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igh-dimensional-

ity matrix-vector
multiplication
(MVM) is a dominant
kernel in signal-pro-
cessing and machine-learning com-
putations that are being deployed in
a range of energy- and throughput-
constrained applications. In-memory
computing (IMC) exploits the structural
alignment between a dense 2D array
of bit cells and the dataflow in MVM,
enabling opportunities to address com-
putational energy and throughput.
Recent prototypes have demonstrated
the potential for 10x benefits in both
metrics. However, fitting computation
within an array of constrained bit-cell
circuits imposes a number of chal-
lenges, including the need for ana-
log computation, efficient interfacing
with conventional digital accelerators
(enabling the required programmabil-
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ity), and efficient virtualization of the
hardware to map software. This article
provides an overview of the fundamen-
tals of IMC to better explain these chal-
lenges and then identifies promising
paths forward among the wide range
of emerging research.

Communication Cost

The computational requirements in
emerging applications of machine
learning and signal processing are
pushing platforms to their energy-
efficiency and throughput limits.
Hardware specialization has proven
to be critical, with digital accel-
erators achieving 10-100x higher
energy efficiency and speed than
general-purpose processors. How-
ever, these gains apply primarily to
computation, not memory accessing
and, more generally, data movement
[1]. Increasingly, the applications of
interest are datacentric, involving
large data sets or high-dimensional-
ity data structures. This shifts the

emphasis toward data movement,
which unfortunately imposes limits
on the gains possible from conven-
tional digital acceleration.

Amanifestation of this is the widely
recognized “memory wall.” Although
often associated with accessing data
from off-chip memory, the problem
is more fundamental, arising in any
architecture that separates memory
and computation. Storing data in
physical bit cells requires area, which
thus scales with the amount of data to
be stored. This raises a corresponding
communication cost for moving data
from the point of storage to the point
of computation, outside the memory.
To illustrate this cost, Figure 1 com-
pares the energy required to access
one word of data (64 b) from differ-
ent-sized memories in a 45-nm tech-
nology to the energy of multiplication
operations (considering the lowered
precision levels that are increasingly
relevant for deep-learning inference
computations [2]-[4]).
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The computational requirements in emerging

applications of machine learning and signal
processing are pushing platforms to their
energy-efficiency and throughput limits.

Given that the communication cost
is fundamental, computing architec-
tures cannot avoid it, but they can
attempt to amortize it. For example,
general-purpose architectures employ
caching in a memory system. This in-
volves successively larger memories
with correspondingly larger communi-
cation costs. However, those costs are
incurred only when bringing data into
the smaller memories, and then the
statistical property of locality ensures
that data are much more likely to be
used for subsequent computations than
data left in the larger memories. Spe-
cialized architectures being designed
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for specific computations can perform
even more aggressive and determinis-
tic amortization. For example, Figure 2
considers the case of MVM ¢= A x b,
which has motivated spatial architec-
tures. Here, processing engines (PEs)
are arranged in a 2D array, matching
the dataflow of MVM [5], [6]. PEs can
have small, efficient local memories,
storing only their intended operands.
Furthermore, they move a computa-
tional result to adjacent PEs, which
effectively amortizes the movement
of all previously accessed operands.
MVMs represent a particularly im-
portant compute kernel due to their
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FIGURE 1: The energy cost of accessing memory.
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prominence in signal-processing and
machine-learning computations. For-
tunately, as seen in the case of spatial
architectures, MVMs also present signif-
icant opportunities for amortization.

Next, we describe the basic approach
of IMC, which exploits more aggres-
sive amortization within the memory
array itself.

IMC Fundamentals

Figure 3 illustrates the approach of
IMC, using the architecture from [7] as
an example. The IMC architecture is
based on an array of six-transistor static
random-access memory (6T-SRAM) bit
cells, and it includes periphery for two
modes of operation. In SRAM mode,
rows are accessed one at a time to
read/write data via digital activation
of a word line (WL). On the other hand,
in IMC mode, multiple or all rows are
accessed at once, using input data to
activate the WLs. In the example, each
WL digital-to-analog converter (WLDAC)
applies an analog voltage correspond-
ing to an input-vector element, which
thus modulates the bit-cell current.
Taking the bitlines (BL/BLb) as a differ-
ential signal, the stored data then have
the effect of multiplying the input-vec-
tor element by +1/-1, and the currents
from all bit cells in a column accumu-
late, generating an analog discharge of
BL/BLb. This yields a multiply-accu-
mulate (MAC) operation as required
for MVM. Thus, instead of accessing
raw bits row by row, IMC accesses a
computation result over many/all bits,
thereby amortizing the accessing costs.
Note that such amortization is possible
because of the structure of memory,
where MVM involves mapping parallel
input data to WLs and parallel com-
putation to bit cells with stored data,
followed by reducing output data via
accumulation. Thus, IMC can apply to
any memory technology integrated in
such a structure [8]-[10].

Bandwidth/Latency/Energy Versus
Signal-to-Noise Ratio Tradeoff

The amortization performed by IMC
changes the basic tradeoffs associated
with memory accessing. Figure 4 ana-
lyzes the typical metrics of interest



for memory (bandwidth, latency, and

energy) and introduces a new metric

relevant for computation, signal-to-

noise ratio (SNR), by comparing a

conventional architecture with IMC.

Consider accessing D bits of data from

a /D x /D memory [7]:

m Bandwidth: In the conventional
architecture, bandwidth scales as
D'? with the number of row-wise
access cycles required. In IMC,
bandwidth does not scale because
all rows are accessed at once.

m Latency: In the conventional ar-
chitecture, latency scales as D due
to the D2 access cycles required
and D'? scaling of access-cycle
delay with the BL/BLb capacitance.
In IMC, latency does not scale, be-
cause activating all WLs causes the
total bit-cell discharge current to
scale at the same rate as BL/BLb
capacitance.

m Energy: In the conventional archi-
tecture, energy scales as D*? with
the number of access cycles, BL/
BLb capacitance, and number of
columns. In IMC, energy scales
only as D, because all data are ac-
cessed in one cycle.

= SNR: In the conventional architec-
ture, SNR does not scale because
the implicit assumption is that
BL/BLb discharge remains fixed to
maintain the required data-sens-
ing margin. In IMC, SNR scales
as 1/DY? because accumulation
over D'? bit cells results in a cor-
responding increase of dynamic
range. Fitting this in a fixed BL/
BLb swing causes a corresponding
reduction of SNR.

From this first-order analysis, we
see that IMC enables significant band-
width/latency/energy gains at the
cost of SNR. Some important second-
ary factors should be kept in mind.
First, the analysis focuses on BL/BLb
communication costs, which typically
dominate in memory. However, IMC
leaves WL activation costs unchanged
(conventional and IMC architectures
involve the same number of WL acti-
vations), somewhat reducing the total
gains from IMC. Second, this analy-
sis does not consider BL/BLb swing

Increasingly, the applications of interest are
datacentric, involving large data sets or high-
dimensionality data structures.

optimization. Conventional memory
often exploits reduced swing, whereas
IMC may prefer full swing due to BL/
BLb dynamic-range requirements.
Nonetheless, typical values of D'/?
(e.g., 128 in [7]) open up the potential
for significant gains through IMC, as
we will see later in the article. How-
ever, the SNR tradeoff is a primary
concern, challenging the scale, reliable
specification, and configurability/

programmability of computation, all
of which are required for integration
in modern computing platforms. Thus,
emerging approaches to IMC must ad-
dress the underlying issue of SNR de-
monstrated against these challenges.

Comparison With

Digital Architectures

Although the previous analysis com-
pared memory accessing in IMC with
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FIGURE 3: The basic approach of IMC illustrated in [7].
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FIGURE 4: The basic tradeoffs with IMC.
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that in a canonical digital-acceler-
ator architecture, MVMs have mo-
tivated more specialized spatial
architectures. In fact, IMC can itself
be regarded as a spatial architec-
ture, but one where PEs are highly
dense bit cells. Thus, the data-move-
ment and computation costs can
be compared.

Figure 5(a) considers data move-
ment. One set of operands must
move horizontally across the array
(e.g., input-vector elements), one set
can be stationary in the PEs (e.g.,
matrix elements), and one set must
move vertically across the array (e.g.,

output-vector elements). In IMC, the
horizontal movement is mitigated by
the high density of bit cells, which
are found to be 10-100x smaller in
area (3-10x smaller in edge length)
for corresponding MAC-computation
hardware (e.g., [5] versus [7] and [11]).
Furthermore, the vertical movement is
mitigated both by the high density
of bit cells and because the high-
dynamic-range signal drives the capac-
itance of a single wire in analog IMC
architectures and multiple wires in a
digital architecture.

Figure 5(b) considers computa-
tion, using the design point of 4-b

MACs and 1,024 dimensional vectors/
matrices as an example (relevant to cur-
rent trends in deep-learning inference
systems). While this IMC architecture
is restricted to 1-b stored operands, a
recently proposed approach (descri-
bed later in the article) extends to
multiple bits by performing 1-b MACs
serially and in parallel columns, fol-
lowed by digitization, proper binary
weighting (barrel shifting), and
finally summation of the outputs
[12]. This approach exploits an addi-
tional form of amortization along
the memory-column dimension, in
terms of the operations required
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FIGURE 5: A comparison of IMC with spatial architectures: the (a) data movement and (b) computation.
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for multibit computation. Namely,
although IMC bit cells can perform
1-b logical operations (XNOR and
AND), digital PEs require multibit
operation (full adder). As we will
show, such amortization once again
imposes an SNR tradeoff. Using sili-
con measurements and postlayout
simulations in a 45-nm technology,
we see that, over the storage, multi-
ply, accumulate, and data-movement
operations performed by PEs, IMC
holds the potential for 10x greater
energy efficiency.

Current Standing of IMC

With IMC recently becoming an active
research area, we have seen a num-
ber of prototype demonstrations
that enable comparisons against
digital-accelerator approaches. Fig-
ure 6(a) plots the area-normalized
throughput versus energy efficiency
of recent IMC and non-IMC proto-
types, showing that IMC enables
roughly 10x gains in each metric,
which is expected based on the
aforementioned analysis. Although
this represents significant prom-
ise, Figure 6(b) exposes the primary
challenge: plotting the total scale of
computation achieved (the amount
in memory integrated in prototypes).
With the exception of one design [11]
(considered in detail in the “High-
SNR Circuit Design” section), IMC
demonstrations have been highly
limited in scale, primarily due to the
fundamental SNR tradeoff described,
especially in the context of analog
computation. The following section
takes a closer look at the challenges,
using recent demonstrations as ex-
amples, to then motivate possible
paths forward.

IMC Challenges and Approaches

Multiple IMC approaches have recently
been proposed. To frame this discus-
sion, it is useful to relate these to the
fundamental tradeoffs developed in
the “Bandwidth/Latency/Energy
Versus Signal-to-Noise Ratio Trad-
eoff” section. For example, although
some designs perform computation in
memory, they may activate only one or

two WLs at a time (e.g., [13] and [14]).
This prevents significant amortiza-
tion compared to standard memory
accessing, yet it incurs the challeng-
es of integrating computation in con-
strained bit-cell circuits (e.g., [13]
requires adopting a 10-T bit cell, and
[14] requires multiple memory-oper-
ation cycles). In such cases, standard
memory accessing would likely be
preferable, followed by computation
just outside the memory array using
less constrained circuits. Keeping in
mind the fundamental IMC trad-
eoffs, the following sections survey
the challenges, illustrated using recent
design examples.

Circuit Challenges

Analog Nonidealities

To fit computation in constrained bit-
cell circuits, IMC commonly employs
analog operation, leveraging richer T
behavior than that allowed by digital
switch-based abstraction. With regard
to the SNR tradeoff, the increased
sensitivity to variations and nonlin-
earities now becomes the dominant
source of computation noise. For
instance, Figure 7 shows the nonlin-
earity and variation (standard devia-
tion shown as error bars) of the BL/
BLb output with respect to one input-
vector element value in [7] and to the
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FIGURE 6: A comparison of IMC and non-IMC prototypes: the (a) throughput versus energy
efficiency and (b) total memory versus area efficiency.
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overall accumulation result in [15].
Additionally, using T currents as the
output signal of each bit cell also
raises sensitivities to temperature,
which can strongly impact carrier
transport in semiconductors.

One way to mitigate the effects
of T nonlinearity arising from BL/
BLb biasing is to employ low-swing
signaling. However, the SNR trad-
eoff is then adversely affected by the

increased impact of variations (and
shot-noise sources) relative to the
signal. In fact, higher computation
SNR may be observed in practice by
increasing swing [16]. Nonetheless,
Figure 8 illustrates the approach
in [16], also showing that the MAC
operation possible in IMC columns
can be used beyond MVMs. In this
case, multibit data are stored in a col-
umn-major format, and different WL
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FIGURE 7: An illustration of analog-computation nonidealities: (a) the BL/BLb-discharge noni-
deality in [7] and (b) the read-BL nonideality in [15]. XAC: XNOR-and-accumulate value.
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pulsewidths are applied in parallel
for binary weighting, thereby yield-
ing an analog read operation of a mul-
tibit word (configurable mixed-signal
computation is then performed in the
array periphery).

An important direction for IMC
is incorporating alternate memory
technologies—for instance, nonvola-
tile technologies—that can enable
the possibility of multilevel stor-
age, low-power duty-cycle operation,
and increased density. The emerg-
ing memory technologies can include
resistive RAM (RRAM), magnetic RAM
(MRAM), and phase-change memory
(PCM). Such technologies suffer from
many of the same analog nonideali-
ties as SRAM-based IMC. For instance,
Figure 9(a) shows the variation of
MAC outputs from a NOR-flash imple-
mentation [8]. On top of this, such
technologies are likely to exacerbate
the challenges with analog readout.
For instance, multilevel storage fur-
ther increases dynamic-range require-
ments, impacting the SNR tradeoff,
and the relatively low resistance and
low-resistance contrast of emerg-
ing memory technologies (RRAM and
MRAM) increase the power and area of
the readout circuitry, which already
dominates in demonstrated systems
[9], as shown in Figure 9(b).

Power Delivery

IMC leverages the parallel struc-
ture of memory. However, such par-
allel operation also elevates peak
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FIGURE 9: The challenges with nonvolatile memory technologies: the (a) variation of MAC outputs [8] and (b) energy/area consumption of
readout circuity [9]. ADC: analog-to-digital converter.
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power-delivery requirements in
at least two ways. First, activation of
many/all WLs is fundamental to the
amortization performed and thus
requires corresponding power deliv-
ery to the WL drivers. This must be
addressed through power-grid density,
especially because noise on the WL
levels can translate directly to com-
putation noise. Second, operation of
many/all bit cells is fundamental to the
amortization performed. We can make
a distinction between static and
dynamic computation approaches.
Figure 10(a) shows an example of static
computation, employing a static buf-
fer at the bit-cell output [15]. In this
case, activating manyy/all bit cells leads
to currents of up to 1 mA in each col-
umn, challenging the feasibility of
low-noise power delivery. Figure 10(b)
shows an example of dynamic com-
putation, where the activated bit cells
simply discharge the BL/BLb capaci-
tance such that the total charge deliv-
ered never exceeds that of a standard
full-swing read [7]. This requires de-
signing against saturation of BL/BLb
discharge, as is done in [7] by restrict-
ing WLDAC output range and minimiz-
ing BL/BLb leakage, which can result
in computation noise.

Bit-Cell Stability

A consequence of accessing compu-
tational results rather than raw data
is that activated bit cells are exposed
to different data on BL/BLb than
those stored. This raises the possi-
bility of disrupting their stored data.
Two approaches have been pursued
to guard against this. First, buffered
cells have been employed, whereby
the critical data-storage nodes are
isolated from the computed BL/BLb
value [15]. This has the drawback of
degrading density. Second, suitable
bit-cell biasing has been employed.
This has included low-swing sig-
naling on BL/BLb such that bit-cell
biasing remains close to standard
SRAM read-condition biasing [16].
However, this adversely affects the
SNR tradeoff. Alternatively, WL-bias-
ing has been employed, wherein the
WL voltage is kept low [7]. In addi-

tion to limiting the bit-cell current
to guard against BL/BLb saturation
in dynamic computation, this can
ensure adequate isolation of the
bit-cell storage nodes from the com-
puted BL/BLb value.

Architectural Challenges

IMC primarily addresses MVM or
other vector operations, which repre-
sent only a subset of computations
required in practical applications.
As an example, Figure 11 shows the
profiling results for the many compu-
tations required in different neural-
network (training) applications [17].
Although we see that MVM (shown as
general matrix multiply) dominates,
it is necessary for complete architec-
tures to address the many other com-
putations and to do so programmably
and configurably. Importantly, the
other computations are character-

istically different than MVM in that
they apply to element-wise (low-/sin-
gle-dimensionality) operands. This
reduces the emphasis on data move-
ment that motivates IMC and instead
enables the use of conventional digi-
tal acceleration. However, it is criti-
cal that IMC now integrates robustly
and efficiently in larger heteroge-
neous architectures.

This raises two critical consider-
ations. First, robust integration in
larger architectures requires a well-
defined functional specification of
the IMC block. This is challenged by
analog circuit nonidealities, which
significantly affect computation SNR
and are typically difficult to character-
ize (e.g., due to process, temperature,
and voltage dependence) or statistical
in nature (e.g., due to T variations).
Second, heterogenous architectures
are often limited by data movement
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FIGURE 10: An illustration of power-delivery considerations in IMC: the (a) static current

drive [15] and (b) dynamic current drive [7].
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The IMC architecture is based on an array
of six-transistor static random-access memory
bit cells, and it includes periphery for

fwo modes of operation.

and computation control between
accelerators. Efficient integration thus
requires a proper and flexible inter-
face design between the highly par-
allel IMC inputs/outputs and more
typical microprocessor blocks as well
as specialized, domain-specific archi-
tectures matched to the dataflow in
classes of applications. Although re-
cent progress has been made in these
areas, considerable opportunities for
further research remain.

System Challenges

Computing systems must be able to
support mapping of broad sets of
applications. This raises the need
for virtualization, where the limited
hardware available is repurposed,
reconfigured, and sequenced at
runtime to efficiently support the
execution of desired computations,
typically specified through software.
This is usually done through optimiz-
ers and automatic code generators
in the compiler stack, which encap-
sulate algorithms for optimally map-
ping computations to the hardware.
Given the significantly different
physical tradeoffs presented by IMC
(see the section “IMC Fundamentals”)
compared to conventional digital
architectures, the algorithms must be
carefully thought through to avoid
losing the potential gains presented
by IMC at the circuit level.
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As an example, an immediate con-
cern is the energy and latency costs
of configuring or loading stored
data in IMC. While IMC reduces the
costs of MVM computation, it doesn’t
change the costs of loading data in
the memory circuits. Thus, gains are
derived only if MVM computation
costs dominate at the system level.
This depends on amortizing the data-
loading costs through computational
reuse. One way to analyze this is the
widely used roof-line plot (Figure 12),
where the breakpoint between load-
ing-bound and compute-bound
IMC operation occurs at the compute
intensity (i.e., the number of com-
pute operations performed on each
of the loaded data), with the com-
putation energy/throughput costs
equaling the data-loading energy/
throughput cost.

To illustrate, Figure 12 shows the
example of loading data from off-chip
DRAM. But it emphasizes the impor-
tance of evaluating IMC considering
its bandwidth/energy tradeoffs
together with different applications.
Specifically, the IMC bandwidth/
latency gains push the breakpoint to
higher compute-intensity applications.
However, as an example, the trend
toward reducing operand precision
in neural-network applications [2]-[4]
can enable loading from smaller, more
efficient embedded memories or fixed
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FIGURE 12: The roof-line plots identifying loading-bound and compute-bound regimes.
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storage in IMC modules entirely, for
specific (smaller) neural networks and
use cases.

Prospects and Current

State of the Art

While IMC presents a wide range of
challenges, the initial promise it has
shown and recent approaches that
have been proposed to harness/over-
come the underlying tradeoffs sug-
gest it will be a vital area for ongoing
research, especially toward platforms
of practical scale and complexity. A
few vectors for future research and
their current states are reviewed next.

Emerging Memory Technologies
Emerging memory technologies rep-
resent a key vector for IMC research.
The primary motivation is the poten-
tial for density scaling they present
compared to SRAM. Indeed, increas-
ing the scale of IMC based on resistive
memory technologies (RRAM, MRAM,
and PCM) has recently been demon-
strated [8]-[10], [18], with even greater
progress likely as foundry options for
these technologies emerge. The pri-
mary challenge posed with regard to
the underlying SNR tradeoff in IMC is
readout of the computation result. In
particular, the technologies present
varying levels of resistance and resis-
tance contrast, but they are generally
much more limited than the on-off
ratio or transconductance presented
by MOSFETs in SRAM bit cells. The
bit-cell computations thus possibly
lead to lower signal values, potentially
leading as well to a regime limited by
readout complexity (energy and area)
[9], which, in turn, scales in proportion
to the number of bit cells involved. In
this regime, the possible amortiza-
tion of readout complexity is limited,
and IMC gains are thus strongly deter-
mined by the characteristics of the bit
cells themselves. Therefore, a criti-
cal direction for such research is the
codesign of IMC architectures with bit-
cell technology.

The readout complexity can have
important implications on IMC den-
sity. Specifically, crossbar architec-
tures tend to impose more stringent



readout challenges (e.g., to manage
possible interference between read-
out columns), making the readout-
circuit area significant and, again,
scaling with array size. On the other
hand, one-T, one-resistor (R) struc-
tures are typically denser than SRAM
but now limited by MOSFET scaling.
Further, the asymmetry in device
characteristics between the T and
R (memory device) often imposes
additional area overheads to resolve
(e.g., the use of two complementary
bit cells).

An additional motivation for emerg-
ing resistive memory technologies is
nonvolatility, which has the poten-
tial to lower power, especially in
duty-cycled scenarios. This holds sig-
nificant promise but will need to be
evaluated in application use cases.
Additionally, nonvolatility often lim-
its the number of write cycles, posing
challenges for hardware-virtualiza-
tion approaches.

Algorithmic Codesign

Machine-learning inference has emerged
as one of the biggest drivers for IMC,
both because the computations have
driven platforms to their energy
and throughput limits and because
the computations are dominated by
MVM, which limits the gains possible
from digital accelerators. Interest-
ingly, machine-learning inference
presents distinct opportunities for

Instead of accessing raw bits row by row, IMC
accesses a computation result over many/all bits,
thereby amortizing the accessing costs.

addressing the SNR tradeoff in IMC
through algorithmic approaches.
Machine-learning inference involves
specifying a parametric model of
how data statistically relate to infer-
ences (decisions) of interest and then
training the model parameters using
available data that are representative
of the statistics. In this way, statis-
tical parameter optimization for a
given model affords flexibility in the
choice of actual model, which can
be selected for computational effi-
ciency. For example, this aspect has
been exploited toward aggressive
quantization [2], which has already
been shown to yield benefits for IMC.
But it can also be exploited to over-
come computational noise arising
from analog circuit nonidealities lim-
iting IMC.

Because the nonidealities can be
statistical (e.g., variations) or determin-
istic (e.g., nonlinearity), a distinction
can be made between hardware-spe-
cific training of model parameters
and hardware-generalized training of
model parameters. In hardware-spe-
cific training, the specific variation-
affected instance of hardware is used
in the training process to tune param-
eters to the specific hardware [7], [19].

MRAM-Based BNN Simulation

This has the drawback of incurring
instance-by-instance training costs,
and recent IMC demonstrations have
explored incorporating the associated
hardware support to minimize such
costs [19]. In hardware-generalized
training, a statistical model of the dis-
tribution of variation-affected hard-
ware is used in the training process
to learn parameters one time [20].
This avoids the need for instance-
by-instance training. For the example
shown in Figure 13 of MRAM-based
IMC implementing a neural network
for v