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ABSTRACT

A key challenge in closed-loop chronic biomedical systems is the
ability to detect complex physiological states from patient signals
within a constrained power budget. Data-driven machine-learning
techniques are major enablers for the modeling and interpretation
of such states. Their computational energy, however, scales with
the complexity of the required models. In this paper, we propose
a low-energy, biomedical computation platform optimized throug
the use of an accelerator for data-driven classification. The acce
erator retains selective flexibility through hardware reconfiguration
and exploits voltage scaling and parallelism to operate at a su
threshold minimum-energy point. Using cardiac arrhythmia detec-
tion algorithms with patient data from the MIT-BIH database, clas-
sification is achieved in 2.96] (atVyq = 0.4 V), over four orders of
magnitude smaller than that on a low-power general-purpose pro-
cessor. The energy of feature extraction is 1d8vhile retaining
flexibility for a range of possible biomarkers.

ical states of interest from signals that are available through chronic
sensing. This poses two essential challenges: (1) the signal corre-
lations to clinically relevant states are often too complex to model
based on physiology, and (2) the precise correlations are often vari-
able from patient-to-patient [14]. Data-driven modeling is emerg-
ing as a powerful approach to overcome these challenges [6]. This
has been prompted by the recent large-scale availability of physio-
h logical data in the healthcare domain as well as the development of
|_machine learning techniques for modeling specific correlations in
the data andféciently applying these models [11]. For the systems
b- of interest, however, the computations involved must be achieved
at very low-power levels (e.g., 1-10 mW for wearable devices and
10-100uW for implantable devices). Chronic patient monitoring
devices have recently attempted to exploit data-driven techniques,
but have thus far been limited in their ability to incorporate the
complete computation [3,13,15, 21].

This paper proposes a general-purpose platform for biomedical

detection of physiological states that takes advantage of the com-

Categories and Subject Descriptors

E5.1 Embedded Systems Platforms, Design Methodologies and
Case Studieg Platforms for domain-specific applications (medi-
cal), design methodologies and design flows, case studies o

General Terms
Electrocardiograph (ECG), support vector machine (SVM)

1. INTRODUCTION

Thanks to emerging sensors and stimulators as well as specialized
networking technologies, biomedical devices are advancing to new  ®
frontiers. Deep-brain stimulators [2], for instancéfeo unprece-
dented modalities for delivering therapy to patierfiseted by neu-
rological conditions, ranging from Parkinson’s disease to epilepsy;
neural prosthesis (i.e., brain-machine interface) [3,10] is beginnin
to show promise in restoring motor functions in disabled patients;
out-patient monitoring networks raise the possibility of compre-
hensive yet cost-scalable healthcare delivery over large populations e
with increasingly diverse disease states [5].

The central need, as these systems advance towsedisgent,
closed-loomperation [3], is the ability to detect specific physiolog-
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putational structure and characteristics of machine-learning-based
data-driven patient monitoring algorithms. The specific contribu-
tions are as follows:

We present an energy analysis of representative biomedical
detection applications (cardiac arrhythmia detection is con-

sidered in detail). The analysis is based on patient data from
the MIT-BIH database [12] and shows that classification, the

complexity of which depends on the characteristics of the

data, poses the primary energy limitation.

Based on the energy analysis and the computational require-
ments for various parts of the algorithm, we propose a general-
purpose architecture for a biomedical computation platform.
This attempts to employ programmability where computa-
tional flexibility is required, while leveraging a hardware ac-
celerator for classification, where set computations are re-
quired at a very high energytieiency.

We propose a transistor-level design of the classification ac-
celerator that leverages an ultra-low-power technology (i.e.,
low-leakage FD-SOI). Specific requirements for computa-
tional flexibility are identified and incorporated through hard-
ware reconfigurability in a parallelized subthreshold imple-
mentation that aims to operate at the minimum energy supply
voltage.

APPLICATION ENERGY ANALYSIS

Cardiac arrhythmia refers to abnormal heart beats that are indica-
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tive of a range of cardiovascular conditions. In this section, arrhyth-
mia detection serves as a representative example, demonstrating the
key energy limitation in typical biomedical detection applications,
namely, thatclassificationposes the energy bottleneck due to the



complexity of the models required. Unfortunately, the model com- 2.1  Energy Profiling

plexity depends on the characteristics of the application data and,The detection algorithms illustrated in Fig. 1 have been imple-

thus, introduces an unavoidable tradevaith respect to accuracy.  mented using SVM-Light [8] for the SVM, and the computational
Fig. Lillustrates the structure of typical machine-learning-based energy has been profiled via instruction set simulation of a Tensil-

data-driven detection algorithms. The two primary steps involved jca DC_108Mini Xtensa processor with a minimum-base configu-

in these are: (1) biomarker extraction, and (2) biomarker interpre- ration [19]. The energy results for feature extraction are shown in

tation (through a classifier). Biomarkers refer to specific signal pa- Taple 1. A feature vector is derived every heart beat and consumes

rameters that have some correlation with the physiological state of 9410, for segmentation, 3.22] for morphological feature ex-

interest. For arrhythmia detection, a range of biomarkers has beenaction, and 53.44J for wavelet feature extraction.

used (including ECG morphology, beat intervals, spectral features,

etc. [4]). The range of biomarkers originates due to the diverse Table 1: Energy per test vector for preprocessing and feature

clinical trade-dfs introduced by each, which can also be variable extraction on the Tensilica Xtensa core DC_108Mini.

across patients [7]. In this study, two prominent biomarkers, in-

cluding waveform morphology (as in [4]) and spectral wavelets (as Computational step Energy/test vector
in [20]), are used. Thus, the associated processing steps, includ- Pre-processingegmentation 94.10ud
ing segmentation (to isolate individual beats), are implemented in Morphologyfeature extraction 3.22uJ
software (enabling the energy analysis presented next), and their Waveletfeature extraction 53.41uJ
outputs form the feature vectors that are used for classification. ) o
Offine Training Figs. 2 and 3 show the energy of classification versus the number
; of support vectorsNsy) and the number of dimensionB4y) in
MIT-BIH ARRHYTHMIA DATABASE . . .
i . —— , , TRAINING each support vector, respectively. Both the number and dimension-
i|| 1. 48 two lead ECG recordings, 30 min continuous patient monitors . .
i | 2. 25 recs: complex ventricular, junctional & superventricular arrhythmiag| | _SVMLioht ality of the support vectors are representative of the model com-
{| 3, Total: 109492 beats, 75054 normal (NOR) and 34438 abnormal " etware lexity. It can be seen that with energy scaling, the classification
i}l (ABN) beats belonging to AAMI heartbeat classes S,V,F and Q p Y- . R gy g, .
energy rapidly dominates that of feature extraction. The actual
Online Detection Support-Vectors (Decision Boundary) classification computation is shown below (for radial-basis func-
BIOMARKER EXTRACTION BIOMARKER tion (RBF) and polynomial transformation kernels):
A NORMAL BEAT i Wavelet Trangforn ; INTERPRETATION Nsy
| H
Lol s ¢ ® * aounowd Dara CLass = sgn Z K(X-s%)ayi — b 1)
=i -~
J/J/\_»LJ_ 8P Fiter Deriv Thresh T 5 EcG ¢ s agsaH )
S SEGMENTATION A NORMAL BEAT B. ABNORMAL BEAT | S 212
: ; exg—ylIX — sV RBF kernel
Physiological b it | L GlASSHGATION where K(X-s¥) = 1 )E( ZH d 1" Polv. kernel
Signal (ECG) el LU LU (X-s% +p) oly. kerne
FEATURE EXTRACTION

, ) . ) ) Here, sgr] is the signum functionX is the feature vector to be
Flgt_Jre 1 _The structure o_f data—_drlven blomgdlcal dete_ctlon al- classified, andsv; is thei support vectorlf, d, ai, 8, v, andy;
gorithms includes (1) dfline training, (2) online detection (em- are training parameters). The energy-dominating computation in
ploying biomarker extraction & biomarker interpretation). Eq. (1) is the dot product ot andsvi. The energy, thus, scales with
For data-driven classification, a SVM is used. SVMs are popular both Dsy and, due to the summatiohs,. K represents a kernel
machine learning classifiers that can WBceently trained dline function. If K were a linear operation, test vectocould be pulled
to derive the support vectors, which are a set of vectors used toout of the summation, annulling the energy scaling [9]. Unfortu-
construct a decision boundary. Although training can be done of- nately, however, linear classification kernels have been shown to be
fline, classification, through the application of the support-vector insuficient for biomedical datasets [17]. This raises the need for
model, must be performed in real-time for chronic detection. To non-linear transformation kernels, whicfiad much higher flexi-
accurately represent the computational complexity imposed by the bility in the classification decision boundary. As mentioned previ-
support-vector model, patient data from the MIT-BIH database [12] ously, the complexity of the support vector model required is de-

is used. pendent upon the application data. Althoug, can be reduced,
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Figure 2: Classification energy scales Figure 3: Classification energy scales Figure 4: Easing model complexity (by
with Ngy and thus dominates over feature ~ with Dsy (both Nsy and Dsy are repre-  reducing Nsy) degrades the accuracy of
extraction. sentative of classification complexity). classification.
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Figure 5: Architecture of the low-energy biomedical computation patform. Flexibility in the biomarkers is retained through a
general-purpose processor and energyflciency is achieved through a classification accelerator.

this comes at the cost of detection accuracy. Fig. 4 shows how purpose processor, are loaded into the TV linffidau TVs and SVs

the sensitivity and specificity for arrhythmia detection degrade as are then fed dimension-by-dimension to the MAC array in order to
Nsv is reduced. To avoid compromising accuracy, the datasets in perform the dot-product operations in Eq. (1). Readout from these
biomedical applications often require complex models, causing the buffers is optimized using a multiplexer array decoder (as described
classification energy to be dominant (by over two orders of magni- in Sec. 4.1). Hardware parallelism is employed through an array of
tude in the case of arrhythmia detection, as shown in Fig. 2). The MAC units: MAC_1to MAC_N, each of which is associated with
energies reported in other biomedical applications are consistentan SV preload bfiier. Once multiplication over all the dimensions
with this result (e.g., seizure detection based on electroencephalo-s complete, the dot products are multiplexed to the kernel transfor-
graph classification [21]). mation block, where a 2nd, 3rd, or 4th order polynomial transfor-

mation is computed. The results are scaled and summed by a final
3. LOW-ENERGY BIOMEDICAL COMPU- accumulator whose output sign determines the classification result.
TATION ARCHITECTURE

Sec. 4.1 provides details of how reconfigurability is implemented

o S ) for feature dimensionality, number of support vectors, computation
The energy limitation posed by classification is an important char- yrecision, and kernel transformation.
acteristic of the applications, and it motivates a platform architec- L .
ture for programmable low-energy biomedical devices. Although 3.2 Energy Minimization
they dominate energy, the classification computations remain canonsince the dot-product derivation (in the MAC array) dominates the
ical across these applications. Feature extraction, on the other handgomputation, we optimize its energy. The total energy is deter-
has modest energy needs but requires a high degree of computamined primarily by the sum of active-switchinde4;) and sub-
tional flexibility due to the range of clinical trade¥s associated threshold leakages() sources:
with the choice of features (i.e., biomarkers) [4, 16]. The plat-
form architecture proposed in Fig. 5 aims to take advantage of this
computational structure in the algorithms by employing a general-
purpose processor for feature extraction and an optimized acceler
ator for kernel-based SVM classification.

To optimize the #iciency of the classification accelerator, sev-
eral approaches are pursued. Most importantly, minimum energy
operation [23] is achieved through voltage scaling and parallelism,
whereby the throughput constraint for real-time detection is met.
In addition, an ultra-low-leakage technology (150nm FD-SOI) is
employed. In addition to energyfficiency, however, the need for
selective flexibilitys also recognized so that the classification needs
across a wide range of biomedical applications can be supported.
The accelerator attempts to incorporate these needs through hard
ware reconfigurability. This yields flexibility in the classification
model, computation precision, and kernel transformation function

(as summarized in Fig. 5)'_ ) to longer resulting leakage-current integration tiffigac). The
3.1 Accelerator Microarchitecture energy-optimal point, thus, typically occurs in the subthreshold re-

The accelerator has three major functional blocks (shown in Fig. 5): 9ion, since here the circuit delay begins to degrade rapidly [23].
(1) the support vector (SV) and test vector (TV)fileus, (2) the Although this implies that energy optimization leads to low cir-
multiply-accumulate (MAC) engine, and (3) the programmable poly- cuit performance, computational throughput constraints can be ef-
nomial kernel core. Followingf®line training, SVs are pre-loaded ~ ficiently met if the circuit units can be operated in parallel with
into the SV preload hffiers. Since this is a one-time process, preload Minimal overhead [18]. We can thus exploit the parallelism possi-
buffers are connected as a shift register to simplify load control sig- Ple in the classifier dot-product computation (i.e., MAC array) to

nals. The TVs, produced through feature extraction by the general-achieve minimum energy operation for real-time biomedical detec-
tion. To do this, we first determine the minimum-enekgy of a

MAC unit. We then determine its performance at tig (i.e., sec-
onds per MAC operatioryac). The total rate of MAC operations

Eotat = Eact+ Eik = CettVig + lleaVad Tmac (2

whereCqg¢; is the dfective switched capacitance of a MAC unit,
Vyq is its supply voltageleak is its leakage current, anbyac is its
circuit delay.

Choice of technology. Due to the modest performance require-
ments in typical biomedical applications (i.e., due to the relatively
low bandwidth of physiological signals), employing a technology
that is aggressively optimized for low leakage is beneficial. As an
example, for arrhythmia detection, a performance on the order of 5
million MACs/second is required. The technology we use is thus
a 1.5V 150nm ultra low-leakage FD-SOI CMOS process. FD-SOI
results in steep subthreshold slopes [22], and the devices have high
threshold voltages (i.eVyn = 0.65V, |V, p| = 0.53V).

Voltage scaling and parallelism. In Eq. (2), the reduction i,
due toVyq scaling is opposed by the increase in leakage energy (due

!Sensitivity= = and specificity= =, whereT (F)y, is the

number of true (false) negatives (positives).
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Figure 6: The active-switching and leakage energy profiles for ~ Figure 7: The operating frequency atVyy = 0.4 V is 520.0 kHz
a MAC unit with the min. total energy occurring at Vgq = 0.4 V. at 285K (low temperature is slowest in subthreshold).

(Rr.mac) required in the classifier computation (of Eq. (1)) is given cuit blocks. The complete classifier has been laid out, and simula-

by tion results are from post-layout extraction.

Rrmac = [Nsy X Dsy X Reiass] (3) 4.1 SV and TV Buffers
whereRc assis the classification rate. The required parallelism is The energy of the liters is optimized for read operations since the
thenRy mac X Tmac- SVs are preloaded infrequently (i.e., only when changes to the clas-

For the application considered, wavelet-based arrhythmia detec-sification model are required). Fig. 8 shows thé&®uarchitecture
tion results in the severest throughput constraint since the featurein detail. Each bffer consists of an array of edge-triggered register-
dimensionality Dsy) is 256 (compared to 26 for morphology fea- file cells connected into a shift register. Writes are thus performed
tures). TheNsy required is between 3500 and 10,000 for reason- using clocksSV_CLKO andTV_CLKO; these are generated and
able accuracy (based on Fig. 4), and beats must be classified agippropriately gated by the control block (in Fig. 5), which enforces
the rate of up to 3 beats per second (i.e., 180 beats per minute).the write phase. For readout, hierarchical multiplexers are used to
Thus, theRr yac required ranges from 2.7M-7.7M MAZ=cond. avoid long bit lines, since these result in higher active-switching en-
Fig. 6 shows the active-switching and leakage energies of a MAC ergy and worse robustness to bit line leakage in the deep subthresh-
unit (based on a transistor-level simulation). The total energy is old regime [23]. The multiplexers are daisy-chained and arrayed
minimized at &Vyq of 0.4V, which is in the subthreshold region for ~ for a compact layout.
the technology employed. Fig. 7 shows the performance achieved The multiplexers are controlled by a counter in the control block
by a MAC unit asVyq is scaled. Under worst-case process and that saturates at a value Bky x Nsy, allowing programmability
temperature conditions (i.e., low temperature in subthreshold) andin both Dsy and Nsy (via the status register). The voltage of the
the minimum-energy/yq, the maximum frequency is 520 kHz (i.e.,  16x12b bank in Fig. 8 can be independently gated to scale the leak-
Tumac = 1.92 us). The level of parallelism required is thus 6 to age energy for the total Iffier size needed. The acceleratoffbts
15 MAC units. Fig. 6, however, shows that the energy minimum support aDsy x Nsy of 64. If additional storage is required to rep-
is shallow, particularly ifVy4 is increased slightly. For instance, resent the classification model, the control block permits expansion
to increase the MAC performance by a factor of three (in order to by allowing up to 8192 write sequences from the processor cache
cover the targeRr vac range),Vqq must be increased by less than or from off-chip memory to the local biters. Thus, a maximum
50 mV (based on Fig. 7), causing a negligible increase in total en- of 4095 support vectors and 256 feature dimensions are supported,
ergy (based on Fig. 6). We thus optimize for the lower performance along with any other combination that results in the same product.
(by employing 6 MAC units), and use voltage scaling with mini- 4.2 Variable-precision MAC

mal impact on the optimization to elevate the performance when i ) )
required. Due to the wide range of support vectors and feature dimensions
across applications, the precision requirements of the classifier com-
4. CIRCUIT DESIGN AND OPTIMIZATION putation are variable. Several approaches for scalable precision
In this section, we describe how the selective flexibility desired in multipliers have been reported (e.qg., [23]). The approach used her
the classification accelerator is achieved using reconfigurable cir- aims to exploit the &iciency of the Booth encoding algorithm [1].
Supposex y must be computed, where the operand bit-widths are
ur Reser)  sv.ouoTvoo | ~ [n-— 1.: 0] anq [Zn - 1:0], .respectively. Using .radix-4 Booth
i /;ﬁ][ZIZIZ]—"[Z][Zh en - encoding multiplicationm partial products are required rather than
WLLL=CL) [~ 2m, as in a conventional shift-and-add multiplier. Consider an inte-

TVISV-IN :
> P> qexizo P qextzo KT exizn |
I I3 N2 )2

B qexi20
0 o A AjEm——— ger encoding:
XQEW-"Q oo .

1] 1.1

SEL_BUF_0 i,

SEL_BUF_1

— 6i(y) = yl2i - 1] + y[2i] - 2y[2i + 1] 4
SELﬁBUi \/\ AJLSEL,BUFJ i . ) ) )
SEL_BUF 3 - - P o implying that-2 < 6; < 2fory[j] =0, Y]j < 0 andYy,i € N. Also,
| Hierarchical MUX Decoder (Read) {z o by definition:
*TV/SV—OUT — m-1 m-1
xxy=x) 26(y) = ) x5 (5)
i=0 i=0

Figure 8: The buffers are implemented by clocked register-file

cells forming a shift register for writes and employing hierar- Thus, there aren partial products involved in Eq. (5). Moreover
chical multiplexers for read. each of these products is a shifted versiorxafcaled by one of
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the five possible values éf, which can be implementedtiently
using a look-up table.

For our precision-scalable implementation, consider the special-

ized case of the Booth structure whefe] = y[1] = 0. The integer
encodings, = 0 and the first partial product is, thus, zero. Further-
more, ifX[n—1] = x[n—2] = 0, Eq. (5) represents the product §
wherexXandyare lower-precision numbers given ®y="x[n-3 : 0]
andy = y[2m -1 : 2]. The summation in Eqg. (5) now has— 1
partial products (running from= 1toi = m- 1). Hencexx §

represents the multiplication of two numbers whose precision has

been reduced by two bits. In general, settyfig = x[n—j] =0

fori e [0,k —1],] € [1,K] produces ifh — k/2) partial products,
which can be viewed as reducing the precisiox ahdy by k bits.

The multiplication, thus, requires fewer partial product additions,
which, when derived by an intermediate result of the adder hard-
ware, allows adaptive energy scaling with precision.

Fig. 9 shows the architecture of the variable-precision MAC unit.
The BOOTH ENCblocks compute thes; functions of Eq. (5)
based on the select bits of multipligr as described above. The
shifted partial products are output B®,, i € [0,5]. This allows a
maximum precision of 12 bits for the input operands (correspond-
ing to 6 partial products). In the figur®P, and PP, are the par-

dimensionality. The output of the truncation-selection multiplexer
is accumulated into an output register using a 16-bit final CBA.

4.3 Programmable Polynomial Kernel

Nonlinear kernels have been shown to be important in order to ac-
curately model biomedical datasets. Polynomial transformations
are widely-used SVM kernels and are incorporated in our acceler-
ator. The polynomial transformation kernel is defined as

K (X-s%) = F(X- sy +B)°", (6)

whered represents the order of the polynomial transformat@n (
and F are dfset and normalization scaling factors, respectively).
Fig. 10 shows the reconfigurable transformation kernel used for
d equaling one to fourDOT_PRODis the input to the transfor-
mation kernel which is the dot-product outp#t-(sv;) of MAC i,

i € [0,5] (as shown in Fig. 5). Th& EL MAC signal from the
control block (as shown in Fig. 5) sequentially chooses from the
MAC outputs.CBAO is a 12-bit adder that computes-(sV; + f).
Multiplier (MULO 12x12x24) computesX - s% + 8)?. Multiplier
(MUL1 12x12x24) computes eitheX(- s% + )% or (X - s% + B8)*
based on the value & ELO (which is programmable via the status
register). Select bits§ EL1 andS EL2, are used to choose between

tial products used when precisions of 12 and 10 bits, respectively, the multiplier outputs\{, R or S) to select linear, quadratic, cubic,
are required; otherwise the precision is 8 bits. The carry-bypass or quartic transformations. This result is then scaled by normaliz-

adders (CBAs) consist dil = 4-bit full adder chains, anll rep-
resents the total input bit-width of each adder. The common partial
products required for theB)/12 precision bits are added using 3:2
and 2:1 compressors in a Wallace tree. The outpuGRA-0/1/2

are read out via a precision-select multiplexer (far0gL2-bit pre-

cision, respectively). The unused bypass adders are power-gated

The inset in Fig. 9 shows how the energy scales with precision.
Although the minimum-energyyq remains the same, scaling the
precision from 12 to 8 bits reduces the energy per multiplication by
17.6%. Following precision selection, the output of the multiplier
has either a 24-, 20-, or 16-bit output. The truncation-selection
multiplexer selects a level of truncation (to 12, 10, or 8 bits, pro-

grammable via the status register). The choice of truncation can
be determined based on the number of dimensions in the supportr

vectors; higher truncation allows accumulation of more multiplica-
tion results, enabling dot-product computations with higher feature

DOT_PROD (X"$V, ) | B|
12

CBAO
N-12,M-4

CLASS

1

REG 24

'SEL2 Ker_CLKo |

Figure 10: The programmable kernel allows selection between
polynomial kernels of order one through four.

ing factorF using multiplier (MUL2 1%12x24), giving the result
K (X - s%) of Eq. (6). This is then accumulated over all the support
vectors to yield the classifier output.

5. SIMULATION RESULTS

The classification accelerator was designed and laid out in the 150-
nm FD-SOI CMOS process. Table 2 shows the energy measure-
ments from post-layout simulation. The polynomial kernel of or-
der 2 was used. The measurements are performedfatatit sup-

ply voltages. Extrapolating for 10,000 support vectors, ¥§gfof

400 mV, the total energy for arrhythmia classification per test vec-
tor using the wavelet transform featur@s(, = 256) is 2.96.J and

for the morphology featuredDgy = 26) is 0.34uJ. This is over

our orders of magnitude lower than that obtained on the Tensilica
processor (Sec. 2.1). The Tensilica processor consumes 2.2
and 9.01mJ for classification of the wavelet and morphology fea-
tures, respectively. As seen from Table 2, the classification energy
scales roughly linearly wittNs\, andDsy, (this can be seen clearly

in the numbers provided fovyq = 0.6 V, 0.4 V). The bottom of

the table also shows the energy for various classifier kernels. Since
the kernel transform is not the dominant computation, the energy
scaling is modest.

Table 3 shows the computational energy contributions for the ac-
celerator sub-blocks during online classification. In the table, the
energy consumed in the TV and SVfters, the MAC array engine,
kernel and the control block are shown in the BUF, MAC, KER and



[5] E. Dishman. Inventing wellness systems for aging in place.
IEEE Computer37(5):34-41, 2004.
[6] D. Hau and E. Coiera. Learning qualitative models from

Table 2: Accelerator energy measurements per test vector in a
150 nm FD-SOI process withV; y = 0.65V and |V, p| = 0.53V.

Vaa (V) | Dsv | Nsv | Eact(pJ) | Ei (PJ) | Eiot (PJ) | fop, T=287K physiological signals. IfProc. AAAI Symp. Atrtificial
4 5 1223.2 23.3 1246.5 Intelligence in Medicingpages 67—-71, 1994.
10 8 | 10 | 22899 | 419 | 23318 | 10.0MHz [7] A. S. Jdfe, L. Babuin, and F. S. Apple. Biomarkers in acute
16 15 | 33625 | 932 | 34557 S o ’ Ce : .
o o672 o1 5923 cardiac disease: The present and the futlirdmerican
0.6 8 P 1604.4 960 1700.4 2.0 MHz College Qf Cardlology48:l—11, 2006. .
50 | 31704 | 175.0 | 3345.4 [8] T.Jaochims. SVM-Light, support vector machine.
2 276.2 1000 | 3766 httpy/svmlighfjaochims.org.
0.4 8 10 457.1 199.2 656.3 550 kHz [9] F. M. Khan, M. G. Arnold, and W. M. Pottenger.
16 8182 | 3363 | 11545 Hardware-based support vector machine classification in
Vag (V) | Dsv | Nsv | Eact(pd) | Ei (pJ) | Eiot (pJ) | Kernel Order logarithmic number systems. FProc. IEEE Int. Symp.
2294.9 | 419 2336.8 Poly2 Circuits and Systemgpages 23-26, May 2005.
1.0 8 10 | 2377.1 | 423 | 24194 Poly3 : : - :
54500 | 427 2500.6 Poly4 [10] M. A. Lebedev and M. A. L. Nicolelis. Brain-machine

interfaces: Past, present and futuEésevier Trends in

CNTRL columns, respectively. The MAC engine consists of six Neurosciences29(9):536-546, 2006.
MAC units and the KER block consists of three MULX22x24 [11] G. Meyfroidt, F. Guiza, J. Ramon, and M. Bruynooghe.

multipliers, which are sub-blocks within a MAC unit. As shown, Machine learning teghnlques to examine large patient
the MAC+KER energy dominates-(84%), confirming the benefit databasesBest Practice- Research Clinical
of its energy optimization (Sec. 3.2). Although theffleus dom- Anaesthesiology23(1):127-143, Mar. 2009.
inate the transistor count, their low energy contribution shown in [12] Physionet. MIT-BIH Physionet database.
the table is due to the low leakag&aded by the choice of the httpy/www.physionet.orfphysiobankdatabase.
technology. [13] S. Cadambi et al. A massively parallel FPGA-based
coprocessor for support vector machinesPfoc. Int. Symp.
Table 3: Energy and area (per test vector) of the sub-blocks. Field Programmable Custom Computing Machinesges
Meas. Condition | Total | BUF | MAC,pJ KER,pJ | CNTRL 115-122, Apr. 2009.
Vaa | D | N pJ pJ (% Total) (% Total) pJ [14] A. Shoeb, B. Bourgeois, S. T. Treves, S. C. Schachter, and
1v 2336.8 | 30.4 | 1224(52.8) | 736.6 (31.5)| 345.9 J. Guttag. Impact of patient-specificity on seizure onset
8~2¥ 8 | 10 ggé-g ig-g gig-; Egg}lg ggg-; gi?; gg-f detection performance. Rroc. Int. Conf. IEEE EMBS
: : : e S : pages 4110-4114, Aug. 2007.
Area(nmm?) | 290 | 166 | 063 | 067 | 002

[15] A. Shoeb, D. Carlson, E. Panken, and T. Denison. A
micropower support vector machine based seizure detection

6. CONCLUSIONS architecture for embedded medical devicesPitac. IEEE
Machine-learning-based algorithms for biomedical detection are Int. Conf. EMBSpages 4202-4205, 2005.

emerging as a highly promising means to extract clinically rele- [16] A. Shoeb and J. Guttag. Application of machine learning to
vant correlations from physiologically-complex signals. The struc- seizure detection. IRroc. Conf. Machine Learninglun.

ture in these algorithms can be exploited towards the design of a 2010.

low-energy platform. Kernel-based classification is found to pose [17] A. H. ShoebApplication of Machine Learning to Epileptic
the primary energy bottleneck and is thus targeted for optimization Seizure Onset Detection and Treatmdtiectrical and
through the use of a hardware accelerator. The fixed kernel com- Medical Engineering, Massachusetts Institute of Technology,
putations required are exploited, but selective flexibility required Boson, Massachusetts, Sep. 2009.

across a range of applications is also incorporated through specific[18] V. Sze and A. P. Chandrakasan. A 0.4-V UWB baseband
hardware reconfigurability. The optimized accelerator reduces the processor. IfProc. IEEE Int. Symp. Low Power Electronics
computational energy by over four orders of magnitude compared and Designpages 262—267, Aug. 2007.

to a software implementation in a generic low-power processor.  [19] Tensilica Inc. The Xtensa processor.
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