.67	100.00
	0.80	1.34	1.09
Tota	1 628	745	1,373
	45.74	54.26	100.00
	100.00	100.00	100.00

recode ecostatu (1 2 = 1 "Well") (3 4 = 2 "Bad") (5 6=3 "Not sure/ref"), gen(ecostatul) label(eco)

25

Exploring data: crosstabs (test for associations)

To see whether there is a relationship between two variables you can choose a number of tests. Some apply to <u>nominal</u> variables some others to <u>ordinal</u>. I am running all of them here for presentation purposes.

tab ecostatul gender, column row nokey chi2 lrchi2 V exact gamma taub

Exploring data: descriptive statistics

For continuous data use <u>descriptive statistics</u>. These statistics are a collection of measurements of: *location* and *variability*. Location tells you the central value the variable (the mean is the most common measure of this). Variability refers to the spread of the data from the center value (i.e. variance, standard deviation). Statistics is basically the study of what causes such variability. We use the command tabstat to get these stats.

tabstat age sat score heightin readnews, s(mean median sd var count range min max)

stats	age	sat	score	heightin	readnews	
mean	25.2	1848.9	80.36667	66.43333	4.866667	Type help tabstat for a complete list of descriptive statistics
p50	23	1817	79.5	66.5	5	
sd	6.870226	275.1122	10.11139	4.658573	1.279368	
variance	47.2	75686.71	102.2402	21.7023	1.636782	
N	30	30	30	30	30	
range	21	971	33	16	4	
min	18	1338	63	59	3	
max	39	2309	96	75	7	

. tabstat age sat score heightin readnews, s(mean median sd var count range min max)

•The *mean* is the sum of the observations divided by the total number of observations.

•The *median* (p50 in the table above) is the number in the middle. To get the median you have to order the data from lowest to highest. If the number of cases is odd the median is the single value, for an even number of cases the median is the average of the two numbers in the middle.

•The *standard deviation* is the squared root of the variance. Indicates how close the data is to the mean. Assuming a normal distribution, 68% of the values are within 1 sd from the mean, 95% within 2 sd and 99% within 3 sd •The *variance* measures the dispersion of the data from the mean. It is the simple mean of the squared distance from the mean.

•*Count* (N in the table) refers to the number of observations per variable.

•Range is a measure of dispersion. It is the difference between the largest and smallest value, max – min.

•*Min* is the lowest value in the variable.

•*Max* is the largest value in the variable.

Exploring data: descriptive statistics

You could also estimate descriptive statistics by subgroups (i.e. gender, age, etc.)

tabstat age sat score heightin readnews, s(mean median sd var count range min max) by(gender)

. tabstat age sat score heightin readnews, s(mean median sd var count range min max) by(gender)

Summary statistics: mean, p50, sd, variance, N, range, min, max by categories of: gender (Gender)

gender	age	sat	score	heightin	readnews
Female	23.2	1871.8	78.73333	63.4	5.2
	20	1821	79	63	5
	6.581359	307.587	10.66012	3.112188	1.207122
	43.31429	94609.74	113.6381	9.685714	1.457143
	15	15	15	15	15
	20	971	32	9	4
	18	1338	63	59	3
	38	2309	95	68	7
Маје	27.2	1826	82	69.46667	4.533333
	28	1787	82	71	4
	6.773899	247.0752	9.613978	3.943651	1.302013
	45.88571	61046.14	92.42857	15.55238	1.695238
	15	15	15	15	15
	21	845	31	12	4
	18	1434	65	63	3
	39	2279	96	75	7
Total	25.2	1848.9	80.36667	66.43333	4.866667
	23	1817	79.5	66.5	5
	6.870226	275.1122	10.11139	4.658573	1.279368
	47.2	75686.71	102.2402	21.7023	1.636782
	30	30	30	30	30
	21	971	33	16	4
	18	1338	63	59	3
	39	2309	96	75	7

Type help tabstat for more options.

Examples of frequencies and crosstabulations

Frequencies (tab command)

. tab gend

Gender	Freq.	Percent	Cum.
Female Male	15 15	50.00 50.00	50.00 100.00
Total	30	100.00	

In this sample we have 15 females and 15 males. Each represents 50% of the total cases.

Crosstabulations (tab with two variables)

. tab gender studentstatus, column row

Кеу			
freque row perce column per	ency entage rcentage		
Gender	Studen Graduate	Status Undergrad	Total
Female	5	10	15
	33.33	66.67	100.00
	33.33	66.67	50.00
Male	10	5	15
	66.67	33.33	100.00
	66.67	33.33	50.00
Total	15	15	30
	50.00	50.00	100.00
	100.00	100.00	100.00

. tab gender major, sum(sat)

Means, Standard Deviations and Frequencies of SAT

Average SAT scores by gender and major. Notice, 'sat' variable is a continuous variable. The first cell reads the average SAT score for a female whose major is econ is 1952.3333 with a standard deviation 312.43, there are only 3 females with a major in econ.

			Major		
	Gender	Econ	Math	Politics	Total
	Female	1952.3333 312.43773 3	1762.5 317.99326 8	2030 262.25052 4	1871.8 307.58697 15
	Male	1743.2857 155.6146 7	2170 72.124892 2	1807.8333 288.99994 6	1826 247.07518 15
_	Total	1806 1819.16559 10	1844 329.76928 10	1896.7 287.20687 10	1848.9 275.11218 30

29

Three way crosstabs

. bysort studentstatus: tab gender major, column row

-> studentstatus = Graduate

bysort var3: tab var1 var2, colum row

bysort studentstatus: tab gender *major*, colum row

кеу frequency row percentage column percentage

Gender	Econ	Major Math	Politics	Total
Female	0	2	3	5
	0.00	40.00	60.00	100.00
	0.00	66.67	37.50	33.33
Male	4	1	5	10
	40.00	10.00	50.00	100.00
	100.00	33.33	62.50	66.67
Total	4	3	8	15
	26.67	20.00	53.33	100.00
	100.00	100.00	100.00	100.00

-> studentstatus = Undergraduate

Кеу	
frequency row percentage column percentage	

Condor	Econ	Major Math	Politics	Total
Genuer	LCON	Materi	101111103	Total
Female	30.00 50.00	6 60.00 85.71	1 10.00 50.00	10 100.00 66.67
Male	3 60.00 50.00	1 20.00 14.29	1 20.00 50.00	5 100.00 33.33
Total OT	6 40.00 R 100.00	7 46.67 100.00	2 13.33 100.00	15 100.00 100.00

30

Three way crosstabs with summary statistics of a fourth variable

. bysort studentstatus: tab gender major, sum(sat)

-> studentstatus = Graduate

Means, Standard Deviations and Frequencies of SAT

Gender	Econ	Major Math	Politics	Total
Female		1777	2092.6667	1966.4
		373.35238	282.13531	323.32924
	0	2	3	5
Male	1659.25	2221	1785.6	1778.6
	154.66819	0	317.32286	284.3086
	4	1	5	10
Total	1659.25	1925	1900.75	1841.2
	154.66819	367.97826	324.8669	300.38219
	4	3	8	15

cell reads: The average SAT score of a female graduate student whose major is politics is 2092.6667 with a standard deviation of 2.82.13, there

Average SAT scores by gender and

undergraduate students. The third

are 3 graduate female students with

major for graduate and

a major in politics.

-> studentstatus = Undergraduate

Means, Standard Deviations and Frequencies of SAT

Gender	Econ	Major Math	Politics	Total
Female	1952.3333	1757.6667	1842	1824.5
	312.43773	337.01197	0	305.36872
	3	6	1	10
Male	1855.3333	2119	1919	1920.8
	61.711695	0	0	122.23011
	3	1	1	5
Total	1903.8333	1809.2857	1880.5	1856.6
	208.30979	336.59952	54.447222	257.72682
	6	7	2	15

First steps: Quick way of finding variables (lookfor)

You can use the command lookfor to find variables in a dataset, for example you want to see which variables refer to education, type:

lookfor educ

educ	byte	%10.0g		Education of R.	
variable name	storage e type	display format	value label	variable label	
. lookfor educ					

lookfor will look for the keyword 'educ' in the variable name and labels. You will need to be creative with your keyword searches to find the variables you need.

It always recommended to use the codebook that comes with the dataset to have a better idea of where things are.

First steps: Subsetting using conditional 'if'

Sometimes you may want to get frequencies, crosstabs or run a model just for a particular group (lets say just for females or people younger than certain age). You can do this by using the conditional 'if', for example:

```
/*Frequencies of var1 when gender = 1*/
tab var1 if gender==1, column row
/*Frequencies of var1 when gender = 1 and age < 33*/
tab var1 if gender==1 & age<33, column row
/*Frequencies of var1 when gender = 1 and marital status = single*/
tab var1 if gender==1 & marital==2 | marital==3 | marital==4, column row
/*You can do the same with crosstabs: tab var1 var2 ... */
/*Regression when gender = 1 and age < 33*/
regress y x1 x2 if gender==1 & age<33, robust
/*Scatterplots when gender = 1 and age < 33*/
scater var1 var2 if gender==1 & age<33</pre>
```

"if" goes at the end of the command BUT before the comma that separates the options from the command.

Graphs: scatterplot

Scatterplots are good to explore possible relationships or patterns between variables and to identify outliers. Use the command scatter (sometimes adding twoway is useful when adding more graphs). The format is scatter y x. Below we check the relationship between SAT scores and age. For more details type help scatter.

twoway scatter sat age, mlabel(last) ||
lfit sat age

twoway scatter sat age, mlabel(last)

twoway scatter sat age, mlabel(last) ||
lfit sat age, yline(30) xline(1800)

Graphs: scatterplot

By categories

twoway scatter sat age, mlabel(last) by(major, total)

Graphs: histogram

Histograms are another good way to visually explore data, especially to check for a normal distribution. Type help histogram for details.

Frequently used Stata commands

Category	Stata commands
Getting on-line help	help
	search
Operating-system interface	pwd
	cd
	sysdir
	mkdir
	dir / ls
	erase
	сору
	type
Using and saving data from disk	use
	clear
	save
	append
	merge
	compress
Inputting data into Stata	input
	edit
	infile
	infix
	insheet
The Internet and Updating Stata	update
	net
	ado
	news

Basic data reporting	describe
	codebook
	inspect
	list
	browse
	count
	assert
	summarize
	Table (tab)
	tabulate
Data manipulation	generate
	replace
	egen
	recode
	rename
	drop
	keep
	sort
	encode
	decode
	order
	by
	reshape
Formatting	format
	label
Keeping track of your work	log
	notes 37
Convenience	display

Source: http://www.ats.ucla.edu/stat/stata/notes2/commands.htm

Is my model OK? (links)

Regression diagnostics: A checklist http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm

Logistic regression diagnostics: A checklist

http://www.ats.ucla.edu/stat/stata/webbooks/logistic/chapter3/statalog3.htm

Times series diagnostics: A checklist (pdf)

http://homepages.nyu.edu/~mrg217/timeseries.pdf

Times series: dfueller test for unit roots (for R and Stata) <u>http://www.econ.uiuc.edu/~econ472/tutorial9.html</u> <u>http://dss.princeton.edu/training/TS101.pdf#page=19</u>

Panel data tests: heteroskedasticity and autocorrelation

- <u>http://www.stata.com/support/faqs/stat/panel.html</u>
- <u>http://www.stata.com/support/faqs/stat/xtreg.html</u>
- <u>http://www.stata.com/support/faqs/stat/xt.html</u>
- <u>http://dss.princeton.edu/online_help/analysis/panel.htm</u>

I can't read the output of my model!!! (links)

Data Analysis: Annotated Output http://www.ats.ucla.edu/stat/AnnotatedOutput/default.htm

Data Analysis Examples http://www.ats.ucla.edu/stat/dae/

Regression with Stata <u>http://www.ats.ucla.edu/STAT/stata/webbooks/reg/default.htm</u>

Regression http://www.ats.ucla.edu/stat/stata/topics/regression.htm

How to interpret dummy variables in a regression

http://www.ats.ucla.edu/stat/Stata/webbooks/reg/chapter3/statareg3.htm

How to create dummies <u>http://www.stata.com/support/faqs/data/dummy.html</u> http://www.ats.ucla.edu/stat/stata/faq/dummy.htm

Logit output: what are the odds ratios? http://www.ats.ucla.edu/stat/stata/library/odds_ratio_logistic.htm

Topics in Statistics (links)

What statistical analysis should I use? http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm

Statnotes: Topics in Multivariate Analysis, by G. David Garson http://www2.chass.ncsu.edu/garson/pa765/statnote.htm

Elementary Concepts in Statistics http://www.statsoft.com/textbook/stathome.html

Introductory Statistics: Concepts, Models, and Applications http://www.psychstat.missouristate.edu/introbook/sbk00.htm

Statistical Data Analysis http://math.nicholls.edu/badie/statdataanalysis.html

Stata Library. Graph Examples (some may not work with STATA 10) http://www.ats.ucla.edu/STAT/stata/library/GraphExamples/default.htm

Comparing Group Means: The T-test and One-way ANOVA Using STATA, SAS, and SPSS

http://www.indiana.edu/~statmath/stat/all/ttest/

Useful links / Recommended books

- DSS Online Training Section <u>http://dss.princeton.edu/training/</u>
- UCLA Resources to learn and use STATA <u>http://www.ats.ucla.edu/stat/stata/</u>
- DSS help-sheets for STATA <u>http://dss/online_help/stats_packages/stata/stata.htm</u>
- Introduction to Stata (PDF), Christopher F. Baum, Boston College, USA. "A 67-page description of Stata, its key features and benefits, and other useful information." <u>http://fmwww.bc.edu/GStat/docs/StataIntro.pdf</u>
- STATA FAQ website http://stata.com/support/faqs/
- Princeton DSS Libguides <u>http://libguides.princeton.edu/dss</u>

Books

- Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ; New York : Cambridge University Press, 2007.
- Applied Regression Analysis and Generalized Linear Models, Second Edition. John Fox, Sage, 2008
- Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.
- Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
- Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
- Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam Kachigan, New York : Radius Press, c1986
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006