
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Overcoming Computational Errors in Sensing
Platforms Through Embedded

Machine-Learning Kernels
Zhuo Wang, Student Member, IEEE, Kyong Ho Lee, Student Member, IEEE, and Naveen Verma, Member, IEEE

Abstract— We present an approach for overcoming
computational errors at run time that originate from static
hardware faults in digital processors. The approach is based
on embedded machine-learning stages that learn and model
the statistics of the computational outputs in the presence of
errors, resulting in an error-aware model for embedded analysis.
We demonstrate, in hardware, two systems for analyzing sensor
data: 1) an EEG-based seizure detector and 2) an ECG-based
cardiac arrhythmia detector. The systems use a small kernel
of fault-free hardware (constituting <7.0% and <31% of the
total areas respectively) to construct and apply the error-aware
model. The systems construct their own error-aware models
with minimal overhead through the use of an embedded active-
learning framework. Via an field-programmable gate array
implementation for hardware experiments, stuck-at faults are
injected at controllable rates within synthesized gate-level netlists
to permit characterization. The seizure detector demonstrates
restored performance despite faults on 0.018% of the circuit
nodes [causing bit error rates (BERs) up to 45%], and the
arrhythmia detector demonstrates restored performance despite
faults on 2.7% of the circuit nodes (causing BERs up to 50%).

Index Terms— Embedded sensing, fault tolerance, hardware
resiliency, machine learning, run-time error correction.

I. INTRODUCTION

POWERFUL algorithms have emerged from the domain
of machine learning that enable data-driven methods for

modeling and analyzing application signals. The strength of
machine learning is that it enables the creation of high-
order models from previously observed data. This is valuable
to embedded sensing applications for two reasons [1]–[3]:
1) it enables analysis models that are well-suited for classifi-
cation, recognition, and mining functions, which are becoming
increasingly prominent [4] and 2) it overcomes the need for
analytical models, which are often inviable for the physically-
complex embedded signals of interest. The focus of this paper

Manuscript received May 23, 2013; revised December 21, 2013 and
June 13, 2014; accepted July 21, 2014. This work was supported in part
by Semiconductor Research Corporation, in part by the National Science
Foundation under Grant CCF-1253670, in part by MARCO, and in part by the
Defense Advanced Research Projects Agency, through the Center for Future
Architectures Research and Systems on Nanoscale Information Fabrics.

Z. Wang and N. Verma are with the Department of Electrical
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
zhuow@princeton.edu; nverma@princeton.edu).

K. H. Lee was with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA, and now with Samsung Research
America, Dallas, TX, USA (e-mail: kyongho.l@samsung.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2342153

is to extend the potential benefits of machine learning, beyond
enabling analysis models for application signals, to mitigating
the need for design margining against a significant class of
hardware faults, namely static faults [e.g., opens/shorts caused
by lithographic defects, logic gate static noise margin (SNM)
violations caused by transistor variability, and so on]. They
impose substantial costs on system resources (area, energy,
and so on) due to the need for design margining [5]–[8]. While
such faults can be impossible to predict and can manifest as
severe, complex, and highly transient errors, we show that
machine-learning (ML) methods can enable the construction of
an analysis model in the presence of the resulting errors, over-
coming the impact of static faults. We describe architectures
that utilize this principle toward system-level resilience with
little overhead in terms of energy and hardware. The approach
is referred to as data-driven hardware resilience (DDHR), and
the resulting model is referred to as an error-aware model.
Preliminary simulations for DDHR were presented in [9].
Here, we present hardware experiments along with an
information-based analysis of the approach. While it is
expected that such an approach can benefit system resources
by alleviating the need for design margining, the precise
benefit is highly dependent on the implementation and thus
difficult to systematically characterize; for quantitative charac-
terization, we thus focus our analysis by considering system
performance directly with respect to fault rates. Further, we
propose an architecture that enables on-line construction of
the error-aware model and also enables assessment of whether
such a model can successfully restore system performance.
The specific contributions of this paper are as follows.

1) We demonstrate in hardware, via field-programmable
gate array (FPGA) emulation, the proposed architec-
ture utilizing DDHR in two systems for classification:
1) an EEG-based seizure detector and 2) an ECG-based
cardiac-arrhythmia detector. FPGA implementation
permits characterization through the injection of hard-
ware faults on randomized nodes in the circuit at
controllable rates. We show that DDHR imposes low
operational overhead and is able to restore performance
to the level of a fault-free system yet in the presence
of BERs up to 45% and 50%, respectively [due to
faults on >20 (out of 110k) circuit nodes and >480
(out of 18k) circuit nodes].

2) We present an architecture that includes a subsystem
for training the error-aware model entirely within the
platform at run time. Model training requires two items:

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

1) training data, whose statistics correctly represent
variances both due to application signals and errors
and 2) class labels for the training data, from which
a decision function can be specified. While the training
data is readily available from the fault-affected hardware
itself, we show how training labels can be effectively
estimated within the architecture. Further, we show
how the impact of the training subsystem within the
architecture can be minimized using an active-learning
algorithm, which selects the optimal instances for
training from among the sensed data. We show that
performance very close to an ideally trained error-aware
model is thus achieved with a small fraction of the
sensed data.

3) We show that thanks to flexible data-driven modeling,
the performance of DDHR is ultimately limited by the
mutual information (MI) exhibited by the error-affected
data, rather than bit-error metrics. MI is a fundamental
information metric derived from the Shannon entropy
that measures how much information is shared between
two variables (in this case, the error-affected data and the
system output). An important insight that emerges is that
MI is often retained despite large bit-level errors. This
suggests that substantial error-tolerance can be achieved
through DDHR. We propose a proxy to MI that can be
computed on-line to predict when the hardware faults
will be too severe to overcome through DDHR.

The remainder of this paper is organized as follows.
Section II presents background, both on error-tolerant archi-
tectures and on ML frameworks for embedded data analysis.
Section III presents an overview of DDHR, as well as the fault
types targeted, and describes a system architecture that incurs
minimal hardware overhead for model training. Section IV
presents the experimental approach and Section V presents
results from the hardware experiments. Finally, Section VI
presents the conclusion.

II. BACKGROUND

The DDHR follows the trend of seeking system-level
approaches to hardware resilience. The background in this
area as well as the ML approach taken by DDHR is presented
below.

A. Architectures for Hardware Resilience

The CMOS manufacturing has always been susceptible
to defects, causing hardware faults that have traditionally
resulted in direct yield loss. In the past, defects have been
managed through design margining. However, technology scal-
ing as well as transistor operation in aggressive low-energy
and/or high-performance regimes has dramatically exacerbated
the sources of hardware faults. Lithography errors, process
fluctuations (random dopant fluctuations, and so on), and
device degradations (hot-carrier injection, and so on) [10], [11]
have progressed to levels where the overheads of traditional
design margining are too severe [5]. As a result, system-
or application-level approaches to hardware resilience have
gained substantial interest due to their potential to perform

better than design margining [8], [12]. The research in this
area can generally be categorized into two approaches: error
correction and error tolerance.

Error correction attempts to undo the effects of hardware
faults typically by detecting and correcting computational
errors. While error detection and correction has been widely
applied within specific circuits, such as static random-access
memories [13], approaches such as Razor [14] have extended
the idea to CPUs through microarchitectural enhancements
in the processor pipeline for error detection and replay.
Such an approach can improve efficiency by permitting volt-
age/frequency scaling limited by the overhead of replay rather
than the overhead of margining against the first occurrence of
errors [15].

Error tolerance allows the system to make errors, but
attempts to minimize system-level impact; most importantly,
this requires ensuring correct functionality. This often incurs
reduced overhead by exploiting the idea that many emerging
applications inherently exhibit some error tolerance [8]. While
simple voting systems based on redundancy [16] incur high
hardware and power costs, algorithmic enhancements that
exploit the statistics of the errors have shown to substantially
improve efficiency; an illustrative example is algorithmic noise
tolerance, wherein computations are performed by redundant
blocks that explicitly have differing error statistics [17]. Other
approaches that utilize redundancy efficiently include
N-modular redundancy (NMR) and NMR with soft
voting [18]. Aside from application-specific architectures
based on redundancy, error-tolerant principles have also been
applied to programmable platforms. Here, the critical concern
is ensuring error-free control flow while permitting errors
for data computation. Error resilient system architecture
employs hardware asymmetry, wherein control-flow tasks are
delegated to a reliable (fault-free) core, while data computation
is delegated to relaxed reliability cores [19]. Approaches
have also applied asymmetry on a finer grain, for instance,
by synthesizing a CPU core to have increased timing slack
on specific paths [20] or by introducing hardware support to
provide error protection of specific instructions [21].

These approaches have variously demonstrated efficient
handling of BERs on the order of 0.1% caused due to faults in
the circuit [19]. The work presented here aims to achieve much
higher levels of error tolerance through data-driven statistical
modeling capabilities introduced by ML kernels. It has been
previously noted that frameworks based on statistical modeling
inherently yield some degree of resilience against low-order
bit errors [22]. However, by exploiting flexible data-driven
modeling capabilities, we aim to approach a more fundamental
limit set by the level of information retained within the error-
affected data for an analysis of interest. Since ML kernels
are increasingly being employed within applications, such
capabilities can incur very little operational overhead.

B. Embedded Analysis Using Machine-Learning Kernels

As mentioned, machine learning is gaining popularity for
the analysis of embedded signals because it enables the
construction of strong models from previous observations of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: OVERCOMING COMPUTATIONAL ERRORS IN SENSING PLATFORMS THROUGH EMBEDDED ML KERNELS 3

Fig. 1. Illustration of the SVM, which is a supervised machine-learning
framework for classification.

the data, thus precluding the need for rigorous analytical
modeling. A critical premise in machine learning is that to
maintain the integrity of the model, the data to be analyzed
must exhibit the same statistics as the previous observations.
This forms the basis for the proposed approach and it directs
the types of faults that can ultimately be handled.

While a wide range of machine learning frameworks exist,
we focus on a particular framework to illustrate the DDHR
concept within applications for sensor-data classification, an
increasingly prominent function in embedded applications [4].
The support vector machine (SVM) is a supervised machine-
learning framework for classification that has gained popular-
ity due to its efficiency [1]–[3], [23] and its ability to form
robust models with minimal training data [24], [25]. Fig. 1
shows the SVM framework. Supervised learning algorithms
consist of two phases: 1) training, wherein a model for
classification is constructed using training data and training-
data labels that specify class membership and 2) testing,
wherein the constructed model is applied within a decision
function to classify in-coming data in real time. During both
phases, the data is provided in the form of a feature vector.
In general, feature extraction is an important step that reduces
the complexity of the application data through processing to
extract the critical parameters believed to be most informative
for classification. For SVM training, the labels (y1, y2, . . . , yn)
are typically binary parameters provided by an expert. These
are then used with the training feature vectors (�x1, �x2, . . . , �xn)
to effectively establish a hyperplane that forms a decision
boundary for classification in the feature space. The hyper-
plane is represented by choosing instances of the training
feature vectors that lie near the edges of the class distributions
and then maximizing the marginal distance between instances
from the different classes. The chosen instances are called the
support vectors and are thus used in the classification decision
function

K (�x, �z) = exp

(
−‖�x − �z‖2

2σ 2

)
. (1)

Fig. 2(a) shows the decision function and an effective
decision boundary (in a 2-D feature space) for a binary
classifier; �x represents the feature data to be classified, �x j , y j

Fig. 2. SVM decision function and effective decision boundary in the feature
space using (a) linear kernel and (b) nonlinear kernel to increase the flexibility
of the effective decision boundary.

Fig. 3. Architecture where a small kernel of fault-protected hardware
(shown shaded) enables resilient system-level performance; estimates of
block gate counts from our system are shown (MCU used is MSP430 from
OpenCores [26]).

represents the support vectors and their labels, and α j and b
represent parameters obtained from training. A critical strength
of the SVM is its ability to construct highly flexible
decision boundaries, enabling classification of data with com-
plex distributions in the feature space. This flexibility, beyond
the linear decision function shown in Fig. 2(a), is achieved
by introducing a nonlinear kernel in the decision function,
which has the effect of mapping the feature vectors to higher
dimensionality. As shown in Fig. 2(b), where the nonlinear
kernel is represented by K, this enables greater flexibility in
the effective decision boundary, thus improving discrimination
between the classes. A commonly applied kernel function
is the radial-basis function kernel that uses an exponential
non-linearity as shown in (1), yielding a mapping to infinite
dimensionality for a very high degree of flexibility.

III. DETAILS OF THE APPROACH

The DDHR aims to achieve error resilience over a large,
fault-affected architecture by leveraging a small kernel of
fault-protected hardware; the impact of the fault-protected
hardware is meant to be minimal both in hardware (area)
and energy. Fig. 3 shows the architecture for the systems
we demonstrate. The fault-affected blocks consist of digital
processors for performing feature extraction during real-time
operation. The fault-protected blocks consist of: 1) ML kernels
for performing SVM classification during real-time operation
and 2) a small, general-purpose microcontroller (MCU) for
infrequent or one-time training of the error-aware model,
which is not required during real-time operation. The MCU is
implemented via an OpenMSP core [26].

A. System Rationale

Employing design margining in the usual way to address
hardware faults imposes costs, both real and in terms of system

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 4. Comparison of classification energy with MCU and with accelerator
based system architecture for EEG seizure detector and ECG arrhythmia
detector. Numbers are derived from [30].

resources, e.g., area (to address defects due to nanoscale
lithography [27], [28]), energy (to address logic-gate
SNM violations due to transistor variability in low-voltage
designs [29]), and so on. The aim of DDHR is to enable
hardware relaxations by tolerating errors in the outputs of the
fault-affected blocks.

With regards to area, as an example, in Fig. 3, we show the
gate counts for the various blocks in one of the demonstrated
systems (EEG-based seizure detector, whose experimental
performance is presented in Section V-A). The gate counts
are derived from register-transfer level (RTL) synthesis to
an application specified integrated circuit (ASIC) standard-
cell library. As shown, the fault-affected blocks dominate
the architecture, making their tolerance to errors the critical
concern. Generally speaking, the MCU can be small, thanks
to the need for low performance (MIPS) and simple instruc-
tion set, which is made possible since it does not perform
real-time functions (as described in Section III-C, the MCU
implements model training, including temporary classification
for training-label generation and decision-boundary fitting to
an acquired training set). The gate counts presented for the
fault-affected processor and the fault-protected ML kernel both
scale with the number of sensor channels (which can be as
high as 18 for the seizure-detection system); the gate count for
the MCU, on the other hand, does not scale with the sensor
channels and can thus be further amortized. The objective of
the architecture is thus to address the hardware-dominating
fault-affected blocks by leveraging the comparatively small
fault-protected kernel.

With regards to energy, as an example, in Fig. 4, we
show the estimated energy for various computations in
the demonstrated systems (EEG-based seizure detector and
ECG-based arrhythmia detector). The energy estimates are
derived from silicon measurements of a fabricated custom
CMOS IC [30] that integrates a CPU (based on the same
OpenMSP core) and an accelerator, which can be configured as
an SVM classifier or finite-impulse response (FIR) filter. The
energies for a hardware-based (accelerator) implementation of
both the feature extractor and SVM classifier are shown. These
constitute real-time computations in the proposed architecture
and are mapped to fault-affected and fault-protected blocks,
respectively. In addition to these, the architecture requires
nonreal-time computations for training the error-aware model
via fault-protected hardware. This is achieved using the MCU.
As described in Section III-C, this training itself requires
error-free feature extraction and SVM classification to derive
training label estimates. In Fig. 4, we thus also provide the

Fig. 5. Feature vectors for a seizure-detection system (shown in two-
dimensions via PCA for visualization). (a) Distribution variances are only due
to the application signals and are modeled by the original decision boundary.
(b) Variances are also due to computational errors, making a new decision
boundary necessary by training on the error-affected data.

energy of a software-based implementation (on the MCU) for
the feature extractor. This energy is 12× and 55× higher than
the implementation mapped to fault-affected hardware and is
thus only viable for the temporary, nonreal-time computations
during training. As an example, for the permanent faults
considered in this paper, training is required only once. The
objective of the architecture is thus to address the fault-affected
blocks used for on-going real-time computations by leveraging
the amortized energy of the MCU for model training.

B. Concept of Error-Aware Modeling and
Types of Faults Addressed

The key to overcoming errors is the ML stages, which utilize
decision functions constructed at run time using the outputs of
the error-affected processors. As mentioned, an SVM is used
as the ML stage for classification. For a given instance of a
fault-affected processor, the statistics of the output data is gen-
erated both by variances in the application signals and by the
specific faults leading to computational errors. Accordingly,
using data from the fault-affected processor itself, an error-
aware model that suitably represents the manifestations of the
errors can be effectively constructed. The problem of how to
construct such a model at run time for a given instance of the
system is discussed in Section III-C.

In Fig. 5, we show the concept of an error-aware model.
An actual feature data is shown from hardware measurement of
the seizure-detection system described in Section V-A [though
the actual data is of much higher dimensionality, principal
component analysis (PCA) has been used in the plots to aid
visualization]. Fig. 5(a) shows the feature vectors extracted
from a fault-free system as well as the decision boundary
derived from the error-free data. Fig. 5(b) shows the feature
vectors derived using a fault-affected system. As shown, the
feature distributions are altered due to the computational
errors. The original decision boundary, drawn as a dotted
line, misclassifies many seizure vectors. On the other hand, an
error-aware model, constructed from the error-affected feature
vectors is drawn as a solid line and suggests that classification
performance can be restored.

The proposed approach to error-aware modeling has impor-
tant implications on the types of faults that can be addressed
by the system. In general, a requirement with ML algorithms
is that the statistics between the training set and the testing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: OVERCOMING COMPUTATIONAL ERRORS IN SENSING PLATFORMS THROUGH EMBEDDED ML KERNELS 5

data must remain consistent. As a result, faults that are static
or that can be tracked through training can be addressed by the
proposed approach, while dynamic faults that do not preserve
the statistics generally cannot. It is important to note here that
the errors generated by static faults can be, and typically are,
highly transient. What is critical is that the statistics of the
errors does not change between training and testing.

Indeed, many of the critical faults concerning advanced
CMOS in low-energy operating regimes are of such a nature
and can be addressed. These include opens and shorts
caused by defects in nanoscale lithography [31], logic gate
SNM violations at low voltages caused due to transistor
variations1 [32], and so on. It is also worth noting that many
faults that critically limit the adoption of post-CMOS devices
are also static. For instance, carbon nanotube circuits suffer
from nanotube-density variations, where the critical effect is
complete loss of channel nanotubes in logic gates, preventing
functional output transitions [33]. For the experimental evalu-
ations described in Section V-A, we employ a stuck-at-1/0
fault model; this appropriately represents the mentioned
faults [29], [34]. Previous work exploring the statistics
generated by timing violations [6], [35] suggests that such
faults can likely also be addressed by the approach; however,
our experiments do not model such faults, and characterization
of their effects is not covered in this paper.

It is also noted that in addition to computational errors
due to digital faults, a practical system will also be affected
by noise in the sensor and analog front end. In general,
the ML algorithms will employ training using data from a
typical acquisition subsystem and will attempt to construct
an inference model that maximizes the margin against such
noise in the data. In the case of an SVM, for instance, this
is achieved by finding a decision boundary that maximizes
the marginal distance from the classes. Examples of practical
systems incorporating analog front ends with a back-end
classifier (based on an SVM) include [36]–[38].

C. Active-Learning System for On-Line Model Construction

As mentioned above, error-aware modeling relies on
training data from the given instance of a fault-affected proces-
sor itself. We thus focus on an approach where the models are
constructed dynamically at run time as sensor data is being
processed. While training data for this is readily available
within the system, training-data labels are also required in
a supervised learning framework such as an SVM. Here,
we propose a system wherein the error-aware model can be
constructed on line without the need for external labeling.

The system is shown in Fig. 6. It has two aspects: 1) the
permanent fault-affected system, whose operation dominates
the architecture and whose outputs will also be used as the
training feature vectors and 2) a temporary fault-protected
auxiliary system implemented on the MCU that is used to
estimate the training labels and perform model training. The
auxiliary system estimates training labels by implementing

1While the device-level variations are static, such faults can potentially have
some dependence on temperature and voltage; this could necessitate training
over the various conditions.

Fig. 6. System for self-construction of error-aware models by estimating
training labels using an auxiliary system with low duty cycle, enabled by
active learning (shaded blocks are fault protected).

error-free feature extraction and classification. For this clas-
sification, a model can be used that addresses the expected
statistics generated due to the application signals alone; such
a model is generic across instances of the system and can be
derived a priori since it is not impacted by the errors caused by
a particular instance of a fault-affected processor. Though the
auxiliary system does not provide perfect labels, it provides
labels that are accurate up to the classification performance
that is achievable by an error-free system. As described in
Section V-A, we find that estimated labels thus enable perfor-
mance very close to that of perfect labels. As mentioned above,
the implementation of error-free feature extractor on the MCU
incurs a high energy cost; thus, this is only done during one-
time or infrequent training to generate the estimated labels,
allowing the energy to be amortized over the real-time opera-
tion of the fault-affected processor. Note, in this paper, where
we consider permanent faults, training is performed only once.
In general, various metrics can be considered for detecting a
change in the data statistics to trigger retraining; for instance,
changes in the rate with which feature vectors fall near the
classification boundary can be monitored (i.e., by computing
histograms of the marginal distance [39]). However, such
approaches for triggering retraining are not covered in this
paper.

As shown in Fig. 6, the auxiliary system performs classi-
fication on input data in parallel with processing through the
fault-affected processor. The training labels and training data
are thus provided by the auxiliary system and fault-affected
processor, respectively, to an embedded trainer that can operate
at low speed to construct an error-aware model. While in the
demonstrated systems, the auxiliary system and the trainer are
implemented by the fault-protected MCU, in voltage-scaled
systems (such as [15]), these can be implemented via a low-
error mode.

In addition to the need for infrequent training, active learn-
ing is used within the architecture to further minimize the
duty cycle and hardware complexity of the auxiliary system.
Active learning [40] is an approach where the optimal training
data is selected from an available pool to reduce the training
and labeling effort required. A common metric used to select
training instances is the marginal distance from an initial
decision boundary [39]. This metric is implicitly computed
by the classification of kernels shown in Fig. 2 (the marginal
distance, thus computed, is actually compared with a thresh-
old to make classification decisions). In this paper, we also

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 7. (a) Active-learning system, where the permanent, fault-affected
system chooses data to be used for training. (b) Error-affected feature vectors
selected during one iteration using a marginal-distance criterion. Note that
though other feature vectors appear closer to the decision boundary, this is in
fact an artifact of PCA.

experiment with a randomized learner, wherein the training
instances are selected at random. The active-learning archi-
tecture used in our system is shown in Fig. 7(a). An original
model derived from error-free data serves as the initial decision
boundary within the fault-protected classifier of the permanent
system. The permanent system thus intrinsically derives the
marginal distance metric used for active learning. Training is
performed in iterations. As described below, this reduces the
hardware requirements. During each iteration, the instances of
feature data that fall within an established marginal distance
are committed to a buffer along with their auxiliary-system-
derived training labels; Fig. 7(b) shows the actual instances
selected during an iteration from our hardware experiments.
Following each iteration of training, a new error-aware model
is loaded in the classifier of the permanent system. We show
in Section V-B that active learning enables model convergence
with very little training data. This minimizes the duty cycle
of the auxiliary system as well as the amount of data that
should be buffered for each iteration; i.e., with the seizure-
detection and arrhythmia-detection systems, a buffer size of
2 kB enables model convergence in just 1 and 100 iterations,
respectively.

D. Performance Limit of Error-Aware Models and
a Computable Metric for Assessment

As we show in Section V-B, error-aware modeling is able to
overcome very high levels of bit errors in the processed data.

Fig. 8. Feature vector distributions for (a) baseline case without errors and
(b) case with errors, where the MI in the resulting data is degraded.

In fact, with a flexible data-driven-modeling stage, neither the
error rates nor magnitudes are critical. Rather, the bit-level
changes that occur can be viewed as altering the way
information is encoded within the feature data. The resulting
encoding, though unpredictable, is learned through training
with the error-affected data, thus leaving the performance lim-
ited fundamentally by how well the resulting encoding retains
information for distinguishing class membership. A direct
metric for the information for classification is MI. Given
feature data X and class label Y , MI uses the Shannon entropy
both to represent the overall uncertainty of the class label
H (Y) as well as the conditional uncertainty of the class
H (Y |X), dependent on the feature data. For discrete random
variables, the Shannon entropy is defined as in (2) and (3).
It should be noted that p(x) in (3) implies a probability
distribution over all values that the feature data can take over
a multidimensional feature space. We describe in Section V-B
how this is computed numerically for the data obtained from
our hardware experiments

H(Y) = −
∑

y=−1,1

p(y) log2 p(y) (2)

H(Y|X) = −
∑
x∈X

p(x)
∑

y=−1,1

p(y|x) log2 p(y|x). (3)

After computing entropies, MI is then given by I (X; Y) =
H (Y) − H (Y |X); i.e., it is the amount by which the uncer-
tainty of the class labels is reduced given the feature data.
To illustrate the implication of MI, Fig. 8 shows feature vector
distributions taken from our measurements both in the absence
of errors and in the presence of errors, for a case where the
errors cannot be overcome. As shown, the errors result in
an encoding of the feature data that degrades the separation
between the class distributions. Measurements in Section V-B
confirm that the performance of the error-aware model strongly
corresponds with MI.

Though MI is a precise metric for information, the problem
is that it cannot be computed on line, because it requires sep-
arating the data distributions according to class membership,
Y (3). We suggest a proxy to MI (PMI), where the data is
instead separated according to estimated class membership
YE, i.e., I (X; YE) = H (YE) − H (YE|X). As in the case
of labels for model training, our system estimates class mem-
bership using the temporary error-free auxiliary system. Since
H (YE|X) then represents the conditional uncertainty depen-
dent on class declarations by a fault-free system, I (X; YE) can

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: OVERCOMING COMPUTATIONAL ERRORS IN SENSING PLATFORMS THROUGH EMBEDDED ML KERNELS 7

Fig. 9. FPGA based experimentation and demonstration flow to enable
controllable scaling of fault rate as well as multiple gate-level implementations
for randomized fault locations within the circuit.

be viewed as the information to discriminate feature data with
performance corresponding to a fault-free system. We show in
Section V-B that I (X; YE) is as an excellent proxy with strong
correlation to I (X; Y). It thus enables on-line assessment of
an error-aware model’s ability to overcome faults even before
model convergence has been achieved.

IV. EXPERIMENTAL APPROACH

The experimental approach is driven by two major
considerations: 1) emulating relevant faults in a way that
accurately represents the physical effects that are of concern
at the technological level, yet doing so in a way that enables
evaluations on the algorithmic level targeted by our approach
and 2) enabling controllable and suitably randomized fault
injection to enable characterization of the approach. While the
faults of interest have been the focus of substantial modeling
efforts at the transistor/gate levels, system-level simulations,
which are required to address the algorithmic approach, are not
viable at the transistor/gate levels over large datasets [9], [35].
To overcome this, we focus on FPGA emulation. This allows
us to represent hardware faults on a logical level, where the
correspondence with technological sources is well established
while enabling rapid system-level evaluation compared with
simulation approaches. The fault model we employ is stuck-
at-1/0 faults. While this model has been widely used to
address a range of faults, previous work also explores and
suggests its validity for the particular faults of interest in our
experiments (opens/shorts due to nanoscale lithography, logic
gate SNM violations in low-voltage regimes due to transistor
variability) [29], [31], [32], [41].

Fig. 9 shows the FPGA-based fault-injection and hardware-
experimentation flow. It starts with RTL of the system
and involves synthesis into a gate-level netlist using an
ASIC standard-cell library. Given the netlist, faults are injected

Fig. 10. Logical representation of stuck-at-0/1 faults achieved by introducing
multiplexers on randomly-selected outputs; the multiplexers are controllable
to set the fault rate, location, and type (i.e., stuck-at-0/1).

Fig. 11. FPGA test setup (with Xilinx ML509 Virtex 5 boards) for the DUT
system and an Ethernet transceiver (enabling data exchange with PC).

by editing the netlist to introduce multiplexers on randomly-
selected output nodes. As shown in Fig. 10, the multiplexers
can be configured via the faultCtrl signal to assert a logic 0/1
at the output, depending on the faultVal signal; stuck-at-0/1
faults are thus represented. Following the introduction of
multiplexers, a fault-control module is introduced to enable
control of the faultCtrl and faultVal signals following FPGA
mapping. Using this approach, faults can be injected at a
controllable rate, and multiple instances of the circuit can be
tested at each fault rate to consider the impact of various fault
locations within the circuit. In our experiments, we perform
tests on five instances of the fault-affected circuit for each fault
rate. The faults are static for each test, set by configuring static
values for the faultCtrl and faultVal signals. The final netlist,
with circuits for injecting faults (multiplexers and fault-control
module), is then implemented on an FPGA, designated as
the device-under-test (DUT) FPGA. A second FPGA serves
simply as an Ethernet transceiver to stream input data from
a host PC and to capture output data to the host PC for post
processing and analysis. Fig. 11 shows the setup, wherein two
Xilinx Virtex 5 FPGAs are used.

V. EXPERIMENTAL DEMONSTRATIONS AND RESULTS

This section presents the applications and systems used to
demonstrate the DDHR concept. It then presents results from
the hardware experiments. Finally, the results are analyzed
using the metric of MI.

A. Applications for Demonstration

Two application systems for sensor-data classification are
used to demonstrate the DDHR concept: EEG-based seizure
detection and ECG-based cardiac-arrhythmia detection. The
architectural and technical details are presented below.

1) EEG-Based Seizure Detector: The processor for the
seizure-detection system is shown in Fig. 12(a). The sys-
tem is based on a state-of-the-art detection algorithm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 12. Processors for (a) EEG-based seizure detection and
(b) ECG-based cardiac arrhythmia detection used in our demonstrations (for
the seizure detector, two of the shown channels are used). Both designs are
implemented and synthesized from RTL, with the shaded blocks protected
during fault injection (these account for ∼7% for the seizure detector and
∼31% for the cardiac arrhythmia detector).

presented in [42]. The processor uses EEG signals acquired
from the scalp of an epileptic patient to detect the onset of
clinical seizures. Up to 18 channels (i.e., EEG acquisition
locations) can be used depending on the patient. For our
demonstration, real EEG data, available from the CHB-MIT
scalp EEG database [43], [44] are used. This includes expert
annotations corresponding to the time of electrographic onset
as well as the segment duration of a seizure. The clinical
metrics used to evaluate performance are defined in [42]:
1) sensitivity measures the true positive rate of seizure
detection; 2) false alarms measures the number of false
positives; and 3) latency measures the delay in seizure
detection with respect to the expert-identified onset.

For feature extraction, each EEG channel is downsampled
by eight using a decimation filter. The spectral energy of each
downsampled channel is then extracted from seven frequency
bands by accumulating the output of a corresponding bandpass
FIR filter over a 2-s epoch. This gives seven features per
channel. The features from each epoch are concatenated with
the features from two previous epochs, giving a total of
21 features per channel. In the system demonstration, two EEG
channels are employed, thus giving a 42-D feature vector. The
SVM then uses the feature vector to classify, corresponding
to a seizure or nonseizure.

The RTL code is developed and synthesized for the
system. The SVM and control block, which corresponds to
a counter, are fault protected (i.e., explicitly omitted during
netlist editing). These blocks account for approximately 7%
of the total circuit. For the FPGA implementation, the fault-
affected circuit consists of approximately 110.4k nodes, and
faults are injected on 4 to 40 nodes, corresponding to a fault
rate from 0.0036% to 0.036% of the fault-prone circuit.

2) ECG-Based Arrhythmia Detector: The processor for
the arrhythmia-detection system is shown in Fig. 12(b).

Fig. 13. Bit-error statistics of the computed feature vectors, showing the
BERs for different fault levels and the RMS of the feature errors (normalized
to the RMS of the true feature values) for (a) and (b) seizure-detection system
and (c) and (d) arrhythmia-detection system.

Feature extraction of ECG signals corresponds to a
discrete wavelet transform [45]. For our demonstration, real
patient ECG data is obtained from the MIT-BIH arrhythmia
database [44], [46]. This includes expert annotated labels for
normal and arrhythmia beats. The metrics used for evaluating
the performance are the true-positive (TP) rate and the false
positive rate. For comparison across test cases, training is
performed by fixing the true negative rate to 95%.

For feature extraction, a 256-point sequence is used from
the ECG. The samples are processed through a seven-stage
wavelet transform as shown in Fig. 12(b), resulting in
256 coefficients for each sequence. The feature vectors, thus
extracted, are classified with a fault-protected SVM classifier.
The fault-prone feature-extraction block accounts for 68% of
the total nodes in the architecture. Faults are injected on up
to 4k nodes, which correspond to ∼22% of the fault-prone
circuit.

B. Hardware Results

This subsection presents the hardware results, starting with
the bit-error statistics and then the overall performance of both
the baseline and DDHR systems.

1) Bit-Error Statistics: The injected faults are observed
to cause both high BERs and large error magnitudes, while
also exhibiting highly irregular statistical distributions. The
measured bit-error statistics for the feature vectors computed
by the two demonstration systems are shown in Fig. 13.
In Fig. 13(a) and (c), we observe that the feature vector BERs
are severe in both application cases, span from 10% to 45%
for the seizure detector and from 20% to 50% for the cardiac-
arrhythmia detector. Fig. 13(b) and (d) selects three cases
corresponding to different fault levels, where the DDHR
successfully restores system performance. The plots show the
RMS of the feature-error values normalized to the RMS of the
true feature values, for each feature (i.e., as in the expression
shown below). These plots illustrate that the performance is
restored even in cases where the error magnitudes far exceed
the actual feature values themselves (it is of the note that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: OVERCOMING COMPUTATIONAL ERRORS IN SENSING PLATFORMS THROUGH EMBEDDED ML KERNELS 9

Fig. 14. Performance of the systems with respect to the fault rates, for the cases with and without DDHR (five instances of the system are tested at each
fault rate). (a)–(c) Seizure detector performance. (d) and (e) Cardiac-arrhythmia detector performance (where the true-negative rate is set at 95% for all test
cases). DDHR consistently restores system performance up to a fault level of 20 nodes for the seizure detector and 480 nodes for the cardiac-arrhythmia
detector.

the features are deliberately sorted in order of descending
normalized RMS error to aid visualization)

RMS(error)

RMS(true value)
=

√∑M
i=1(FEA − FTV)2/M√∑M

i=1 F2
TV/M

(4)

where

FEA value of error-affected feature;
FTV true value (error-free) of feature;
M total number of feature vectors.

2) Overall Performance of DDHR Systems: Despite
the large bit-level errors observed, we observe that the
performances of the seizure and arrhythmia detectors are
substantially restored, thanks to DDHR. To qualitatively show
the impact, Fig. 15 first plots histograms of the output from
the SVM classifier for one of the seizure-detector test cases
(i.e., with faults on 12 nodes). The first histogram considers
a baseline detector with no errors, showing the system’s
ability to strongly discriminate between the classes; the second
histogram considers a detector with errors but without DDHR,
showing loss of ability to discriminate the classes; and the third
plot considers a detector with errors but with an error-aware
model through DDHR, showing restored ability to discriminate
between classes.

For quantitative overall system performance, Fig. 14(a)–(c)
shows the results for the seizure detector, and
Fig. 14(d) and (e) shows the results for the cardiac-arrhythmia
detector. In both cases, the performance of a system without
DDHR is compared to that with DDHR (i.e., using an
error-aware model), as the number of injected faults is

Fig. 15. Output histograms from the SVM classifier for seizure-detector
test case. (a) Case of the baseline detector without errors. (b) Case of a
detector with errors (due to twelve faults), but without DDHR. (c) Case with
errors (due to twelve faults) but with DDHR. The errors initially degrade the
separation between the class distributions, but DDHR restores the separation
enabling classification.

increased (recall that five instances of the system are tested
at each fault rate). While the systems without DDHR
exhibit immediate performance degradation, also showing
large variance across the cases at each rate, the systems
with DDHR exhibit restored performance to the error-
free levels for all instances tested up to a fault level of
20 nodes for the seizure detector and 480 nodes for the
cardiac-arrhythmia detector. This suggests that substantial
performance improvement can be achieved by DDHR in the
presence of severe errors caused by hardware faults. Beyond
the mentioned fault levels, many of the tested instances
exhibit restored performance; however, degradations are also
observed, making it valuable to have a mechanism that can
predict when DDHR will be effective in cases of severe fault
levels, as discussed below.

3) Error-Aware Model Construction: As mentioned in
Section III-C, the active-learning architecture is intended to
minimize the effort of constructing an error-aware model,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 16. Convergence of the error-aware model is achieved with minimal
training data within an active-learning and random-learning architecture. The
two cases show model convergence within (a) seizure-detection system at a
fault level of four nodes and (b) arrhythmia-detection system at a fault level of
thirty nodes (very similar profiles are observed at the other fault-rates tested).

namely, by minimizing the training-data buffer size and the
duty-cycle required of the fault-protected auxiliary system for
training-label estimation. Fig. 16(a) and (b) shows the rate
of convergence of the model for representative test cases, by
plotting the system performance with respect to the num-
ber of training vectors used, for the seizure-detection and
arrhythmia-detection systems respectively. In both cases, the
first plot shows active learning, using the marginal-distance
metric for data selection, while the second plot shows the
case where training data is selected randomly. In general,
a variety of different metrics might be used for minimizing
the data selected for on-line training, and the results show that
model convergence can, in practice, be achieved with very few
training vectors, (i.e., well below 2 k). As a result, the energy
and hardware requirements (MCU performance, data buffer
size, and so on) can be minimal.

4) MI and On-Line Assessment: As mentioned in
Section III-D, the performance of DDHR is expected to be
fundamentally limited by the amount of information that
is preserved for class discrimination in the error-affected
feature vectors. To numerically compute MI as in (2) and (3),
probability distributions must be derived for the feature data.
To do this, we discretize the entire multidimensional fea-
ture space into independent bins; this avoids complications
associated with statistical dependencies between the features.
Accordingly, for a dimensionality of d and a discretization
of each feature into n values, the total number of bins is nd.
The challenge with this is that for reasonable discretization, a
large number of bins result due to the high dimensionality
(i.e., seizure detection involves dimensionality of 42 and
arrhythmia detection involves dimensionality of 256). As a
result, we estimate MI by reducing the dimensionality through
PCA to d = 8 for the seizure detector and d = 4 for the
cardiac-arrhythmia detector, and we discretize with n = 2
(for a total of 256 bins) and n = 5 (for a total of 625 bins),
respectively; numerically these are shown to yield good esti-
mates of the MI, as observed by the tests wherein the n and
d value are scaled.

Due to the need to specify the class label for each feature
vector, MI is not computable on-line. As a result, Section III-D
proposed a proxy to MI (PMI), which is based on the estimated

Fig. 17. Scatter plots of TP rate versus MI and PMI, achieved through DDHR
within the (a) and (b) seizure-detection system and (c) and (d) arrhythmia-
detection system (note that parameters are intentionally set for a true negative
rate of 98% for the seizure detector and 95% for cardiac-arrhythmia detector
to facilitate comparison across all cases). A threshold of 0.02 bits and 0.5 bits
can be used, respectively, to indicate when DDHR will successfully restore
system performance.

class labels derived by a fault-free auxiliary system. Fig. 17
shows scatter plots of the TP rate with DDHR versus both
MI and PMI for the seizure detector [Fig. 17(a) and (b)] and
the cardiac-arrhythmia detector [Fig. 17(c) and (d)]. For the
seizure detector, the TP rate is used in this analysis rather
than the usual metrics [i.e., from Fig. 14(a)–(c)] since it
has direct correspondence with the classifier output, whereas
the usual metrics, which have greater application relevance,
involve additional derivation [42]. The first point we see is that
MI is a strong indicator for the overall performance achieved
with DDHR; an MI beyond 0.02 and 0.5 bits, respectively,
consistently yields restored performance. The second point we
see is that PMI shows excellent correspondence with MI. Thus,
by computing PMI and setting thresholds appropriately, we see
that architectures can be enabled that detect when their own
faults are too severe to overcome using DDHR.

VI. CONCLUSION

This paper presents the concept of data-driven hardware
resilience (DDHR) for overcoming computational errors due to
faults in a digital processor. DDHR uses embedded ML stages
to model the statistics of processed data in the presence of
errors due to faults in the processing hardware. A system
architecture for sensor-data classification is presented that
utilizes DDHR and enables on-line training of an error-aware
model entirely within the system with minimal overhead.
To minimize the model-training overhead, the architecture
employs the concept of active learning to construct a reduced
data set for training using the error-affected data derived from
the fault-affected processor itself. To enable model-training
entirely within the system, the architecture avoids the need
for external labeling of the training data using a temporary,
nonreal-time auxiliary system for error-free classification as
a means of generating estimated labels. Although such an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: OVERCOMING COMPUTATIONAL ERRORS IN SENSING PLATFORMS THROUGH EMBEDDED ML KERNELS 11

auxiliary system is energy intensive, it is only required for
model training, which is performed infrequently, allowing
the energy overhead to be greatly amortized over the real-
time operation. The experimental data is presented (based
on FPGA emulation), showing that the system is able to
restore performance even when severe bit-level errors occur.
Analysis based on MI shows that system performance is set
more fundamentally by the level of information retained in
the error-affected data. A key insight that thus emerges is
that information is often retained even in the presence of high
levels of bit errors. While DDHR takes an indirect approach
to exposing and modeling system errors (i.e., by focusing
on the data statistics generated due to the combined effects
of errors and application signals), this has the advantage of
enabling greater error tolerance through a dependence on the
precise way, in which errors affect the specific distributions
involved.

REFERENCES

[1] F. M. Khan, M. G. Arnold, and W. M. Pottenger, “Hardware-based
support vector machine classification in logarithmic number systems,” in
Proc. IEEE Int. Symp. Circuits Syst., vol. 5. May 2005, pp. 5154–5157.

[2] K. H. Lee and N. Verma, “A 1.2–0.55 V general-purpose biomedical
processor with configurable machine-learning accelerators for high-
order, patient-adaptive monitoring,” in Proc. ESSCIRC, Sep. 2012,
pp. 285–288.

[3] J. Park, J. Kwon, J. Oh, S. Lee, J.-Y. Kim, and H.-J. Yoo,
“A 92-mW real-time traffic sign recognition system with robust illu-
mination adaptation and support vector machine,” IEEE J. Solid-State
Circuits, vol. 47, no. 11, pp. 2711–2723, Nov. 2012.

[4] P. Dubey, “Recognition, mining and synthesis moves computers to the
era of tera,” Technol. Intel Mag., vol. 9, no. 2, pp. 1–10, Feb. 2005.

[5] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and
K. Bernstein, “Scaling, power, and the future of CMOS,” in IEEE Int.
Electron Devices Meeting (IEDM) Tech. Dig., Dec. 2005, pp. 7–15.

[6] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and
challenges for better than worst-case design,” in Proc. Asia South Pacific
Design Autom. Conf., 2005, pp. 2–7.

[7] E. Karl et al., “A 4.6 GHz 162 Mb SRAM design in 22 nm
tri-gate CMOS technology with integrated active VMIN-enhancing
assist circuitry,” in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers (ISSCC), Feb. 2012, pp. 230–232.

[8] N. R. Shanbhag et al., “The search for alternative computational
paradigms,” IEEE Des. Test. Comput., vol. 25, no. 4, pp. 334–343,
Jul./Aug. 2008.

[9] N. Verma, K. H. Lee, K. J. Jang, and A. Shoeb, “Enabling system-level
platform resilience through embedded data-driven inference capabilities
in electronic devices,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2012, pp. 5285–5288.

[10] M. Bohr, “The new era of scaling in an SoC world,” in IEEE Int.
Solid-State Circuits Conf.-Dig. Tech. Papers (ISSCC), Feb. 2009,
pp. 23–28.

[11] J. W. McPherson, “Reliability challenges for 45 nm and beyond,” in
Proc. 43rd Annu. Design Autom. Conf., 2006, pp. 176–181.

[12] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Sto-
chastic computation,” in Proc. 47th Design Autom. Conf., Jun. 2010,
pp. 859–864.

[13] C. W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Trans. Device Mater. Rel., vol. 5, no. 3, pp. 397–404, Sep. 2005.

[14] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level tim-
ing speculation,” in Proc. 36th Annu. IEEE/ACM Int. Symp. Microarchit.,
Dec. 2003, pp. 7–18.

[15] S. Das et al., “RazorII: In situ error detection and correction for
PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 32–48, Jan. 2009.

[16] A. L. Hopkins, Jr., T. B. Smith, III, and J. H. Lala, “FTMP—A
highly reliable fault-tolerant multiprocess for aircraft,” vol. 66, no. 10,
pp. 1221–1239, Oct. 1978.

[17] N. Shanbhag, “Reliable and energy-efficient digital signal processing,”
in Proc. 39th Annu. Design Autom. Conf., 2002, pp. 830–835.

[18] E. P. Kim and N. R. Shanbhag, “Soft N-modular redundancy,” IEEE
Trans. Comput., vol. 61, no. 3, pp. 323–336, Mar. 2012.

[19] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA:
Error resilient system architecture for probabilistic applications,” in
Proc. Design, Autom. & Test Eur. Conf. & Exhibit. (DATE), Mar. 2010,
pp. 1560–1565.

[20] J. Sartori and R. Kumar, “Architecting processors to allow volt-
age/reliability tradeoffs,” in Proc. 14th Int. Conf. Compil., Archit.
Synthesis Embedded Syst., 2011, pp. 115–124.

[21] Y. Yetim, M. Martonosi, and S. Malik, “Extracting useful computa-
tion from error-prone processors for streaming applications,” in Proc.
Design, Autom. & Test Eur. Conf. & Exhibit. (DATE), Mar. 2013,
pp. 202–207.

[22] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and
S. T. Chakradhar, “Scalable effort hardware design: Exploiting algo-
rithmic resilience for energy efficiency,” in Proc. 47th Design Autom.
Conf., Jun. 2010, pp. 555–560.

[23] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

[24] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector
machines to imbalanced datasets,” in Proc. 15th Eur. Conf. Mach. Learn.,
Sep. 2004, pp. 39–50.

[25] T. Joachims, Text Categorization With Support Vector Machines: Learn-
ing With Many Relevant Features. New York, NY, USA: Springer-Verlag,
1998.

[26] O. Girard. (2010). Openmsp430 Project. [Online]. Available:
http://opencore.org

[27] M. Karthikeyan et al., “A 65-nm random and systematic yield ramp
infrastructure utilizing a specialized addressable array with integrated
analysis software,” IEEE Trans. Semicond. Manuf., vol. 21, no. 2,
pp. 161–168, May 2008.

[28] P. Vijayakumar, V. B. Suresh, and S. Kundu, “Lithography aware critical
area estimation and yield analysis,” in Proc. IEEE Int. Test Conf. (ITC),
Sep. 2011, pp. 1–8.

[29] J. Kwong and A. P. Chandrakasan, “Variation-driven device sizing for
minimum energy sub-threshold circuits,” in Proc. Int. Symp. Low Power
Electron. Design, 2006, pp. 8–13.

[30] K. H. Lee and N. Verma, “A low-power processor with configurable
embedded machine-learning accelerators for high-order and adaptive
analysis of medical-sensor signals,” IEEE J. Solid-State Circuits, vol. 48,
no. 7, pp. 1625–1637, Jul. 2013.

[31] X. Shi, S. Hsu, J. F. Chen, C. M. Hsu, R. J. Socha, and
M. V. Dusa, “Understanding the forbidden pitch phenomenon and assist
feature placement,” Proc. SPIE, vol. 4689, pp. 985–996, Jul. 2002.

[32] N. Verma, J. Kwong, and A. P. Chandrakasan, “Nanometer MOSFET
variation in minimum energy subthreshold circuits,” IEEE Trans. Elec-
tron Devices, vol. 55, no. 1, pp. 163–174, Jan. 2008.

[33] J. Zhang et al., “Robust digital VLSI using carbon nanotubes,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 4,
pp. 453–471, Apr. 2012.

[34] A. Sreedhar, A. Sanyal, and S. Kundu, “On modeling and testing of
lithography related open faults in nano-CMOS circuits,” in Proc. Design,
Autom. & Test Eur. (DATE), Mar. 2008, pp. 616–621.

[35] R. A. Abdallah, Y.-H. Lee, and N. R. Shanbhag, “Timing error statistics
for energy-efficient robust DSP systems,” in Proc. Design, Autom.
& Test Eur. Conf. & Exhibit. (DATE), Mar. 2011, pp. 1–4.

[36] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and
A. P. Chandrakasan, “A micro-power EEG acquisition SoC with inte-
grated feature extraction processor for a chronic seizure detection
system,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 804–816,
Apr. 2010.

[37] M. A. B. Altaf, J. Tillak, Y. Kifle, and J. Yoo, “A 1.83 μJ/classification
nonlinear support-vector-machine-based patient-specific seizure clas-
sification SoC,” in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers (ISSCC), Feb. 2013, pp. 100–101.

[38] A. Shoeb, D. Carlson, E. Panken, and T. Denison, “A micropower
support vector machine based seizure detection architecture for embed-
ded medical devices,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (EMBC), 2009, pp. 4202–4205.

[39] G. Schohn and D. Cohn, “Less is more: Active learning with support
vector machines,” in Proc. ICML, 2000, pp. 839–846.

[40] D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4,
pp. 319–342, Apr. 1988.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[41] S. Ghosh and F. J. Ferguson, “Estimating detection probability of
interconnect opens using stuck-at tests,” in Proc. 14th ACM Great Lakes
Symp. VLSI, 2004, pp. 254–259.

[42] A. H. Shoeb and J. V. Guttag, “Application of machine learn-
ing to epileptic seizure detection,” in Proc. 27th Int. Conf. Mach.
Learn. (ICML), 2010, pp. 975–982.

[43] A. H. Shoeb, “Application of machine learning to epileptic seizure onset
detection and treatment,” Ph.D. dissertation, Dept. Health Sci. Technol.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 2009.

[44] A. L. Goldberger et al., “Physiobank, physiotoolkit, and physionet
components of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[45] E. D. Übeyli, “ECG beats classification using multiclass support vector
machines with error correcting output codes,” Digit. Signal Process.,
vol. 17, no. 3, pp. 675–684, May 2007.

[46] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50,
May/Jun. 2001.

Zhuo Wang (S’13) received the B.S. degree in
microelectronics from Peking University, Beijing,
China, in 2011, and the M.S. degree from the
Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA, in 2013, where he
is currently pursuing the Ph.D. degree.

His current research interests include robust
system design, in particular, designing robust VLSI
systems for highly energy-constrained applications,
and how machine-learning techniques can be
exploited, not only to model sensor signals, but also

hardware faults affecting the platform.

Kyong Ho Lee (S’10) received the B.S. degree from
the Korea Advanced Institute of Science and Tech-
nology, Daejeon, Korea, in 2004, the M.S. degree
from Stanford University, Stanford, CA, USA, in
2009, and the Ph.D. degree from Princeton Univer-
sity, Princeton, NJ, USA, in 2013, all in electrical
engineering.

He is currently with Samsung Research America,
San Jose, CA, USA, as a Hardware Engineer. His
current research interests include ultralow-energy
circuit design specialized in vision and wearable

applications, machine learning techniques and algorithms for high-energy
efficiency, deep learning applications in mobile domain, and sensor fusion
applications.

Dr. Lee was a co-recipient of Qualcomm Innovation Fellowship in 2011.

Naveen Verma (S’04–M’09) received the B.A.Sc.
degree in electrical and computer engineering from
the University of British Columbia, Vancouver, BC,
Canada, in 2003, and the M.S. and Ph.D. degrees
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
2005 and 2009, respectively.

He has been an Assistant Professor of Electrical
Engineering with Princeton University, Princeton,
NJ, USA, since 2009. On the circuit level, his
focus spans low-voltage digital logic and SRAMs,

low-noise analog instrumentation and data-conversion, and integrated power
management. His current research interests include ultralow-power integrated
circuits and systems with an emphasis on sensing applications, with particular
importance of the use of emerging devices for the creation of functionally
diverse systems and the use of advanced signal-analysis frameworks for low-
power inference over embedded signals.

Prof. Verma was a co-recipient of the 2008 International Solid-State Circuits
Conference (ISSCC) Jack Kilby Award for Outstanding Student Paper, the
2006 DAC/ISSCC Student Design Contest Award, and the Alfred Rheinstein
Junior Faculty Award at Princeton, and the 2013 National Science Foundation
CAREER Award.

